Traitement du vide dans les mailles mixtes en configuration lagrangienne.

L. Clément, J. M. Ghidaglia, J.P. Perlat et L. Quivy

CEA, Dam et CMLA, Ens Cachan

Cargèse, 29 septembre 2012

Schéma Lagrange: 2 matériaux

- Traitement des mailles "matériau pur"
- Traitement des maille mixtes; méthode pV
- $p_{mix} = f_{mat} p_{mat}$ n'est pas correcte
- 2 Méthode Frontière Libre: traitement de la maille mixte
 - Cas d'un gaz parfait
 - Cas d'un solide
- 3 Comparaison des méthodes
- 4 Validations numériques
 - Cas de la détente dans le vide
 - Cas de la double détente dans le vide
 - Cas d'un gaz choqué en présence du vide
 - Cas test 1: solide ou gaz en dilatation
 - Cas test 1D.2: fermeture du vide
 - Extension au 2D
 - Conclusion

イロト イポト イヨト イヨト

Traitement des mailles "matériau pur"

Traitement des mailles "matériau pur"

$$u_{j+\frac{1}{2}}^{n+\frac{1}{2}} = u_{j+\frac{1}{2}}^{n-\frac{1}{2}} - \frac{\Delta t_n + \Delta t_{n-1}}{m_j^n + m_{j+1}^n} (p_{j+1}^n - p_j^n)$$
$$x_{j+\frac{1}{2}}^{n+1} = x_{j+\frac{1}{2}}^n + \Delta t_n u_{j+\frac{1}{2}}^{n+\frac{1}{2}},$$

$$\tau_j^{n+1} = \tau_j^n + \frac{\Delta t_n}{m_j^n} \left(u_{j+\frac{1}{2}}^{n+\frac{1}{2}} - u_{j-\frac{1}{2}}^{n+\frac{1}{2}} \right), \ \tau_j^n = \frac{1}{\rho_j^n},$$

$$e_j^{n+1} = e_j^n - \frac{p_j^n + p_j^{n+1}}{2}(\tau_j^{n+1} - \tau_j^n),$$

$$m_j^{n+1} = (x_{j+\frac{1}{2}}^{n+1} - x_{j-\frac{1}{2}}^{n+1})\rho_j^{n+1} = m_j^0,$$

$$EOS(p_j^{n+1}, \rho_j^{n+1}, e_j^{n+1}) = 0.$$

イロン イヨン イヨン イヨン

Traitement des maille mixtes; méthode pV

Traitement des maille mixtes; méthode pV

Pression moyenne de maille:
$$p_{mix}^n = f_{mat}^n p_{mat,mix}^n$$

$$\begin{split} u_{j-\frac{1}{2}}^{n+\frac{1}{2}} &= u_{j-\frac{1}{2}}^{n-\frac{1}{2}} - \frac{\Delta t_n + \Delta t_{n-1}}{m_{mat,mix}^n + m_{j-1}^n} (p_{mix}^n - p_{j-1}^n) \\ u_{j+\frac{1}{2}}^{n+\frac{1}{2}} &= u_{j+\frac{1}{2}}^{n-\frac{1}{2}} + \frac{\Delta t_n + \Delta t_{n-1}}{m_{mat,mix}^n} p_{mix}^n \\ x_{j\pm\frac{1}{2}}^{n+\frac{1}{2}} &= x_{j\pm\frac{1}{2}}^n + \frac{1}{2} \Delta t_n u_{j\pm\frac{1}{2}}^{n+\frac{1}{2}} \\ x_{j\pm\frac{1}{2}}^{n+1} &= x_{j\pm\frac{1}{2}}^n + \Delta t_n u_{j\pm\frac{1}{2}}^{n+\frac{1}{2}}, \end{split}$$

イロン イヨン イヨン イヨン

Traitement des maille mixtes; méthode pV

$$\begin{array}{ll} \text{Pression moyenne de maille:} & p_{mix}^{n} = f_{mat}^{n} p_{mat,mix}^{n} \\ u_{j-\frac{1}{2}}^{n+\frac{1}{2}}, & u_{j+\frac{1}{2}}^{n+\frac{1}{2}}, & x_{j\pm\frac{1}{2}}^{n+1}, & \tau_{mat,mix}^{n+1}, & e_{mat,mix}^{n+1} \\ & f_{vide}^{n+1} = f_{vide}^{n} & \cos pV \\ & \xi_{j}^{n+1} = x_{j-\frac{1}{2}}^{n+1} + f_{mat}^{n+1} (x_{j+\frac{1}{2}}^{n+1} - x_{j-\frac{1}{2}}^{n+1}) \\ & m_{mat,mix}^{n+1} = (\xi_{j}^{n+1} - x_{j-\frac{1}{2}}^{n+1}) \rho_{mat,mix}^{n+1} = m_{mat,mix}^{0}, \\ & EOS(p_{mat,mix}^{n+1}, \rho_{mat,mix}^{n+1}, e_{mat,mix}^{n+1}) = 0. \end{array}$$

イロト イヨト イヨト イヨト

æ

L. Clément, J. M. Ghidaglia, J.P. Perlat et L. Quivy Traitement du vide

Traitement des maille mixtes; méthode pV

Traitement des maille mixtes; priorité au vide ou au matériau

Problème:

$$f_{vide}^{n+1} = f_{vide}^n$$
 cas pV

non pertinent lorsque le deuxième matériau est du vide: compressibilités différentes.

Autre issue: introduction d'un nouveau paramètre permettant de "régler" le comportement du vide:

$$k = \frac{\delta V_{vide}^n}{\delta V^n}$$

$$\delta V^n = V^n - V^{n-1}.$$

k = 1, toute la variation de volume de la maille mixte est entièrement mise dans la variation du volume du vide.

 $p_{mix} = f_{mat} p_{mat}$ n'est pas correcte

$p_{mix} = f_{mat} p_{mat}$ n'est pas correcte

Solution exacte de la détente d'un gaz dans le vide. Il existe une détente qui relie (ρ_0, u_0, p_0) au vide dans le cas GP:

$$\begin{split} u(x,t) &= \frac{2}{\gamma+1} \left(c_0 + \frac{\gamma-1}{2} u_0 + \frac{x-\xi_0}{t} \right), \quad \eta(t) \leq x \leq \xi(t), \\ \rho(x,t) &= \rho_0 \left(\frac{2}{\gamma+1} + \frac{\gamma-1}{(\gamma+1)c_0} (u_0 - \frac{x-\xi_0}{t}) \right)^{\frac{2}{\gamma-1}}, \quad \eta(t) \leq x \leq \xi(t) \\ p(x,t) &= \rho_0 \left(\frac{\rho(x,t)}{\rho_0} \right)^{\gamma}, \\ u(x,t) &= u_0 \text{ et } \rho(x,t) = \rho_0, \quad x \leq \eta(t), \\ \rho(x,t) &= 0, \quad x \geq \xi(t), \\ \eta(t) &= \xi_0 + (u_0 - c_0)t \quad \text{et} \quad \xi(t) = \xi_0 + (u_0 + \frac{2c_0}{\gamma-1})t. \\ &= 0 \quad \text{ or explanation} \end{split}$$

 $p_{mix} = f_{mat} p_{mat}$ n'est pas correcte

Par continuité,

$$u(x,t) = u_0 + \frac{2c_0}{\gamma-1}, \quad x \ge \xi(t).$$

 \Rightarrow vitesse du pied de la détente.

2 Les deux invariants de Riemann

$$u(x,t) + rac{2c(x,t)}{\gamma-1}$$
 et $s(x,t)$

sont constants:

$$u(x,t) + \frac{2c(x,t)}{\gamma-1} = u_0 + \frac{2c_0}{\gamma-1}, \quad \forall x,t,$$
$$s(x,t) = s_0 \Leftrightarrow \frac{p}{\rho^{\gamma}}(x,t) = \frac{p_0}{\rho_0^{\gamma}}, \quad \forall x,t.$$

 $p_{mix} = f_{mat} p_{mat}$ n'est pas correcte

Une solution exacte semi discrète

• Maillage initial:

$$(x^0_{\ell+rac{1}{2}})_{\ell\in\mathbb{Z}}$$
 avec maille mixte $\xi_0\in]x^0_{j-rac{1}{2}},x^0_{j+rac{1}{2}}[,$

イロン イヨン イヨン イヨン

 $p_{mix} = f_{mat} p_{mat}$ n'est pas correcte

Une solution exacte semi discrète

• Maillage initial:

$$(x_{\ell+\frac{1}{2}}^0)_{\ell\in\mathbb{Z}}$$
 avec maille mixte $\xi_0\in]x_{j-\frac{1}{2}}^0, x_{j+\frac{1}{2}}^0[$

イロト イヨト イヨト イヨト

Instant initial:

$$\begin{split} u^{0}_{\ell+\frac{1}{2}} &= u_{0}, \quad p^{0}_{\ell} = p_{0}, \quad \rho^{0}_{\ell} = \rho_{0}, \quad \ell \leqslant j-1, \\ p^{0}_{j} &= p_{0}, \quad \rho^{0}_{j} = \rho^{0} \quad \text{pour }]x^{0}_{j-\frac{1}{2}}, \xi_{0}[\\ p^{0}_{\ell} &= 0, \quad \rho^{0}_{\ell} = 0, \quad \ell \geqslant j+1 \\ p^{0}_{j} &= 0, \quad \rho^{0}_{j} = 0 \quad \text{pour }]x^{0}_{j-\frac{1}{2}}, \xi_{0}[\end{split}$$

 $p_{mix} = f_{mat} p_{mat}$ n'est pas correcte

Une solution exacte semi discrète

• Conservation de la masse :

$$ho_\ell(t)(x_{\ell+rac{1}{2}}(t)-x_{\ell-rac{1}{2}}(t))=
ho_0(x_{\ell+rac{1}{2}}^0-x_{\ell-rac{1}{2}}^0) ext{ pour } \ell\leqslant j-1,$$

$$\rho_j(t)(x_{j+\frac{1}{2}}(t)-\xi(t))=\rho_0(x_{j+\frac{1}{2}}^0-\xi_0).$$

イロン イヨン イヨン イヨン

 $p_{mix} = f_{mat} p_{mat}$ n'est pas correcte

Une solution exacte semi discrète

• Conservation de la masse :

$$ho_\ell(t)(x_{\ell+rac{1}{2}}(t)-x_{\ell-rac{1}{2}}(t))=
ho_0(x_{\ell+rac{1}{2}}^0-x_{\ell-rac{1}{2}}^0) ext{ pour } \ell\leqslant j-1,$$

$$\rho_j(t)(x_{j+\frac{1}{2}}(t)-\xi(t))=\rho_0(x_{j+\frac{1}{2}}^0-\xi_0).$$

• Evolution de la pression :

$$p_{\ell}(t) = p_0 \left(rac{
ho_l(t)}{
ho_0}
ight)^{\gamma}, \quad orall \ell \leqslant j,$$

 $p_{mix} = f_{mat} p_{mat}$ n'est pas correcte

Une solution exacte semi discrète

• Conservation de la masse :

$$ho_\ell(t)(x_{\ell+rac{1}{2}}(t)-x_{\ell-rac{1}{2}}(t))=
ho_0(x_{\ell+rac{1}{2}}^0-x_{\ell-rac{1}{2}}^0) ext{ pour } \ell\leqslant j-1,$$

$$\rho_j(t)(x_{j+\frac{1}{2}}(t)-\xi(t))=\rho_0(x_{j+\frac{1}{2}}^0-\xi_0).$$

• Evolution de la pression :

$$p_\ell(t) = p_0 \left(rac{
ho_l(t)}{
ho_0}
ight)^\gamma, \quad orall \ell \leqslant j,$$

•
$$x_{\ell+\frac{1}{2}}(t)$$
 suit l'équation d'évolution du maillage :
 $\frac{dx_{\ell+\frac{1}{2}}(t)}{dt} = u(x_{\ell+\frac{1}{2}}(t), t) = u_{\ell+\frac{1}{2}}(t),$
 $x_{\ell+\frac{1}{2}}(0) = u_0,$

 $p_{mix} = f_{mat} p_{mat}$ n'est pas correcte

Une solution exacte semi discrète

• solution:
$$x_{\ell-\frac{1}{2}}^{0} + u_0 t_0^{(\ell)} = (u_0 - c_0) t_0^{(\ell)} + \xi_0,$$

$$t_0^{(\ell)} = \frac{\xi_0 - x_{\ell-\frac{1}{2}}^0}{c_0}, \quad \ell \leqslant j.$$

*t*₀: instant où la droite partie de $x_{\ell-\frac{1}{2}}^{0}$ ($\ell \leq j$) et de vitesse u_{0} rencontre $\eta(t)$.

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・

 $p_{mix} = f_{mat} p_{mat}$ n'est pas correcte

Une solution exacte semi discrète

• solution:
$$x_{\ell-\frac{1}{2}}^{0} + u_0 t_0^{(\ell)} = (u_0 - c_0) t_0^{(\ell)} + \xi_0,$$

$$t_0^{(\ell)} = \frac{\xi_0 - x_{\ell-\frac{1}{2}}^0}{c_0}, \quad \ell \leqslant j.$$

 t_0 : instant où la droite partie de $x_{\ell-\frac{1}{2}}^0$ ($\ell \leq j$) et de vitesse u_0 rencontre $\eta(t)$.

• Pour $0 \leq t \leq t_0^{(\ell)}$

$$\begin{aligned} x_{\ell-\frac{1}{2}}^0(t) &= x_{\ell-\frac{1}{2}}^0 + u_0 t, \quad 0 \leqslant t \leqslant t_0^{(\ell)}, \quad \ell \leqslant j, \end{aligned}$$
pour $t \geqslant t_0^{(\ell)}, \ \ell \leqslant j$

$$x_{\ell-\frac{1}{2}}(t) = (u_0 + \frac{2c_0}{\gamma - 1})t + \xi_0 - (\xi_0 - x_{\ell-\frac{1}{2}}^0)\frac{\gamma + 1}{\gamma - 1}\left(\frac{t}{t_0^{(\ell)}}\right)^{\frac{2}{\gamma + 1}},$$

L. Clément, J. M. Ghidaglia, J.P. Perlat et L. Quivy Trai

2

 $p_{mix} = f_{mat} p_{mat}$ n'est pas correcte

Une solution exacte semi discrète

D'autre part,

$$\begin{aligned} x_{\ell+\frac{1}{2}}(t) &= (u_0 + \frac{2c_0}{\gamma - 1})t + x_{\ell+\frac{1}{2}}^0, \quad \forall t \ge 0, \text{ pour } \ell \ge j, \\ \xi(t) &= (u_0 + \frac{2c_0}{\gamma - 1})t + \xi_0, \quad \forall t \ge 0. \\ \ell &= j \quad \Rightarrow \rho_i(t), \ \rho_{i-1}(t), \ p_i(t), \ \text{et } p_{i-1}(t). \end{aligned}$$

 $p_{mix} = f_{mat} p_{mat}$ n'est pas correcte

Equation d'évolution pour $u_{\ell-rac{1}{2}}(t)$

• Schéma Lagrangien semi discret en espace:

$$rac{du_{\ell-rac{1}{2}}}{dt}(t) = -rac{2(
ho_\ell(t)-
ho_{\ell-1}(t))}{
ho_0(x_{\ell+rac{1}{2}}^0-x_{\ell-rac{3}{2}}^0)}, \quad \ell\leqslant j-1$$

イロト イヨト イヨト イヨト

 $p_{mix} = f_{mat} p_{mat}$ n'est pas correcte

Equation d'évolution pour $u_{\ell-\frac{1}{2}}(t)$

• Schéma Lagrangien semi discret en espace:

$$rac{du_{\ell-rac{1}{2}}}{dt}(t) = -rac{2(
ho_\ell(t)-
ho_{\ell-1}(t))}{
ho_0(x_{\ell+rac{1}{2}}^0-x_{\ell-rac{3}{2}}^0)}, \quad \ell\leqslant j-1$$

Maille mixte:

$$\frac{du_{j-\frac{1}{2}}}{dt}(t) = -\frac{2(p_{mix}(t) - p_{j-1}(t))}{\rho_0(\xi_0 - x_{j-\frac{3}{2}}^0)}.$$

イロト イヨト イヨト イヨト

 $p_{mix} = f_{mat} p_{mat}$ n'est pas correcte

Equation d'évolution pour $u_{\ell-\frac{1}{2}}(t)$

• Schéma Lagrangien semi discret en espace:

$$rac{du_{\ell-rac{1}{2}}}{dt}(t) = -rac{2(p_\ell(t)-p_{\ell-1}(t))}{
ho_0(x_{\ell+rac{1}{2}}^0-x_{\ell-rac{3}{2}}^0)}, \quad \ell\leqslant j-1$$

Maille mixte:

$$\frac{du_{j-\frac{1}{2}}}{dt}(t) = -\frac{2(\rho_{mix}(t) - p_{j-1}(t))}{\rho_0(\xi_0 - x_{j-\frac{3}{2}}^0)}.$$

Mais

$$\frac{du_{\ell-\frac{1}{2}}(t)}{dt} = 0 \text{ pour } 0 \leqslant t \leqslant t_0^{(\ell)},$$

$$\frac{du_{\ell-\frac{1}{2}}(t)}{dt} = \frac{2c_0}{(\gamma-1)t_0^{(\ell)}} \left(\frac{t}{t_0^{(\ell)}}\right)^{-\frac{2\gamma}{\gamma+1}}, \text{ pour } t \ge t_0^{(\ell)}.$$

 $p_{mix} = f_{mat} p_{mat}$ n'est pas correcte

Equation d'évolution pour $u_{\ell-rac{1}{2}}(t)$

• Pour $\ell = j$:

$$p_{mix}(t) = p_{j-1}(t) - \frac{1}{2}\rho_0 c_0 t_0^{(j)} \frac{du_{j-\frac{1}{2}}}{dt}$$

・ロン ・部と ・ヨン ・ヨン

 $p_{mix} = f_{mat} p_{mat}$ n'est pas correcte

Equation d'évolution pour $u_{\ell-rac{1}{2}}(t)$

• Pour $\ell = j$:

$$p_{mix}(t) = p_{j-1}(t) - rac{1}{2}
ho_0 c_0 t_0^{(j)} rac{du_{j-rac{1}{2}}}{dt}.$$

• Pour
$$t \geqslant t_0^{(j-1)}\,, \quad lpha(t) \equiv rac{p_{mix}(t)}{p_j(t)}$$
 est constant

$$\alpha(t) = \left(\theta^{\frac{2}{\gamma+1}}(1+\theta)^{\frac{\gamma-1}{\gamma+1}} - \theta\right)^{-\gamma} - \frac{1+\theta}{\theta}\frac{\gamma}{\gamma-1}\left(\frac{\gamma-1}{\gamma+1}\right)^{\gamma},$$

avec

$$\theta \equiv \frac{\xi_0 - x_{j-\frac{1}{2}}^0}{x_{j-\frac{1}{2}}^0 - x_{j-\frac{3}{2}}^0},$$

Traitement du vide

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・

 $p_{mix} = f_{mat} p_{mat}$ n'est pas correcte

Equation d'évolution pour
$$u_{\ell-\frac{1}{2}}(t)$$

• Pour
$$0 \le t \le t_0^{(j)}$$
,

$$lpha(t) = \left(1 + rac{2}{\gamma-1}rac{t}{t_0^{(j)}}
ight)^\gamma, \quad t\leqslant t_0^{(j)}.$$

イロト イヨト イヨト イヨト

æ

L. Clément, J. M. Ghidaglia, J.P. Perlat et L. Quivy Traitement du vide

イロト イヨト イヨト イヨト

э.

 $p_{mix} = f_{mat} p_{mat}$ n'est pas correcte

Equation d'évolution pour
$$u_{\ell-rac{1}{2}}(t)$$

• Pour
$$0 \le t \le t_0^{(j)}$$
,
 $\alpha(t) = \left(1 + \frac{2}{\gamma - 1} \frac{t}{t_0^{(j)}}\right)^{\gamma}, \quad t \le t_0^{(j)}$.
• $\Rightarrow \alpha(t)$ varie de 1 à $\left(\frac{\gamma + 1}{\gamma - 1}\right)^{\gamma} >> 1$,

 $p_{mix} = f_{mat} p_{mat}$ n'est pas correcte

Equation d'évolution pour $u_{\ell-\frac{1}{2}}(t)$

• Pour
$$0 \le t \le t_0^{(j)}$$
,

$$lpha(t) = \left(1 + rac{2}{\gamma-1}rac{t}{t_0^{(j)}}
ight)^\gamma, \quad t\leqslant t_0^{(j)}.$$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・

•
$$\Rightarrow lpha(t)$$
 varie de 1 à $\left(rac{\gamma+1}{\gamma-1}
ight)^{\gamma} >> 1$,

• $\Rightarrow p_{mix}(t) = f_{mix}(t)p_j(t)$ où $f_{mix}(t)$ serait une fraction volumique, est impossible.

Méthode Frontière Libre: traitement de la maille mixte

Différentes caractéristiques du vide:

 Matériau en présence du vide ⇒ les deux états sont nécessairement reliés par une détente s'il s'agit d'un gaz et par une discontinuité de contact s'il s'agit d'un solide.

Méthode Frontière Libre: traitement de la maille mixte

Différentes caractéristiques du vide:

- Matériau en présence du vide ⇒ les deux états sont nécessairement reliés par une détente s'il s'agit d'un gaz et par une discontinuité de contact s'il s'agit d'un solide.
- Le vide se déplace "en bloc" ⇒ vitesse de l'interface identique à celle au noeud situé entre la maille mixte et la maille vide.

Méthode Frontière Libre: traitement de la maille mixte

Différentes caractéristiques du vide:

- Matériau en présence du vide ⇒ les deux états sont nécessairement reliés par une détente s'il s'agit d'un gaz et par une discontinuité de contact s'il s'agit d'un solide.
- Le vide se déplace "en bloc" ⇒ vitesse de l'interface identique à celle au noeud situé entre la maille mixte et la maille vide.
- On s'affranchit des fractions volumiques dans la maille mixte.

Cas d'un gaz parfait

Cas d'un gaz parfait

 Densité continue à l'interface ⇒ états reliés par une onde de détente

イロト イヨト イヨト イヨト

Cas d'un gaz parfait

Cas d'un gaz parfait

- Densité continue à l'interface ⇒ états reliés par une onde de détente
- → deux premiers invariants de Riemann conservés au travers de l'interface:

$$R_1 = u + \int_{\rho_0}^{\rho} \frac{c(r,s)}{r} dr$$

$$R_2 = s$$

イロト イヨト イヨト イヨト

Cas d'un gaz parfait

Cas d'un gaz parfait

- \bullet Densité continue à l'interface \Rightarrow états reliés par une onde de détente
- → deux premiers invariants de Riemann conservés au travers de l'interface:

$$R_1 = u + \int_{\rho_0}^{\rho} \frac{c(r,s)}{r} dr$$

$$R_2 = s$$

• Cas isentropique:

$$de + pd\tau = 0 \Rightarrow de = \frac{p}{\rho^2} d\rho \Rightarrow \frac{p}{p_0} = \left(\frac{\rho}{\rho_0}\right)^{\gamma}$$
$$R_1 = u + \int_{\rho_0=0}^{\rho} \frac{c(r,s)}{r} dr = u + \frac{2c}{\gamma - 1}$$

Algorithme cas GP

(日) (四) (문) (문)

Schéma Lagrange: 2 matériaux Méthode Frontière Libre: traitement de la maille mixte Comparaison des méthodes Valid o●0000 Cas d'un gaz parfait

Algorithme cas GP

・ロット (雪) (山) (山)

Schéma Lagrange: 2 matériaux Méthode Frontière Libre: traitement de la maille mixte Comparaison des méthodes Valid o●0000 Cas d'un gaz parfait

Algorithme cas GP

(日) (四) (문) (문)

Cas d'un gaz parfait

イロト イヨト イヨト イヨト

3

Cas d'un gaz parfait

・ロット (雪) (山) (山)
Cas d'un gaz parfait

Cas d'un gaz parfait

 Densité à l'interface entre ce solide et le vide ne peut être nulle ⇒ discontinuité de contact à l'interface.

(D) (A) (A) (A)

3

- Densité à l'interface entre ce solide et le vide ne peut être nulle ⇒ discontinuité de contact à l'interface.
- \Rightarrow quantités invariantes sont donc la vitesse et l'entropie.

- Densité à l'interface entre ce solide et le vide ne peut être nulle ⇒ discontinuité de contact à l'interface.
- \Rightarrow quantités invariantes sont donc la vitesse et l'entropie.
- Loi d'état

$$p=a_k(\rho-\rho_0)+p_0.$$

- Densité à l'interface entre ce solide et le vide ne peut être nulle ⇒ discontinuité de contact à l'interface.
- \Rightarrow quantités invariantes sont donc la vitesse et l'entropie.
- Loi d'état

$$p=a_k(\rho-\rho_0)+p_0.$$

• Conservation de l'entropie :

$$e - e_0 = \frac{a_k \rho_0 - \rho_0}{\rho} + a_k \ln \frac{\rho}{\rho_0}$$

- Densité à l'interface entre ce solide et le vide ne peut être nulle ⇒ discontinuité de contact à l'interface.
- \Rightarrow quantités invariantes sont donc la vitesse et l'entropie.
- Loi d'état

$$p=a_k(\rho-\rho_0)+p_0.$$

• Conservation de l'entropie :

$$e-e_0=\frac{a_k\rho_0-\rho_0}{\rho}+a_k\ln\frac{\rho}{\rho_0}$$

• calcul de la pression à partir de la loi d'état .

- Densité à l'interface entre ce solide et le vide ne peut être nulle ⇒ discontinuité de contact à l'interface.
- \Rightarrow quantités invariantes sont donc la vitesse et l'entropie.
- Loi d'état

$$p=a_k(\rho-\rho_0)+p_0.$$

• Conservation de l'entropie :

$$e - e_0 = \frac{a_k \rho_0 - p_0}{\rho} + a_k \ln \frac{\rho}{\rho_0}$$

- calcul de la pression à partir de la loi d'état .
- Conservation de la vitesse (vitesse de l'interface et du solide identiques) prise en compte

Schéma Lagrange: 2 matériaux Méthode Frontière Libre: traitement de la maille mixte Comparaison des méthodes Valid 0000●0 Comparaison des méthodes Valid 0000

Algorithme cas Solide

イロン イヨン イヨン イヨン

Algorithme cas Solide

•
$$v_{mix}^{n+\frac{1}{2}} = u_{j-\frac{1}{2}}^{n+\frac{1}{2}},$$

 ⇒ l'interface et les deux points limitant la maille mixte se déplacent tous à la même vitesse:

$$u_{j+\frac{1}{2}}^{n+\frac{1}{2}} = v_{mix}^{n+\frac{1}{2}} = u_{j-\frac{1}{2}}^{n+\frac{1}{2}}.$$

《日》 《圖》 《문》 《문》

Cas d'un solide

・ロン ・部と ・ヨン ・ヨン

Cas d'un solide

・ロット (雪) (山) (山)

Cas d'un solide

Cas d'un solide

(日) (四) (日) (日) (日)

Cas d'un solide

	f _{mat} , p _{mat} ,	m _{mat}	Vj			
p_{j-1}, m_{j-1}	$ au_{mat}, e_{mat}$				m_{j+1}	
X _{j-1}	Mate	ériau 1	ξj	Vide	$x_{j+\frac{1}{2}}$	
• $x_{j\pm \frac{1}{2}}^{n+1} =$	$x_{j\pm\frac{1}{2}}^{n} + \Delta t_n u_{j\pm\frac{1}{2}}^{n+\frac{1}{2}},$	$\xi_j^{n+1} = \xi_j^n -$	$+\Delta t_n v_{min}^{n+1}$	$-\frac{1}{2}$,		
• $\rho_{mat,mix}^{n+1} = \frac{m_{mat,mix}^0}{\xi_j^{n+1} - x_{j-\frac{1}{2}}^{n+1}},$						
• $p_{mat,mix}^{n+1} = p_0 + a_k \left(\rho_{mat,mix}^{n+1} - \rho_0 \right),$						
• $e_{mat,mix}^{n+1} = \frac{a_k \rho_0 - p_0}{\rho_{mat,mix}^{n+1}} + a_k \ln \rho_{mat,mix}^{n+1} + e_0,$						
• c_{mat,miz}^{n+1}	$a_{x}=\sqrt{a_{k}}.$					

L. Clément, J. M. Ghidaglia, J.P. Perlat et L. Quivy Traitement du vide

Comparaison des méthodes

Vitesse à gauche
$$(u_{j-\frac{1}{2}}^{n-\frac{1}{2}})$$
:

Méthode *pV*:

$$f_{mat}^{n} = \frac{\xi_{j}^{n} - x_{j-\frac{1}{2}}^{n}}{x_{j+\frac{1}{2}}^{n} - x_{j-\frac{1}{2}}^{n}}$$

$$u_{j-\frac{1}{2}}^{n+\frac{1}{2}} = u_{j-\frac{1}{2}}^{n-\frac{1}{2}} - \frac{\Delta t_n + \Delta t_{n-1}}{m_{mat}^n + m_{j-1}^n} (f_{mat}^n p_{mat}^n - p_{j-1}^n)$$

Méthode Frontière Libre:

$$u_{j-\frac{1}{2}}^{n+\frac{1}{2}} = u_{j-\frac{1}{2}}^{n-\frac{1}{2}} - \frac{\Delta t_n + \Delta t_{n-1}}{m_{mat}^n + m_{j-1}^n} (p_{mat}^n - p_{j-1}^n)$$

イロト イヨト イヨト イヨト

Vitesse à droite
$$(u_{j+\frac{1}{2}}^{n-\frac{1}{2}})$$
:

Méthode *pV*:

$$u_{j+\frac{1}{2}}^{n+\frac{1}{2}} = u_{j+\frac{1}{2}}^{n-\frac{1}{2}} + \frac{\Delta t_n + \Delta t_{n-1}}{m_{mat}^n + m_{j-1}^n} f_{mat}^n p_{mat}^n$$

Méthode Frontière Libre:

$$u_{j+\frac{1}{2}}^{n+\frac{1}{2}} = u_{j-\frac{1}{2}}^{n-\frac{1}{2}} - \frac{\Delta t_n}{m_{mat}^n + m_{j-1}^n} (p_{mat}^n - p_{j-1}^n) + \frac{2c_{mat}^n}{\gamma - 1} = v_j^{n+\frac{1}{2}}$$

イロン イヨン イヨン イヨン

Position de l'interface (ξ_i^{n+1}) :

Méthode *pV*:

$$\xi_j^{n+1} = x_{j-\frac{1}{2}}^{n+1} + f_{mat}^n (x_{j+\frac{1}{2}}^{n+1} - x_{j-\frac{1}{2}}^{n+1})$$

ou, si priorité imposée:

$$\xi_{j}^{n+1} = \xi_{j}^{n} + k\Delta t_{n}u_{j-\frac{1}{2}}^{n+\frac{1}{2}} + (1-k)\Delta t_{n}u_{j+\frac{1}{2}}^{n+\frac{1}{2}}$$
$$k = \frac{\delta V_{vide}^{n}}{\delta V^{n}}$$

Méthode Frontière Libre:

$$\xi_j^{n+1} = \xi_j^n + \Delta t_n v_j^{n+\frac{1}{2}}$$

$$\Rightarrow k = 0 \text{ et } u_{j+\frac{1}{2}}^{n+\frac{1}{2}} = v_j^{n+\frac{1}{2}}$$

Pression (p_{mat}^{n+1}) :

Méthode *pV*:

$$p_{mat}^{n+1} = p_{mat}^{n} \frac{\frac{\tau_{mat}^{n}}{\gamma - 1} - \frac{1}{2}(\tau_{mat}^{n+1} - \tau_{mat}^{n})}{\frac{\tau_{mat}^{n}}{\gamma - 1} + \frac{1}{2}(\tau_{mat}^{n+1} - \tau_{mat}^{n})}$$

implicite par EOS

Méthode Frontière Libre:

$$p_{mat}^{n+1} = p_{mat}^{n} \left(\frac{\tau_{mat}^{n}}{\tau_{mat}^{n+1}}\right)^{\gamma}$$

entropie constante
Méthode *pV*: la quantité
$$\frac{p_{mat}^{n+1}}{p_{mat}^n} \left(\frac{\tau_{mat}^{n+1}}{\tau_{mat}^n}\right)^{\gamma}$$
 tend bien vers 1

L. Clément, J. M. Ghidaglia, J.P. Perlat et L. Quivy

Traitement du vide

Cas de la détente dans le vide

Cas de la détente dans le vide

γ_1 , $ ho_1$, u_1 , p_1		Cellule		
Matériau 1	а	mixte	b	Vide

Conditions initiales:

$$egin{aligned} & \gamma_1 = 1.4 \ &
ho_1 = 1 \ & u_1 = 2 \ & p_1 = 1 \ \end{aligned} \ \begin{array}{ll} & \rho_{vide} = 0 \ & \mu_{vide} = 0 \ \end{array}$$

sur un domaine [0; 1].

Cas de la détente dans le vide

Cas de la détente dans le vide

イロト イヨト イヨト イヨト

Figure : Détente dans le vide, méthode Frontière Libre (gauche) et méthode pV (droite)

Cas de la double détente dans le vide

Cas de la double détente dans le vide

$\gamma_{\rm g}$, $\rho_{\rm g}$, $u_{\rm g}$, $p_{\rm g}$	Cellule		Cellule	γ_d , ρ_d , u_d , p_d
Matériau 1	mixte	Vide	mixte	Matériau 2
C 1947 - 1947 - 1				

Conditions initiales (fermeture du vide):

$\gamma_{ extsf{g}} = 1.4$		$\gamma_{d}=2.1$
$ ho_{m{g}}=1$	$ ho_{\it vide}=0$	$ ho_{d}=$ 0.125
$u_g = 2$		$u_{d} = 10$
$ ho_g=1$	$p_{vide} = 0$	$p_{d} = 10$

イロト イヨト イヨト イヨト

sur un domaine [0; 1].

Cas de la double détente dans le vide

Fermeture du vide

イロト イヨト イヨト イヨト

Figure : Fermeture du vide, méthode Frontière Libre (gauche) et méthode pV (droite)

Cas de la double détente dans le vide

Fermeture du vide

Conservation entropie
$$\Rightarrow \frac{p_{mat}^{n+1}}{p_{mat}^{n+1}} \left(\frac{\tau_{mat}^{n+1}}{\tau_{mat}^{n+1}}\right)^{\gamma} = 1$$

Figure : Fermeture du vide, méthode pV. Conservation de l'entropie.

Cas de la double détente dans le vide

Cas de la double détente dans le vide

Matériau 1 mixte Vide mixte Matériau 2	$\gamma_{\rm g}$, $\rho_{\rm g}$, ${\it u}_{\rm g}$, ${\it p}_{\rm g}$	Cellule		Cellule	γ_d , ρ_d , u_d , p_d
	Matériau 1	mixte	Vide	mixte	Matériau 2

Conditions initiales (dilatation du vide):

$\gamma_{ extbf{g}} = 1.4$		$\gamma_{d}=2.1$
$ ho_{ extsf{g}}=1$	$ ho_{vide}=0$	$ ho_{d}=$ 0.125
$u_{g} = -20$		$u_{d} = 10$
$p_g = 1$	$p_{vide} = 0$	$p_{d} = 10$

sur un domaine [0; 1].

Cas de la double détente dans le vide

Dilatation du vide

イロト イヨト イヨト イヨト

Figure : Dilatation du vide, méthode Frontière Libre (gauche) et méthode pV (droite)

Cas d'un gaz choqué en présence du vide

Cas d'un gaz choqué en présence du vide

$\gamma_{\rm g}$, $\rho_{\rm g}$, $u_{\rm g}$, $p_{\rm g}$	γ_d , ρ_d , u_d , p_d	Cellule	
.5 Matéria	ı 1	mixte	b Vide

Conditions initiales (SOD):

$\gamma_{ extbf{g}} = 1.4$	$\gamma_{d}=1.4$	
$ ho_{ extsf{g}}=1$	$ ho_{d}=0.125$	$ ho_{\it vide}=0$
$u_g = 0$	$u_{d} = 0$	
$p_g = 1$	$p_d = 0.1$	$p_{vide} = 0$

sur un domaine [0; L], avec L = 5.

Cas d'un gaz choqué en présence du vide

SOD

(ロ) (四) (三) (三)

Figure : Choc "classique" dans le vide à t = 0, 4, méthode Frontière Libre (gauche) et méthode pV (droite)

Cas d'un gaz choqué en présence du vide

Cas d'un gaz choqué en présence du vide

Conditions initiales (Cas limite):

$$\begin{array}{ll} \gamma_g = 1.4 & \gamma_d = 1.4 \\ \rho_g = 1 & \rho_d = 1.25 \cdot 10^{-4} & \rho_{vide} = 0 \\ u_g = 0 & u_d = 0 \\ p_g = 1 & p_d = 1 \cdot 10^{-4} & p_{vide} = 0 \end{array}$$

sur un domaine [0; L], avec L = 5.

Cas d'un gaz choqué en présence du vide

Cas limite

Figure : Choc "limite" dans le vide à t = 0,176, méthode Frontière Libre (gauche) et méthode pV (droite)

(ロ) (四) (三) (三)

Cas d'un gaz choqué en présence du vide

Cas limite

Figure : Choc "limite" dans le vide à t = 0,452, méthode Frontière Libre (gauche) et méthode pV (droite)

(ロ) (四) (三) (三)

Cas test 1: solide ou gaz en dilatation

Cas test 1: solide ou gaz en dilatation

N mailles	Cellule N maille	5
Matériau 1: solide ou gaz	a b mixte Vide	
$ \rho_{mat} = \rho_0 \text{ variable} $	$ ho_{\it vide}=$ 0	
$u_{mat} \equiv u_0 \equiv -300$ $p_{mat} = p_0 = 10^5$ EOS: à préciser	$p_{vide} = 0$	
sur un domaine [0; L], avec $L = 1$.		

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Cas test 1: solide ou gaz en dilatation

Cas test 1: Gaz parfait

EOS: Gaz parfait

Figure : Gaz en dilatation, $\rho_0 = 1.56$, à t = 0.0016 méthode Frontière Libre (gauche) et méthode pV (droite)

(ロ) (四) (三) (三)

Cas test 1: solide ou gaz en dilatation

Cas test 1: Solide linéaire

EOS:

$$p = a_k(\rho - \rho_0) + p_0,$$
 (1)

avec $a_k = 10^5$.

Cas test 1D.2: fermeture du vide

Cas test 1D.2: fermeture du vide

$\gamma_{\rm g_g}$, $\rho_{\rm g_g}$	$\gamma_{\rm g_d}, \; \rho_{\rm g_d}$				
u_{g_g}, p_{g_g}	u_{g_d}, p_{g_d}	Cellule		Cellule	$\gamma_d, \rho_d, u_d, p_d$
Maté	riau 1	mixte	Matériau 2		
Conditions initiales (matériau à droite: gaz):					

$\gamma_{g_g} = 1.4$	$\gamma_{g_d}=1.4$		$\gamma_{d}=1.4$
$ \rho_{g_g} = \frac{\rho_{g_d}}{4} $	$ ho_{{m g}_{m d}}=1$	$ ho_{\it vide}=0$	$ ho_{d}=1$
$u_{g_g}=0$	$u_{g_d} = 0$		$u_d = 1000$
$p_{g_g} = 4 p_{g_d}$	$p_{g_d}=10^5$	$p_{vide} = 0$	$p_{d} = 10^{5}$

イロン イヨン イヨン イヨン

æ

sur un domaine [0; 5].

L. Clément, J. M. Ghidaglia, J.P. Perlat et L. Quivy Traitement du vide

Cas test 1D.2: fermeture du vide

Cas test 1D.2: Avec un gaz

(ロ) (部) (目) (日)

Figure : Fermeture du vide: vide entre gaz choqué et gaz. Méthode Frontière Libre (gauche) et méthode *pV* (droite)
Cas test 1D.2: fermeture du vide

Cas test 1D.2: Avec un gaz

Figure : Fermeture du vide: vide entre gaz choqué et gaz. Déplacement des interfaces en fonction du temps

Cas test 1D.2: fermeture du vide

Cas test 1D.2: fermeture du vide

$\gamma_{\rm gg}$, $\rho_{\rm gg}$	$\gamma_{\rm g_d},~\rho_{\rm g_d}$					
u_{g_g}, p_{g_g}	u_{g_d}, p_{g_d}	Cellule			Cellule	$ ^{\gamma_d, \rho_d, u_d, p_d}$
Maté	riau 1	mixte		Vide	mixte	Matériau 2
C 11.1 1			·.	1.1.3		

Conditions initiales (matériau à droite: solide):

 $\begin{array}{lll} \gamma_{g_g} = 1.4 & & \gamma_{g_d} = 1.4 & & & a_k = 10^5 \\ \rho_{g_g} = \frac{\rho_{g_d}}{4} & & \rho_{g_d} = 1 & & \rho_{vide} = 0 & & \rho_d = 1 \\ u_{g_g} = 0 & & & u_{g_d} = 0 & & & u_d = 0 \\ \rho_{g_g} = 4\rho_{g_d} & & \rho_{g_d} = 10^5 & & p_{vide} = 0 & & p_d = 10^5 \end{array}$

《日》 《圖》 《문》 《문》

3

sur un domaine [0; 5].

L. Clément, J. M. Ghidaglia, J.P. Perlat et L. Quivy Traitement du vide

Cas test 1D.2: fermeture du vide

Cas test 1D.2: Avec un solide

(ロ) (四) (三) (三)

Figure : Fermeture du vide: vide entre gaz choqué et solide linéaire. Méthode Frontière Libre (gauche) et méthode pV (droite)

Cas test 1D.2: fermeture du vide

Cas test 1D.2: Avec un solide

Figure : Fermeture du vide: vide entre gaz choqué et solide linéaire. Déplacement des interfaces en fonction du temps

Extension au 2D

Considérons que nous sommes en présence d'un matériau (indicé par *mat*) et de vide (indicé par *vide*):

Figure : Configuration

A chaque noeud du maillage, on peut associer un matériau. Position du noeud, $X\begin{pmatrix} x\\ y \end{pmatrix}$, vitesse au noeud, $U\begin{pmatrix} u\\ y\\ v \end{pmatrix}$.

L. Clément, J. M. Ghidaglia, J.P. Perlat et L. Quivy

Discrétisation

Equation de quantité de mouvement \Rightarrow

$$U_{i+\frac{1}{2},j+\frac{1}{2}}^{n+\frac{1}{2}} = U_{i+\frac{1}{2},j+\frac{1}{2}}^{n-\frac{1}{2}} - \frac{\Delta t_n + \Delta t_{n-1}}{2} \mathcal{D}^n \left(\frac{\nabla \rho}{\rho}\right)$$

 $\mathcal{D}^n\left(\frac{\nabla p}{\rho}\right)$ étant un opérateur de discrétisation approprié. Nouvelles positions:

$$X_{i+\frac{1}{2},j+\frac{1}{2}}^{n+\frac{1}{2}} = X_{i+\frac{1}{2},j+\frac{1}{2}}^{n} + \frac{1}{2}\Delta t_n U_{i+\frac{1}{2},j+\frac{1}{2}}^{n+\frac{1}{2}}$$

Nouveau volumes

$$Vol_{i,j}^{n+1} = \frac{1}{2} \{ |Det(\overrightarrow{X_{i-\frac{1}{2},j-\frac{1}{2}}^{n+1}X_{i+\frac{1}{2},j-\frac{1}{2}}^{n+1}}, \overrightarrow{X_{i-\frac{1}{2},j-\frac{1}{2}}^{n+1}X_{i-\frac{1}{2},j+\frac{1}{2}}^{n+1}} | \\ + |Det(\overrightarrow{X_{i+\frac{1}{2},j+\frac{1}{2}}^{n+1}X_{i+\frac{1}{2},j-\frac{1}{2}}^{n+1}}, \overrightarrow{X_{i+\frac{1}{2},j+\frac{1}{2}}^{n+1}X_{i-\frac{1}{2},j+\frac{1}{2}}^{n+1}} \}$$

Méthode

Afin d'étendre la méthode Frontière libre en 2*D*, nous observons qu'en 2*D* les invariants de Riemann pour la propagation des équations d'Euler projetées dans la direction normale sont :

$$R_{\pm} = u \cdot \nu \pm \int_{\rho_0}^{\rho} \frac{c(r,s)}{r} \, dr \, ,$$

$$R_2 = s$$
,

où $u \cdot v$ désigne la vitesse normale.

• La normale ν est obtenue classiquement par la technique de Youngs un champ de normales à l'interface matière - vide qui pointe vers le vide.

(本間) (本語) (本語)

Méthode

Afin d'étendre la méthode Frontière libre en 2*D*, nous observons qu'en 2*D* les invariants de Riemann pour la propagation des équations d'Euler projetées dans la direction normale sont :

$$R_{\pm} = u \cdot \nu \pm \int_{\rho_0}^{\rho} \frac{c(r,s)}{r} \, dr \, ,$$

$$R_2 = s$$
,

où $u \cdot v$ désigne la vitesse normale.

- La normale ν est obtenue classiquement par la technique de Youngs un champ de normales à l'interface matière - vide qui pointe vers le vide.
- La vitesse *u* peut etre obtenue par interpolation type "élément fini" puisque les fonctions de base des vitesses nodales sont des fonctions bilinéaires par morceaux.

Méthode

Dans le cas du fluide, nous utilisons l'invariant de Riemann associé à la vitesse d'onde c:

$$R_1 = u \cdot \nu + \int_{\rho_0}^{\rho} \frac{c(r,s)}{r} \, dr \, ,$$

et R_2 . L'extension au cas 2D de la méthode Frontière libre nous permet d'obtenir $v_{\nu}^{n+\frac{1}{2}}$, vitesse normale de l'interface matière vide, lorsque nous écrivons la continuité de R_1 et R_2 au travers de l'interface car $R_1 = v_{\nu}^{n+\frac{1}{2}}$ dans le vide.

Dans ce cas du solide, nous utilisons encore la continuité de R_2 (entropie) au travers de l'interface matière - vide et cette fois-ci le fait que la vitesse normale est continue au travers de cette interface (discontinuité de contact).

De la vitesse d'interface au volume (1)

Alors que dans le cas 1*D*, la donnée de $v_{\nu}^{n+\frac{1}{2}}$, vitesse normale de l'interface matière - vide, permet de déterminer immédiatement ce volume, il n'en n'est rien en 2*D*. Nous proposons alors la méthode "du rectangle le plus vraisemblable".

De la vitesse d'interface au volume (2)

A l'instant t_n nous disposons de la géométrie d'une maille mixte et de la vitesse normale de l'interface $v_{\nu}^{n+\frac{1}{2}}$. On se place alors dans le repère orthonormé direct (ν, τ) et on désigne par L et ℓ les deux solutions $L \geq \ell$ des équations :

 $L\ell = Vol(ABCD) \equiv V$,

$$2(L+\ell) = ||\overrightarrow{AB}|| + ||\overrightarrow{BC}|| + ||\overrightarrow{CD}|| + ||\overrightarrow{DA}|| \equiv P$$

Le discriminant $\Delta = \frac{P^2}{4} - 4V$ est positif (sinon *ABCD* n'est pas un quadrangle) et ainsi :

$$L = \frac{P + \sqrt{P^2 - 16V}}{4} \,, \quad \ell = \frac{P - \sqrt{P^2 - 16V}}{4}$$

De la vitesse d'interface au volume (3)

On désigne alors par $Rect_1$ le rectangle de la figure gauche et par $Rect_2$ le rectangle de la figure droite:

L. Clément, J. M. Ghidaglia, J.P. Perlat et L. Quivy Traitement du vide

De la vitesse d'interface au volume (4)

On dit alors que Rect1 est privilégié par rapport à Rect2 si :

$||B'_1B|| + ||C'_1C|| + ||D'_1D|| \le ||B'_2B|| + ||C'_2C|| + ||D'_2D||,$

et que Rect₂ est privilégié par rapport à Rect₁ si :

 $||B'_1B|| + ||C'_1C|| + ||D'_1D|| \ge ||B'_2B|| + ||C'_2C|| + ||D'_2D||.$

De la vitesse d'interface au volume (5)

æ

De la vitesse d'interface au volume (6)

Si par exemple c'est $Rect_1$ qui est privilégié. A l'instant t_n :

(i) Si $\Delta t_n v_{\nu}^{n+\frac{1}{2}} + L_{mat}^n \ge L^n$, la maille s'est remplie de matière. (ii) Si $\Delta t_n v_{\nu}^{n+\frac{1}{2}} + L_{mat}^n \le 0$, la maille s'est vidée. (iii) Si $0 < \Delta t_n v_{\nu}^{n+\frac{1}{2}} + L_{mat}^n < L^n$,

▲□→ ▲ 国 → ▲ 国 →

Conclusion

• Résultats avec Gaz parfait conformes aux solutions analytiques

Conclusion

- Résultats avec Gaz parfait conformes aux solutions analytiques
- Résultats avec les solides cohérents avec la physique

Conclusion

- Résultats avec Gaz parfait conformes aux solutions analytiques
- Résultats avec les solides cohérents avec la physique
- Modèle "Frontière Libre" implanté dans un code industriel du CEA. Résultats identiques.

Conclusion

- Résultats avec Gaz parfait conformes aux solutions analytiques
- Résultats avec les solides cohérents avec la physique
- Modèle "Frontière Libre" implanté dans un code industriel du CEA. Résultats identiques.
- Extension au 2D en cours. Validation expérimentale : calcul de vitesse de surface libre après impact.

Comparaison

イロト イヨト イヨト イヨト

Figure : Fermeture du vide. Code CEA (gauche) et Code Eurobios (droite)

Comparaison

Figure : Gaz choqué en présence de vide. Code CEA (gauche) et Code Eurobios (droite)

(ロ) (四) (三) (三)

Comparaison

(ロ) (四) (三) (三)

Figure : Gaz choqué en présence de vide (cas limite). Code CEA (gauche) et Code Eurobios (droite)

Comparaison

Figure : Fermeture du vide (gaz). Code CEA (gauche) et Code Eurobios (droite)

(ロ) (四) (三) (三)