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Introduction

Context

� Multimaterial simulations of compressible hydrodynamics phenomena

� Eulerian method: fixed grid

� Time splitting:

� Lagrangian phase: predictor / corrector scheme with nodal velocities
� advection phase: Alternating Directions method

� Eulerian methods : materials are welded compared to

� ALE methods [DEL PINO and LABOURASSE, submitted]

� Lagrangian methods [WILKINS, 99], [CARAMANA, 09],

[KUCHARIK, LISKA, BEDNARIK and LOUBÈRE, 11], [DEL PINO

and LABOURASSE, submitted], [CLAIR, DESPRÉS and

LABOURASSE, 12]

which treat sliding in a more natural way

� Material nodal velocities

A. Claisse | CEA | PAGE 1/17



Outline

� Sliding method

� General description

� Lagrangian phase

� Remapping phase

� Numerical results

� Without vacuum around sliding materials

� With vacuum around sliding materials
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Sliding method

General description

In this presentation we limit ourselves to only two sliding materials, labeled by + and −.

Definition

We call mixed node a node of a mixed cell (i.e. a cell containing more than one
material) or shared by pure cells containing different materials.

− +

− −

+ +
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Sliding method

Data structure for sliding

� For each mixed node i , there exist two material nodal velocities denoted by u+(i)
and u−(i).

without sliding with sliding

− +

u(4)

u(1) u(2)

u(3)

− +

u+(3)

u+(2)u+(1)

u+(4)

u−(4)

u−(1) u−(2)

u−(3)

� For each pure cell k, we define by δ the nature of the material (+ or −), V (k)
the volume, ρ(k) the density and p(k) the pressure of the cell.

� For each mixed cell k, we define by Vδ(k) the partial volume, ρδ(k) the partial
density and pδ(k) the partial pressure of material δ ∈ {−, +} in k.
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Sliding method

Data structure for sliding

� Using partial volumes Vδ(k) of material δ, we define in each cell k (pure or
mixed), two volumic fractions:

fδ(k) =
Vδ(k)

V−(k) + V+(k)
, δ ∈ {−, +}, so that: f−(k) + f+(k) = 1

� For each mixed node i , we define by N(i) the unit normal as:

−

− −

− +

+

N(i)

n(k1)

n(k2)

N(i) =
n(k1) + · · ·+ n(kp)

||n(k1) + · · ·+ n(kp)||

where n(k) are the unit normals at interface
between + and − in mixed cells

in 2D structured grid, p ≤ 4
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Sliding method

Lagrangian phase

Momentum conservation is satisfied by solving for each mixed node:

8><>:
ρ−

du−

dt
+∇p− = f+S

ρ+
du+

dt
+∇p+ = −f−S

(1)

where, for all mixed point i and for all mixed cell k:

� S(i) = −
1

ε
|u−(i) ·N(i)− u+(i) ·N(i)| (u−(i) ·N(i)− u+(i) ·N(i)) N(i)

is a relaxation term which ensures the condition of non penetration of materials

u− ·N = u+ ·N

� parameter ε has the dimension of a length divided by a density

ε ≡
ε0

2
∆x

„
1

ρ−
+

1

ρ+

«
, with ε0 ≈ 10−4, and ∆x is cell length
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Sliding method

Lagrangian phase

� ρδ(i) =

X
k∈i

Vδ(k)ρδ(k)X
k∈i

Vδ(k)
=

Mass of δ in nodal cell

Volume of nodal cell

� fδ(i) =

X
k∈i

Vδ(k)fδ(k)X
k∈i

Vδ(k)
=

Volume of δ in nodal cell

Volume of nodal cell

i

k

�
�
�
�

� We solve system (1) in two steps:

8><>:
ρ−

du−

dt
+∇p− = 0

ρ+
du+

dt
+∇p+ = 0

and

8><>:
ρ−

du−

dt
= f+S

ρ+
du+

dt
= −f−S

� We use separate coordinates for each material δ, then nodes i evolve first with
the material velocities u+(i) and second with u−(i).
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Sliding method

Remapping phase: Alternating Directions method

� Computation of an edge velocity ue,δ(k) using uδ(i) (mean of uδ(i)),
for all cell k

� Remapping of all quantities of material δ ∈ {−, +} with ue,δ

� Algorithm:

� remapping in the first direction

� remapping of all physical quantities “+” with ue,+

� remapping of all physical quantities “−” with ue,−

� remapping in the second direction

� remapping of all physical quantities “+” with ue,+

� remapping of all physical quantities “−” with ue,−
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Numerical results

Without vacuum: first test case

Initialization

−

+

u− = (100,0)

u+ = (−100,0)

p = 0, ρ = 1, dt = 10−6

for δ ∈ {−, +}

Initial grids and Lagrangian particles after 1000 it

After 1000 iterations, comparison:

with without (boundary
layer)

sliding algorithm

A. Claisse | CEA | PAGE 11/17



Numerical results

Without vacuum: second test case

Initialization

−

+

u+ = (1,1)

u− = (−1,−1)

p = 0, ρ = 1, dt = 10−6

for δ ∈ {−, +}

Initial grid and Lagrangian particles after 1000 it

After 1000 iterations, comparison:

with
without

(boundary layer)

sliding algorithm
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Numerical results

Without vacuum: third test case

Initialization

−

+

u− = (−1,−1)

u+ = (1,1)

p = 0, ρ = 1, dt = 10−6

for δ ∈ {−, +}

Initial grid and Lagrangian particles after 1000 it

After 1000 iterations, comparison:

with without
(boundary layer)

sliding algorithm
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Numerical results

With vacuum around sliding materials

Examples

vacuum
−

+

u− = (100,0)

u+ = (−100,0)

vacuum

−

+

u+ = (1,1)

u− = (−1,−1)

Vacuum treatment during remapping phase:

� for each step of remapping phase (with ue,+ or ue,−), for each direction,

remapping of volume for vacuum to ensure for every cell k:
X

δ

fδ(k) = 1,

where δ ∈ {+,−, vacuum}
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Numerical results

With vacuum: first test case

Initialization

vacuum
−

+

u− = (100,0)

u+ = (−100,0)

p = 0, ρ = 1, dt = 10−6

for δ ∈ {−, +}

Initial grid and definition of the materials

After 5500 iterations, comparison:

with without
sliding algorithm
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Numerical results

With vacuum: second test case

Initialization

vacuum

−

+

u+ = (1,1)

u− = (−1,−1)

p = 0, ρ = 1, dt = 10−6

for δ ∈ {−, +}

Initial grid and definition of the materials

After 310 (l) and 720 (r) iterations,
comparison:

with

without

sliding
algorithm
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Conclusion and perspectives

Conclusion

� new 2D Eulerian sliding algorithm has been implemented

� no problem to handle mixed cells

� special treatment for vacuum in remapping phase

� several test cases which validate our approach

Perspectives

� N sliding materials (N > 2)

� extension to 3D
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