DE LA RECHERCHE À L'INDUSTRIE



# A 2D sliding algorithm for Eulerian multimaterial simulations

CEA, DAM, DIF, F-91297 Arpajon, France | A. Claisse, P. Rouzier CMLA, ENS Cachan and CNRS F-94235 Cachan | J.-M. Ghidaglia

LRC Meso, CEA, DAM, DIF / ENS Cachan

September 11th 12, ECCOMAS 12

www.cea.fr

#### DE LA RECHERCHE À UNIQUETRIE

## Introduction

## Context

- Multimaterial simulations of compressible hydrodynamics phenomena
- Eulerian method: fixed grid
- Time splitting:
  - Lagrangian phase: predictor / corrector scheme with nodal velocities
  - advection phase: Alternating Directions method
- · Eulerian methods : materials are welded compared to
  - ALE methods [DEL PINO and LABOURASSE, submitted]
  - Lagrangian methods [WILKINS, 99], [CARAMANA, 09], [KUCHARIK, LISKA, BEDNARIK and LOUBÈRE, 11], [DEL PINO and LABOURASSE, submitted], [CLAIR, DESPRÉS and LABOURASSE, 12]



which treat sliding in a more natural way

• Material nodal velocities



- Sliding method
  - General description
  - Lagrangian phase
  - Remapping phase
- Numerical results
  - Without vacuum around sliding materials
  - With vacuum around sliding materials



- Sliding method
  - General description
  - Lagrangian phase
  - Remapping phase

Numerical results

Without vacuum around sliding materials With vacuum around sliding materials



## General description

In this presentation we limit ourselves to only two sliding materials, labeled by + and -.

### Definition

We call *mixed node* a node of a mixed cell (*i.e.* a cell containing more than one material) or shared by pure cells containing different materials.





A. Claisse | CEA | PAGE 4/17



### Data structure for sliding

For each mixed node *i*, there exist two material nodal velocities denoted by u<sub>+</sub>(*i*) and u<sub>-</sub>(*i*).



- For each pure cell k, we define by  $\delta$  the nature of the material (+ or -), V(k) the volume,  $\rho(k)$  the density and p(k) the pressure of the cell.
- For each mixed cell k, we define by V<sub>δ</sub>(k) the partial volume, ρ<sub>δ</sub>(k) the partial density and p<sub>δ</sub>(k) the partial pressure of material δ ∈ {−,+} in k.



### Data structure for sliding

• Using partial volumes  $V_{\delta}(k)$  of material  $\delta$ , we define in each cell k (pure or mixed), two volumic fractions:

$$f_{\delta}(k) = rac{V_{\delta}(k)}{V_{-}(k) + V_{+}(k)}, \hspace{1em} \delta \in \{-,+\}, \hspace{1em} ext{so that:} \hspace{1em} f_{-}(k) + f_{+}(k) = 1$$

• For each mixed node *i*, we define by **N**(*i*) the unit normal as:



$$\mathbf{N}(i) = \frac{\mathbf{n}(k_1) + \dots + \mathbf{n}(k_p)}{||\mathbf{n}(k_1) + \dots + \mathbf{n}(k_p)||}$$

where  $\mathbf{n}(k)$  are the unit normals at interface between + and - in mixed cells

in 2D structured grid,  $p \leq 4$ 

A. Claisse | CEA | PAGE 6/17

### DE LA RECHERCHE À UNDUSTRIE

# Sliding method

### Lagrangian phase

Momentum conservation is satisfied by solving for each mixed node:

$$\begin{cases} \rho_{-} \frac{d\mathbf{u}_{-}}{dt} + \nabla p_{-} = f_{+} \mathbf{S} \\ \rho_{+} \frac{d\mathbf{u}_{+}}{dt} + \nabla p_{+} = -f_{-} \mathbf{S} \end{cases}$$
(1)

where, for all mixed point i and for all mixed cell k:

• 
$$\mathbf{S}(i) = -\frac{1}{\varepsilon} |\mathbf{u}_{-}(i) \cdot \mathbf{N}(i) - \mathbf{u}_{+}(i) \cdot \mathbf{N}(i)| (\mathbf{u}_{-}(i) \cdot \mathbf{N}(i) - \mathbf{u}_{+}(i) \cdot \mathbf{N}(i)) \mathbf{N}(i)$$

is a relaxation term which ensures the condition of non penetration of materials

$$\mathbf{u}_{-} \cdot \mathbf{N} = \mathbf{u}_{+} \cdot \mathbf{N}$$

• parameter  $\varepsilon$  has the dimension of a length divided by a density

$$\varepsilon \equiv rac{arepsilon_0}{2} \Delta x \left(rac{1}{
ho_-} + rac{1}{
ho_+}
ight), \quad \mbox{with} \quad arepsilon_0 pprox 10^{-4}, \mbox{and} \ \Delta x \ \mbox{is cell length}$$

A. Claisse | CEA | PAGE 7/17

DE LA RECHERDRE À CINOUSTRIE



### Lagrangian phase





• We solve system (1) in two steps:

$$\begin{cases} \rho_{-}\frac{d\mathbf{u}_{-}}{dt} + \nabla p_{-} = 0 \\ \rho_{+}\frac{d\mathbf{u}_{+}}{dt} + \nabla p_{+} = 0 \end{cases} \quad \text{and} \quad \begin{cases} \rho_{-}\frac{d\mathbf{u}_{-}}{dt} = f_{+}\mathbf{S} \\ \rho_{+}\frac{d\mathbf{u}_{+}}{dt} = -f_{-}\mathbf{S} \end{cases}$$

 We use separate coordinates for each material δ, then nodes i evolve first with the material velocities u<sub>+</sub>(i) and second with u<sub>-</sub>(i).

A. Claisse | CEA | PAGE 8/17



## Remapping phase: Alternating Directions method



- Computation of an edge velocity u<sub>e,δ</sub>(k) using u<sub>δ</sub>(i) (mean of u<sub>δ</sub>(i)), for all cell k
- Remapping of all quantities of material  $\delta \in \{-,+\}$  with  $\mathbf{u}_{e,\delta}$
- Algorithm:
  - remapping in the first direction
    - remapping of all physical quantities "+" with  $\mathbf{u}_{e,+}$
    - remapping of all physical quantities "-" with u<sub>e,-</sub>
  - remapping in the second direction
    - remapping of all physical quantities "+" with  $\mathbf{u}_{e,+}$
    - remapping of all physical quantities "-" with  $\mathbf{u}_{e,-}$





General description

Lagrangian phase

Remapping phase

### Numerical results

- Without vacuum around sliding materials
- With vacuum around sliding materials

A. Claisse | CEA | PAGE 10/17





# Without vacuum: first test case

Initialization u = (100,0)+ u + = (-100,0)

$$p = 0, \ \rho = 1, \ dt = 10^{-6}$$
  
for  $\delta \in \{-, +\}$ 

# After 1000 iterations, comparison:

Initial grids and Lagrangian particles after 1000 it

with

without (boundary layer)

sliding algorithm

A. Claisse | CEA | PAGE 11/17





### Without vacuum: second test case



Initial grid and Lagrangian particles after 1000 it

sliding algorithm

A. Claisse | CEA | PAGE 12/17



u+=(1,1)

## Numerical results

### Without vacuum: third test case

### Initial grid and Lagrangian particles after 1000 it



sliding algorithm

A. Claisse | CEA | PAGE 13/17





## With vacuum around sliding materials



### Examples



Vacuum treatment during remapping phase:

for each step of remapping phase (with  $\mathbf{u}_{e,+}$  or  $\mathbf{u}_{e,-}$ ), for each direction, ٠ remapping of volume for vacuum to ensure for every cell k:  $\sum f_{\delta}(k) = 1$ ,

where  $\delta \in \{+, -, \mathsf{vacuum}\}$ 





## With vacuum: first test case



Initialization

$$p=$$
 0,  $ho=$  1,  $dt=$  10<sup>-6</sup> for  $\delta\in\{-,+\}$ 

### Initial grid and definition of the materials



### After 5500 iterations, comparison:



sliding algorithm

A. Claisse | CEA | PAGE 15/17





## Numerical results

## With vacuum: second test case

Initial grid and definition of the materials





# Conclusion and perspectives

## Conclusion

- new 2D Eulerian sliding algorithm has been implemented
- no problem to handle mixed cells
- special treatment for vacuum in remapping phase
- several test cases which validate our approach

### Perspectives

- N sliding materials (N > 2)
- extension to 3D