Investigation of exact solutions of a coupled Kerr-SBS system

R. Conte ${ }^{1,2}$,

1. LRC MESO, ENS Cachan et CEA/DAM, Cachan, France
2. Dept of Math, The University of Hong Kong

Cargèse, 23 septembre-2 octobre 2012.

The coupled Kerr-stimulated Brillouin scattering system

S. Mauger, L. Bergé and S. Skupin Phys. Rev. A 83, 063829 (2011)

After a reductive perturbation, three complex equations in three complex amplitudes U_{1}, U_{2}, Q depending on four independent variables x, y, t, z

$$
\begin{aligned}
& \quad i\left(U_{1, z}+v_{g} U_{1, t}\right)+\frac{U_{1, x x}+U_{1, y y}}{2 k_{0}}+b\left(\left|U_{1}\right|^{2}+2\left|U_{2}\right|^{2}\right) U_{1}+i \frac{g}{2} Q U_{2}=0, \\
& - \\
& -i\left(U_{2, z}-v_{g} U_{2, t}\right)+\frac{U_{2, x x}+U_{2, y y}}{2 k_{0}}+b\left(\left|U_{2}\right|^{2}+2\left|U_{1}\right|^{2}\right) U_{2}-i \frac{g}{2} \bar{Q} U_{1}=0, \\
& \tau Q_{t}+Q-U_{1} \bar{U}_{2}=0,
\end{aligned}
$$

in which v_{g}, k_{0}, b, g, τ are real constants,
t is time, z is the longitudinal coordinate.
We restrict here to the generic case $b g \tau \partial_{t} \neq 0$.
Our goal: find closed-form particular solutions of physical interest.

Search for particular solutions (closed form)

Multivalued particular solutions: there exists no method.
Singlevalued particular solutions: there exists a method.
This method (Kowalevski, school of Painlevé) takes advantage of the singularities which depend on initial conditions ("movable"), in two steps:

1. (Local) Near every movable singularity, require the solution to be singlevalued.
2. (Global) Assume a closed form expression matching the singularity structure.

Example. Travelling waves of modified KdV

Methods in The Painlevé handbook, RC and Musette, Springer 2008

$$
u_{t}+u_{x x x}-6 u^{2} u_{x}=0
$$

Traveling wave reduction:

$$
u=U(\xi), \quad \xi=x-c t, \quad U^{\prime \prime \prime}-6 U^{2} U^{\prime}-c U^{\prime}=0
$$

1. (Local) \exists two Laurent series (simple pole)

$$
U=\sum_{j=0}^{+\infty} U_{j}\left(\xi-\xi_{0}\right)^{j-1}, U_{0}= \pm 1, \text { with } \xi_{0}, U_{3} \text { and } U_{4} \text { arbitrary }
$$

2. (Global)

2a. Assume U to have only one (not two) simple pole
$U= \pm \partial_{\xi} \log \psi, \psi=$ entire f., e.g. $\psi^{\prime \prime}-k^{2} \psi=0$.
Output is two fronts $U= \pm k \tanh k\left(\xi-\xi_{0}\right), c=-2 k^{2}$.
2b. Assume U to have two simple poles
$U=\partial_{\xi} \log \psi_{1}-\partial_{\xi} \log \psi_{2}, \psi_{j}$ entire, e.g. $\psi_{j}^{\prime \prime}-k^{2} \psi_{j}=0$.
Output is one pulse $U=k \operatorname{sech} k\left(\xi-\xi_{0}\right), c=k^{2}$.

Kerr-SBS, local analysis

\exists a movable singularity $\varphi(x, y, z, t)=0$ where U_{1}, U_{2}, Q all have simple poles,

$$
U_{1}=M e^{i a_{1}} \varphi^{-1}+\cdots, U_{2}=M e^{i a_{2}} \varphi^{-1}+\cdots, Q=N e^{i a_{1}-i a_{2}} \varphi^{-1}+\cdots
$$

$$
M= \pm \sqrt{-N \tau \varphi_{t}}, \quad N=\frac{\varphi_{x}^{2}+\varphi_{y}^{2}}{3 k_{0} b \tau \varphi_{t}}
$$

$a_{1}, a_{2}=$ arbitrary real functions.
Same situation as mKdV (two opposite values of M).
The 10 arbitrary coefficients occur at Fuchs indices

$$
\begin{equation*}
-1,0,0,1,1,3,3,4, \frac{3}{2}+\frac{\sqrt{11}}{2 \sqrt{3}}, \frac{3}{2}-\frac{\sqrt{11}}{2 \sqrt{3}} \tag{1}
\end{equation*}
$$

and 5 constraints arise from the positive integer indices $1,1,3,3,4$.
Bad news: nonintegrable (some Fuchs indices are irrational, 5 constraints).
Good news: Laurent series do exist which depend on $10-5$ arb functions. Singlevalued closed form solutions may exist.

Kerr-SBS. Global assumption with one family

Assume the closed form

$$
U_{k}=e^{i a_{k}}\left(\varphi^{-1} M+U_{k, 1}\right), \quad k=1,2, Q=e^{i a_{1}-i a_{2}}\left(\varphi^{-1} N+Q_{1}\right)
$$

and identify the equations (finite Laurent series in φ) to 0 . 16 real equations, 9 real unknown functions $\left(\varphi, a_{1}, a_{2}, U_{k, 1}, Q_{1}\right)$: not too bad.
The constraint from Fuchs index 1

$$
\begin{aligned}
& 3\left(\varphi_{x}^{2}+\varphi_{y}^{2}\right)^{2}\left(\tau^{-1} \varphi_{t}-\varphi_{t t}\right)+6\left(\varphi_{x}^{2}+\varphi_{y}^{2}\right) \varphi_{t}\left(\varphi_{x} \varphi_{x t}+\varphi_{y} \varphi_{y t}\right) \\
& \quad+\varphi_{t}^{2}\left(\varphi_{x}^{2}\left(3 \varphi_{x x}+\varphi_{y y}\right)+\varphi_{y}^{2}\left(3 \varphi_{y y}+\varphi_{x x}\right)+4 \varphi_{x} \varphi_{y} \varphi_{x y}\right)=0
\end{aligned}
$$

proves that no travelling wave solution exists $\varphi=\Phi(\xi)$ with
$\xi=k_{x} x+k_{y} y+k_{z} z+k_{t} t$.
In the coordinates (R, θ, z, T),

$$
x=\rho \cos \theta, y=\rho \sin \theta, t=\tau \log T, R=\rho^{2 / 3}
$$

we could only find a solution in the radial case

$$
\partial_{\theta}=0: \quad T=G_{1}(\varphi, z)\left(R+G_{0}(\varphi, z)\right), \quad G_{0}, G_{1}=\operatorname{arb} \mathrm{f} .
$$

Kerr-SBS. Global assumption with one family

(continued)

Next equations then yield the two "arbitrary" functions a_{1}, a_{2},

$$
\begin{aligned}
& a_{1}+a_{2}=R g_{1}(z, T)+g_{0}(z, T), \\
& a_{1}-a_{2}=-\frac{g}{3 b}\left[\log T-G_{2}(\varphi, z)\right],
\end{aligned}
$$

in which $g_{0}(z, T), g_{1}(z, T), G_{2}(\varphi, z)$ are arbitrary functions. Next equation

$$
\left(g_{1}(z, T)\right)^{2}=\operatorname{rational}\left(T ; G_{0}(\varphi, z), G_{1}(\varphi, z)\right)
$$

requires the rhs to be independent of φ, and this admits [To be checked] no solution (at least in the radial case $\partial_{\theta}=0$).

Kerr-SBS. Global assumption with two families

Assume the closed form

$$
\begin{aligned}
& U_{k}=e^{i a_{k}}\left(M \chi^{-1}+U_{k, 1}-M \chi\right), \quad k=1,2, \\
& Q=e^{i i_{1}-i a_{2}}\left(N \chi^{-1}+Q_{1}+N \chi\right)
\end{aligned}
$$

and identify the equations (finite Laurent series in χ) to 0 , with $\chi=$ some precise homographic function of $\varphi(x, y, z, t)$. 19 real equations, 9 real unknown functions $\left(\varphi, a_{1}, a_{2}, U_{k, 1}, Q_{1}\right)$. If such a solution exists, it will look like $U_{1}=\operatorname{sech} X, U_{2}=\operatorname{sech} X, Q=\tanh X$, with X some function of (x, y, z, t).
In progress. Should succeed according to the numerical simulations of Mauger et al. (2011).

