Inconsistency and stability of the compatible staggered Lagrangian scheme

joint with: B. Wendroff, E. Caramana, A.L. Bauer, M.Shashkov

¹Institut de Mathématique de Toulouse (IMT) and CNRS, Toulouse, France

Workshop CEA, 09/2012

Workshop CEA, 09/2012

1/26

Plan

- Introduction and motivation
- 2D Lagrangian Staggered Hydrodynamics scheme
 - Subcell formalism
 - Specifics : Artificial viscosity, subpressure forces
 - Properties
- Deaper studies
 - Internal (and volume) consistency?
 - Stability ?
- Conclusions and perspectives

< ロ > < 同 > < 回 > < 回 >

Introduction and motivation

Why do we still analyse a staggered Lagrangian scheme from the 50's?

2D Staggered Lagrangian scheme for hydrodynamics

- dates back to von Neumann, Richtmyer J. Appl. Phy. 1950)], Schultz, Wilkins [Green book (1964)] era.
- Iater improved by many authors in national labs or academy
- important subcell based compatible discretization of div/grad [Favorskii, Burton, Caramana]
 improved artificial viscosity, hourglass filters, accuracy time/space, axisymetric geo.
 - \rhd coupling with slide line, materials, diffusion, elastoplasticity, etc.
 - \rhd "engine" of many ALE codes
- most of all this scheme <u>has been and still is</u> routinely used !

⇒ Need to deeply understand its behaviors !

- to explain already known features
- to chose between different "versions"
- to measure the relative importance of "improvements"
- to fight back, justify or simply understand urban legends

2D Lagrangian Staggered Hydro scheme Governing equations

2D gas dynamics equations

$$\rho \frac{d}{dt} \left(\frac{1}{\rho} \right) - \nabla \cdot \boldsymbol{U} = 0 \qquad \rho \frac{d}{dt} \boldsymbol{U} + \boldsymbol{\nabla} \boldsymbol{P} = \boldsymbol{0} \qquad \rho \frac{d}{dt} \varepsilon + \boldsymbol{P} \nabla \cdot \boldsymbol{U} = 0$$

Equation of state EOS $P = P(\rho, \varepsilon)$, where $\varepsilon = E - \frac{u^2}{2}$. Internal energy equation can be viewed as an entropy evolution equation (Gibbs relation $TdS = d\varepsilon + Pd\left(\frac{1}{\rho}\right) \ge 0$) $\rho \frac{d}{dt}\varepsilon + P\nabla \cdot \boldsymbol{U} = \rho\left(\frac{d}{dt}\varepsilon + P\frac{d}{dt}\left(\frac{1}{\rho}\right)\right) \ge 0$

Trajectory equations

$$\frac{d\mathbf{X}}{dt} = \mathbf{U}(\mathbf{X}(t), t), \qquad \mathbf{X}(0) = \mathbf{X},$$

Lagrangian motion of any point initially located at position x.

R. Loubère (IMT and CNRS)

Inconsistency and stability

2D Lagrangian Staggered Hydro scheme Preliminaries

Staggered placement of variables

Point velocity \boldsymbol{U}_{p} , cell-centered density ρ_{c} and internal energy ε_{c}

Compatible discretization

Given total energy definition and momentum discretization (Newton's 2nd law) imply energy discretization as sufficient condition

Cornerstone : subcell force F_{cp} that acts from subcell Ω_{cp} on p.

 \triangleright compile pressure gradient $\boldsymbol{F}_{cp} = -P_c L_{cp} \boldsymbol{N}_{cp}$, artificial visco, anti-hourglass, elasto forces.

Galilean invariance and/or momentum conservation implies $\sum F_{i}$

$$s \sum_{p \in \mathcal{P}(c)} \boldsymbol{F}_{cp} =$$

2D Lagrangian Staggered Hydro scheme

Time discretization : $t^n \longrightarrow t^{n+1}$

- Originally staggered placement of variable in time U^{n+1/2} and ρⁿ, εⁿ.
- Improvement gained by same time location Uⁿ, ρⁿ, εⁿ. Side effect : This helped total energy conservation.

Predictor-Corrector P/C type of scheme is very often considered.
 Predictor step is often used as to time center the pressure for correction step.
 Very seldom : GRP, ADER to reduce the cost of a two-step P/C process

Space discretization : Ω_p, Ω_c

$$\frac{d}{dt} V_c - \sum_{\rho \in \mathcal{P}(c)} L_{c\rho} \mathbf{N}_{c\rho} \cdot \mathbf{U}_{\rho} = 0 \quad \text{or} \quad \frac{d}{dt} \mathbf{X}_{\rho} = \mathbf{U}_{\rho}, \quad \mathbf{X}_{\rho}(0) = \mathbf{x}_{\rho}$$
$$m_{\rho} \frac{d}{dt} \mathbf{U}_{\rho} + \sum_{c \in \mathcal{C}(\rho)} \mathbf{F}_{c\rho} = \mathbf{0}$$
$$m_c \frac{d}{dt} \varepsilon_c - \sum_{\rho \in \mathcal{P}(c)} \mathbf{F}_{c\rho} \cdot \mathbf{U}_{\rho} = \mathbf{0}$$

2D Lagrangian Staggered Hydro scheme

Properties

- General grid formulation
- GCL
- First order accurate scheme in space on non-regular grid,
- Conservation of mass, momentum, total energy

Expected properties

- Expected (internal) consistency
- Expected second-order accuracy in time
- Expected stability under classical CFL condition

Biblio

 Volume consistency in Staggered Grid Lagrangian Hydrodynamics Schemes, JCP, Volume 227, Pages 3731-3737 R. Loubère, M. Shashkov, B. Wendroff,

[2] On stabiliy analysis of staggered schemes, A.L. Bauer, R. Loubère, B. Wendroff, SINUM. Vol 46 Issue 2 (2008)

[3] The Internal Consistency, Stability, and Accuracy of the Discrete, Compatible Formulation of Lagrangian Hydrodynamics, JCP, Volume 218, Pages 572-593 A.L. Bauer, D.E. Burton, E.J. Caramana, R. Loubère, M.J. Shashkov, P.P. Whalen

General remark

The equations are essentially created in discrete form, as opposed to being the discretization of a system of PDE's. As such, one may or may not be able to rigorously take the continuum limit to obtain the latter; this depends on the kinds of forces that are employed to resolve shocks and to counteract spurious grid motions.

Ambiguity of cell volume definition

Results from requiring both total energy conservation and the modeling of the internal energy advance from the differential equation $\frac{d}{dt}\varepsilon + p\frac{d}{dt}(1/\rho) = 0$ under assumptions

- V_c can be computed from X_p for all $p \in \mathcal{P}(c)$
- U_{ρ} is constant for all $t \in [t^n; t^{n+1}]$, so that $X_{\rho}(t) = X_{\rho}^n + U_{\rho}(t-t^n)$

There exist a coordinate and a compatible cell volume which may be different !

Ambiguity of cell volume definition

Implied coordinate cell volume

$$V_{c}^{n+1} - V_{c}^{n} = \int_{t^{n}}^{t^{n+1}} \frac{dV_{c}}{dt} dt = \sum_{\substack{\rho \in \mathcal{P}(c)}} u_{\rho} \int_{t^{n}}^{t^{n+1}} \frac{\partial V_{c}}{\partial x_{\rho}} dt + v_{\rho} \int_{t^{n}}^{t^{n+1}} \frac{\partial V_{c}}{\partial y_{\rho}} dt$$
$$= \sum_{\substack{\rho \in \mathcal{P}(c)}} u_{\rho} \mathbf{A}_{c\rho} + v_{\rho} \mathbf{B}_{c\rho}$$

with **A**, **B** are rectangular sparce matrices.

Remark

Not simple average of integrands unless for Cartesian geometry.

R. Loubère (IMT and CNRS)

Inconsistency and stability

Workshop CEA, 09/2012 9 / 26

Ambiguity of cell volume definition

Implied coordinate cell volume

$$V_c^{n+1} - V_c^n = \sum_{\rho \in \mathcal{P}(c)} u_\rho \mathbf{A}_{c\rho} + v_\rho \mathbf{B}_{c\rho}$$

Implied compatible cell volume

Discrete momentum + total energy conservation implicitely defines

$$m_{p}(u_{p}^{n+1} - u_{p}^{n}) - \sum_{c \in \mathcal{C}(p)} P_{c} \mathbf{a}_{cp} = 0, \qquad m_{p}(v_{p}^{n+1} - v_{p}^{n}) - \sum_{c \in \mathcal{C}(p)} P_{c} \mathbf{b}_{cp} = 0$$
$$m_{c}(\varepsilon_{c}^{n+1} - \varepsilon_{c}^{n}) + P_{c} \sum_{p \in \mathcal{P}(c)} u_{p} \mathbf{a}_{cp} + v_{p} \mathbf{b}_{cp} = 0$$
with $(\mathbf{a}_{cp}, \mathbf{b}_{cp}) = \Delta t L_{cp} \mathbf{N}_{cp}$. For adiabatic flows the entropy *S* satisfies $T \frac{dS}{dt} = \frac{d\varepsilon}{dt} + P \frac{dV}{dt} = 0.$

$$m_{c}\left(\varepsilon_{c}^{n+1}-\varepsilon_{c}^{n}\right)+P_{c}\left(V_{c}^{n+1}-V_{c}^{n}\right)=0$$

R. Loubère (IMT and CNRS)

Ambiguity of cell volume definition

Implied coordinate cell volume

$$V_c^{n+1} - V_c^n = \sum_{\rho \in \mathcal{P}(c)} u_{
ho} \mathbf{A}_{c
ho} + v_{
ho} \mathbf{B}_{c
ho}$$

Implied compatible cell volume

Discrete momentum + total energy conservation implicitely defines

$$m_{\rho}(u_{\rho}^{n+1}-u_{\rho}^{n})-\sum_{c\in \mathcal{C}(\rho)}P_{c}\mathbf{a}_{c\rho}=0, \qquad m_{\rho}(v_{\rho}^{n+1}-v_{\rho}^{n})-\sum_{c\in \mathcal{C}(\rho)}P_{c}\mathbf{b}_{c\rho}=0$$

$$m_c(\varepsilon_c^{n+1}-\varepsilon_c^n)+P_c\sum_{p\in\mathcal{P}(c)}u_p\mathbf{a}_{cp}+v_p\mathbf{b}_{cp}=0$$

with $(\mathbf{a}_{cp}, \mathbf{b}_{cp}) = \Delta t L_{cp} \mathbf{N}_{cp}$, for adiabatic flows the entropy S satisfies $T \frac{dS}{dt} = \frac{d\varepsilon}{dt} + P \frac{dV}{dt} = 0$.

$$m_{c}\left(\varepsilon_{c}^{n+1}-\varepsilon_{c}^{n}\right)+P_{c}\sum_{p\in\mathcal{P}(c)}u_{p}\mathbf{A}_{cp}+v_{p}\mathbf{B}_{cp}=0$$

R. Loubère (IMT and CNRS)

э

Ambiguity of cell volume definition

Condition for uniqueness of cell volume definition

Same volume definition if

$$\mathbf{A}_{cp} = \mathbf{a}_{cp}, \quad \text{and} \quad \mathbf{B}_{cp} = \mathbf{b}_{cp} \quad \forall c, p$$

along with total energy conservation and PdV work.

But a, b correspond to your prefered discrete gradient and A, B are given by the geometry !

Do the matrices match for different geometry and classical discrete gradient?

- 1D Cartesian Yes
- 1D cylindrical No unless (time centering grid vectors + force=0)
- ID spherical No unless (time centering + 1D vector manipulation)
- 2D Cartesian No unless (time centering + force=0).
- 2D cylindrical r z No

Remark : 2D Cartesian analysis shows that the difference is small ($\mathcal{O}(\Delta t^3)$ for one time step)

(日)

Wendroff's idea [(JCP, 227, 2010)]

Derive A, B for different geometries and deduce appropriate discrete gradient.

1D spherical : cell half-index
$$i + \frac{1}{2}$$
, vertices r_i, r_{i+1} , cell volume $V_{i+\frac{1}{2}} = \frac{1}{3} \left(r_{i+1}^3 - r_i^3 \right)$.
 $\mathbf{A}_{i+\frac{1}{2},i+1}$
 $\mathbf{A}_{i+\frac{1}{2},i+1}$
 $\mathbf{A}_{i+\frac{1}{2},i}$
 $\mathbf{A}_{i+\frac{1}{$

 \rightarrow This is the good discrete gradient.

R. Loubère (IMT and CNRS)

2D cylindrical r - z: quad. cell V_j , nodes (r_i, z_i) , i = 1, ..., 4. Define

$$\begin{split} \mathcal{H}_{i \to j} &= \left(2r_i^n + r_j^n\right) \left(z_j^{n+1} - z_i^{n+1}\right) + \left(2r_i^{n+1} + r_j^{n+1}\right) \left(z_j^n - z_i^n\right) \\ &+ 2\left\{\left(2r_i^n + r_j^n\right) \left(z_j^n - z_i^n\right) + \left(2r_i^{n+1} + r_j^{n+1}\right) \left(z_j^{n+1} - z_i^{n+1}\right)\right\}, \\ Z_{i \to j} &= \left(2r_i^n + r_j^n\right) \left(r_j^{n+1} - r_i^{n+1}\right) + \left(2r_i^{n+1} + r_j^{n+1}\right) \left(r_j^n - r_i^n\right) \\ &+ 2\left\{\left(2r_i^n + r_j^n\right) \left(r_j^n - r_i^n\right) + \left(2r_i^{n+1} + r_j^{n+1}\right) \left(r_j^{n+1} - r_i^{n+1}\right)\right\}, \end{split}$$

$$V_{j}^{n+1} - V_{j}^{n} = \frac{\Delta t}{36} \Big\{ \\ \Big(u_{1} \left[R_{1 \to 4} - R_{1 \to 2} \right] + u_{2} \left[R_{2 \to 3} - R_{2 \to 1} \right] + u_{3} \left[R_{3 \to 4} - R_{3 \to 2} \right] + u_{4} \left[R_{4 \to 3} - R_{4 \to 1} \right] \Big) \\ + \Big(v_{1} \left[Z_{1 \to 4} - Z_{1 \to 2} \right] + v_{2} \left[Z_{2 \to 3} - Z_{2 \to 1} \right] + v_{3} \left[Z_{3 \to 4} - Z_{3 \to 2} \right] + v_{4} \left[Z_{4 \to 3} - Z_{4 \to 1} \right] \Big) \Big\},$$

 $[R_{1\rightarrow4} - R_{1\rightarrow2}]$ defines \mathbf{A}_{jp} for p global index of vertex 1, $[Z_{1\rightarrow4} - Z_{1\rightarrow2}]$ defines \mathbf{B}_{jp}

A, B being defined, it uniquely implies the discretizations of discrete gradient with a = A, b = B.
 → This is the good discrete gradient.

R. Loubère (IMT and CNRS)

Inconsistency and stability

Numerical scheme

Initialization :
$$P_c = P_c^n$$
, $\mathbf{a}_{cp}^{n+1} = \mathbf{a}_{cp}^n$, $\mathbf{b}_{cp}^{n+1} = \mathbf{b}_{cp}^n$

- 0- Outer iterations :
 - 0- Inner consistency iterations : Pressure *P_c* fixed solve the implicit system 1-2
 - 1- Velocity

$$m_{p}(u_{p}^{n+1}-u_{p}^{n})-\sum_{c\in\mathcal{C}(p)}P_{c}\,\mathbf{a}_{cp}^{n+1}=0,\qquad m_{p}(v_{p}^{n+1}-v_{p}^{n})-\sum_{c\in\mathcal{C}(p)}P_{c}\,\mathbf{b}_{cp}^{n+1}=0$$

- 2- Position and $\mathbf{a}_{cp}, \mathbf{b}_{cp}$ $x_p^{n+1} = x_p^n + \Delta t \frac{u_p^n + u_p^{n+1}}{2} = 0, \qquad y_p^{n+1} = y_p^n + \Delta t \frac{v_p^n + v_p^{n+1}}{2} = 0$
- 3- Exit when convergence is reached for x_p , y_p , u_p , v_p
- 1- Compute new cell volume V_c^{n+1} and deduce internal energy

$$m_c(\varepsilon_c^{n+1}-\varepsilon_c^n)+P_c(V_c^{n+1}-V_c^n)=0$$

- 2- Deduce new pressure P_c^{n+1} and $P_c = \frac{1}{2}(P_c^{n+1} + P_c^n)$
- 3- Exit when convergence is reached for ε_c^{n+1}

Numerical scheme

Remarks

These schemes are indexed by (#outer, #inner)

- Classical P/C staggered compatible scheme is a (2, 1) scheme. For 2D axisymetric problem the Cartesian geometrical vectors are modified but this can not fulfill volume consistency and total energy conservation.
- Conversely our proposed scheme is a $(2, \infty)$ scheme which enjoys these properties.

R. Loubère (IMT and CNRS)

Numerical scheme

Numerical results : Coggeshall adabatic compression in 2D r - z geometry - No artificial visco - Exact solution exists

R. Loubère (IMT and CNRS)

Inconsistency and stability

Workshop CEA, 09/2012 16 / 26

э

イロト イヨト イヨト イヨト

Stability

Which stability ?

If the continuum system has no growing solutions, the discretized form should also contains no growing solutions.

Predictor-corrector scheme

In general the prediction step only serves as to predict a time advanced pressure $P^* = \alpha P^{\text{predicted}} + (1 - \alpha)P^n$ with $t^* \in [t^n; t^{n+1}]$.

Scheme #1

Prediction

- 1- Predict $\boldsymbol{U}_{p}^{n+*} = \boldsymbol{U}_{p}^{n} + \Delta t \ f(\boldsymbol{P}_{c}^{n})$, and $\boldsymbol{U}^{n+1/2} = \frac{1}{2} (\boldsymbol{U}^{n} + \boldsymbol{U}^{n+*})$
- 2- Predict $X_{p}^{n+*} = X_{p}^{n} + \Delta t U_{p}^{n+1/2}$
- 3- Compute V_c^{n+*} , ρ_c^{n+*}
- 4- Predict $\varepsilon_c^{n+*} = \varepsilon_c^n + \Delta t f(\boldsymbol{U}_p^{n+1/2}, P_c^n)$
- 5- Predict $P_c^* \equiv \alpha P_c^{n+*} + (1 \alpha) P_c^n$

Correction

- 1- Compute $U_{\rho}^{n+1} = U_{\rho}^{n} + \Delta t f(P_{c}^{*})$, and $U^{n+1/2} = \frac{1}{2}(U^{n} + U^{n+1})$
- 2- compute $X_{p}^{n+1} = X_{p}^{n} + \Delta t U_{p}^{n+1/2}$
- 3- Compute V_c^{n+1} , ρ_c^{n+1}
- 4- Compute $\varepsilon_c^{n+1} = \varepsilon_c^n + \Delta t f(\boldsymbol{U}_p^{n+1/2}, \boldsymbol{P}_c^*)$
- 5- Compute P_c^{n+1}

Stability

Scheme #1

- 1- Predict $\boldsymbol{U}_{p}^{n+*} = \boldsymbol{U}_{p}^{n} + \Delta t f(\boldsymbol{P}_{c}^{n})$, and $\boldsymbol{U}^{n+1/2} = \frac{1}{2}(\boldsymbol{U}^{n} + \boldsymbol{U}^{n+*})$
- 2- Predict $X_{p}^{n+*} = X_{p}^{n} + \Delta t U_{p}^{n+1/2}$
- 3- Compute V_c^{n+*} , ρ_c^{n+*}
- 4- Predict $\varepsilon_c^{n+*} = \varepsilon_c^n + \Delta t f(\boldsymbol{U}_p^{n+1/2}, P_c^n)$
- 5- Predict $P_c^* \equiv \alpha P_c^{n+*} + (1-\alpha)P_c^n$

- 1- Compute $U_{\rho}^{n+1} = U_{\rho}^{n} + \Delta t f(P_{c}^{*})$, and $U^{n+1/2} = \frac{1}{2}(U^{n} + U^{n+1})$
- 2- compute $\boldsymbol{X}_p^{n+1} = X_p^n + \Delta t \boldsymbol{U}_p^{n+1/2}$
- 3- Compute V_c^{n+1} , ρ_c^{n+1}
- 4- Compute $\varepsilon_c^{n+1} = \varepsilon_c^n + \Delta t f(\boldsymbol{U}_p^{n+1/2}, \boldsymbol{P}_c^*)$
- 5- Compute P_c^{n+1}

Scheme #2

- 1-
- 2- Predict $\boldsymbol{X}_{p}^{n+*} = X_{p}^{n} + \Delta t \boldsymbol{U}_{p}^{n}$
- 3- Compute V_c^{n+*} , ρ_c^{n+*}
- 4- Predict $\varepsilon_c^{n+*} = \varepsilon_c^n + \Delta t f(\boldsymbol{U}_p^n, \boldsymbol{P}_c^n)$
- 5- Predict $P_c^* \equiv \alpha P_c^{n+*} + (1-\alpha) P_c^n$

- 1- Compute $U_{\rho}^{n+1} = U_{\rho}^{n} + \Delta t f(P_{c}^{*})$, and $U^{n+1/2} = \frac{1}{2}(U^{n} + U^{n+1})$
- 2- compute $X_{p}^{n+1} = X_{p}^{n} + \Delta t U_{p}^{n+1/2}$
- 3- Compute V_c^{n+1} , ρ_c^{n+1}
- 4- Compute $\varepsilon_c^{n+1} = \varepsilon_c^n + \Delta t f(\boldsymbol{U}_p^{n+1/2}, \boldsymbol{P}_c^*)$
- 5- Compute P_c^{n+1}

Stability von Neumann stability study on 2D wave model

2D wave equation (as a model)

$$\frac{du}{dt} = \frac{\partial p}{\partial x}, \qquad \frac{dv}{dt} = \frac{\partial p}{\partial y}, \qquad \frac{dp}{dt} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial \widetilde{y}}.$$

Prelims

Rectangular scheme, periodic BCs, staggered placement of variables ; cell centered $p_{i+1/2,j+1/2}$ and nodal $u_{i,j}$, $v_{i,j}$. Mid-edge values are interpolated values $p_{i+\frac{1}{2},j+1} = \frac{1}{2} \left(p_{i+\frac{1}{2},j+\frac{3}{2}} + p_{i+\frac{1}{2},j-\frac{1}{2}} \right)$, and $u_{i+\frac{1}{2},j+1} = \frac{1}{2} \left(u_{i,j+1} + u_{i+1,j+1} \right)$, $\lambda_x = \Delta t / \Delta x$ and Any variable *w* defined at two time levels $t_{n+1} > t_n$ on a point or in a cell, we define at an intermediate time $n + \kappa$

$$w^{n+\kappa} = \kappa w^{n+1} + (1-\kappa) w^n, \quad 0 \le \kappa \le 1.$$

R. Loubère (IMT and CNRS)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Stability von Neumann stability study

$$\begin{split} \text{Fully implicit staggered scheme} & u_{i,j}^{n+1} = u_{i,j}^{n} + \lambda_{x} \left(p_{i+\frac{1}{2},j}^{n+\alpha} - p_{i-\frac{1}{2},j}^{n+\alpha} \right), \quad v_{i,j}^{n+1} = v_{i,j}^{n} + \lambda_{y} \left(p_{i,j+\frac{1}{2}}^{n+\alpha} - p_{i,j-\frac{1}{2}}^{n+\alpha} \right), \\ p_{i+\frac{1}{2},j+\frac{1}{2}}^{n+1} &= p_{i+\frac{1}{2},j+\frac{1}{2}}^{n} + \lambda_{x} \left(u_{i+1,j+\frac{1}{2}}^{n+\beta} - u_{i,j+\frac{1}{2}}^{n+\beta} \right) + \lambda_{y} \left(v_{i+\frac{1}{2},j+1}^{n+\beta} - v_{i+\frac{1}{2},j}^{n+\beta} \right). \\ \text{M} = \begin{pmatrix} 0 & 0 & Q_{x} \\ 0 & 0 & Q_{y} \\ -Q_{x}^{*} & -Q_{y}^{*} & 0 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \lambda_{x} & 0 & 0 \\ 0 & \lambda_{y} & 0 \\ 0 & 0 & 1 \end{pmatrix}. \\ (Q_{x}p)_{i,j} &= \frac{1}{2} \left(p_{i+\frac{1}{2},j+\frac{1}{2}} + p_{i+\frac{1}{2},j-\frac{1}{2}} - p_{i-\frac{1}{2},j+\frac{1}{2}} - p_{i-\frac{1}{2},j-\frac{1}{2}} \right) \\ (Q_{x}^{*}u)_{i+\frac{1}{2},j+\frac{1}{2}} &= \frac{1}{2} \left(u_{i,j} + u_{i,j+1} - u_{i+1,j} - u_{i+1,j+1} \right). \end{split}$$

Hence the implicit scheme also writes

$$\boldsymbol{w}^{n+1} = \boldsymbol{w}^n + \boldsymbol{\Lambda} \boldsymbol{M} \boldsymbol{\Lambda} \boldsymbol{w}^{\alpha,\beta}.$$

Theorem

The fully implicit scheme is stable for any $\lambda_{x,y}$ is $\alpha \geq 2$ and $\beta \geq 2$.

R. Loubère (IMT and CNRS)

Stability von Neumann stability study

P/C staggered scheme #1

$$\begin{array}{rcl} & & & & & & & & & & & \\ & \widetilde{u}_{i,j}^{n+1} & = & u_{i,j}^{n} + \lambda_x \left(Q_x p^n \right)_{i,j}, & & & & & & & \\ & \widetilde{v}_{i,j}^{n+1} & = & u_{i,j}^{n} + \lambda_y \left(Q_y p^n \right)_{i,j}, & & & & & & \\ & \widetilde{v}_{i,j}^{n+1} & = & v_{i,j}^{n} + \lambda_y \left(Q_y p^n \right)_{i,j}, & & & & & & \\ & \widetilde{p}_{i+\frac{1}{2},j+\frac{1}{2}}^{n+1} & = & p_{i+\frac{1}{2},j+\frac{1}{2}}^{n} - \lambda_x \left(Q_x^* u^{n+\beta} \right)_{i+\frac{1}{2},j+\frac{1}{2}} & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ \end{array} \right)_{i+\frac{1}{2},j+\frac{1}{2}} \cdot & & & & & & & \\ \end{array}$$

von Neumann analysis : $p_{i+\frac{1}{2},j+\frac{1}{2}}^{n} \longmapsto p_{0}e^{\theta(n\Delta t)+i\left(2\delta\left((i+\frac{1}{2})\Delta x\right)+2\gamma\left((j+\frac{1}{2})\Delta y\right)\right)}$, θ complex, δ , γ reals

$$\mathbf{S} = \begin{pmatrix} 1 - \alpha \Phi_x^2 & -\alpha \Phi_x \Phi_y & \mathrm{i} \Phi_x \left(1 - \alpha \beta (\Phi_x^2 + \Phi_y^2) \right) \\ -\alpha \Phi_x \Phi_y & 1 - \alpha \Phi_y^2 & \mathrm{i} \Phi_y \left(1 - \alpha \beta \left(\Phi_x^2 + \Phi_y^2 \right) \right) \\ \mathrm{i} \Phi_x \left(1 - \alpha \beta (\Phi_x^2 + \Phi_y^2) \right) & \mathrm{i} \Phi_y \left(1 - \alpha \beta (\Phi_x^2 + \Phi_y^2) \right) & 1 + \alpha \beta^2 (\Phi_x^2 + \Phi_y^2)^2 - \beta \left(\Phi_x^2 + \Phi_y^2 \right) \end{pmatrix}$$

Setting $\Phi_X = 2\lambda_X \sin \xi \cos \eta$ and $\Phi_Y = 2\lambda_Y \sin \eta \cos \xi$, we further study the boundness of numerical radius $R(\mathbf{S}) = \sup_{\mathbf{w}} |\langle \mathbf{S} \mathbf{w}, \mathbf{w} \rangle|$, with $\langle \mathbf{w}, \mathbf{w} \rangle = 1$.

R. Loubère (IMT and CNRS)

Stability von Neumann stability study

P/C staggered scheme #2

von Neumann analysis : $p_{i+\frac{1}{2},j+\frac{1}{2}}^{n} \longmapsto p_{0}e^{\theta(n\Delta t)+i\left(2\delta\left((i+\frac{1}{2})\Delta x\right)+2\gamma\left((j+\frac{1}{2})\Delta y\right)\right)}$, θ complex, δ , γ reals

$$\mathbf{S} = \left(\begin{array}{ccc} 1 - \alpha \Phi_x^2 & -\alpha \Phi_x \Phi_y & \mathrm{i} \Phi_x \\ \\ -\alpha \Phi_x \Phi_y & 1 - \alpha \Phi_y^2 & \mathrm{i} \Phi_y \\ \\ \mathrm{i} \Phi_x \left(1 - \alpha \beta (\Phi_x^2 + \Phi_y^2) \right) & \mathrm{i} \Phi_y \left(1 - \alpha \beta (\Phi_x^2 + \Phi_y^2) \right) & 1 + \alpha \beta^2 (\Phi_x^2 + \Phi_y^2)^2 - \beta \left(\Phi_x^2 + \Phi_y^2 \right) \end{array} \right)$$

Setting $\Phi_{\chi} = 2\lambda_{\chi} \sin \xi \cos \eta$ and $\Phi_{y} = 2\lambda_{y} \sin \eta \cos \xi$, we further study the boundness of numerical radius $R(\mathbf{S}) = \sup_{\mathbf{W}} |\langle \mathbf{S}\mathbf{W}, \mathbf{W} \rangle|$, with $\langle \mathbf{W}, \mathbf{W} \rangle = 1$.

R. Loubère (IMT and CNRS)

Workshop CEA, 09/2012

23/26

Stability von Neumann stability study

Theorem

The 2D staggered rectangular scheme #1 and #2 are stable if $\alpha \geq \frac{1}{2}$, $\beta \geq \frac{1}{2}$ and $4\alpha\beta \max(\lambda_x^2, \lambda_y^2) \leq 1$ and unstable if $\alpha < \frac{1}{2}$ and $\beta < \frac{1}{2}$.

R. Loubère (IMT and CNRS)

Conclusion and Perspectives

Conclusions

- Compatible staggered Lagrangian scheme is old and venerable but presents some features that need to be pointed out
- Inconsistency of cell volume definition can be overcome by iterations but seems to be a second-order error
- Particular stability diagram can be deduced from analysis and numerics

Perspectives

Moot points :

- subcells are Lagrangian object?
- P/C scheme is 2nd order ? What about GRP, ADER type of schemes (one step second order scheme) ?
- impact of artificial viscosity always difficult to analyse.

A votre avis

A priori ou a posteriori?

- a priori on pense savoir ce que nos schémas d'ordre élevés/complexes font,
- a posteriori on s'apperçoit qu'ils ne le font pas
 - Erreurs : bugs, mauvaise init, paramètres hors normes...
 - Comportements bizarres "explicables" : numériques (ou physiques)
 - ou inexplicables

Tester et réparer a posteriori *vs* Prédire (théorie du pire) et agir (princip. précaution) a priori ?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

THANK YOU!

This research was supported in parts by ANR JCJC "ALE INC(ubator) 3D".

R. Loubère (IMT and CNRS)

Inconsistency and stability

Workshop CEA, 09/2012 26 / 26