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Introduction and motivation
Why do we still analyse a staggered Lagrangian scheme from the 50’s ?

2D Staggered Lagrangian scheme for hydrodynamics

dates back to von Neumann, Richtmyer J. Appl. Phy. 1950)], Schultz, Wilkins [Green book
(1964)] era.

later improved by many authors in national labs or academy

important subcell based compatible discretization of div/grad [Favorskii, Burton, Caramana]
� improved artificial viscosity, hourglass filters, accuracy time/space, axisymetric geo.
� coupling with slide line, materials, diffusion, elastoplasticity, etc.
� “engine” of many ALE codes

most of all this scheme has been and still is routinely used !

=⇒ Need to deeply understand its behaviors !

to explain already known features

to chose between different “versions”

to measure the relative importance of “improvements”

to fight back, justify or simply understand urban legends
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2D Lagrangian Staggered Hydro scheme
Governing equations

2D gas dynamics equations

ρ
d
dt

(
1
ρ

)
−∇ · U = 0 ρ

d
dt

U + ∇P = 0 ρ
d
dt
ε+ P∇ · U = 0

Equation of state EOS P = P(ρ, ε), where ε = E − U2

2 .
Internal energy equation can be viewed as an entropy evolution equation (Gibbs relation
TdS = dε+ Pd

(
1
ρ

)
≥ 0)

ρ
d
dt
ε+ P∇ · U = ρ

(
d
dt
ε+ P

d
dt

(
1
ρ

))
≥ 0

Trajectory equations

dX
dt

= U(X (t), t), X(0) = x ,

Lagrangian motion of any point initially located at position x .
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2D Lagrangian Staggered Hydro scheme
Preliminaries

Staggered placement of variables

Point velocity Up , cell-centered density ρc and internal energy εc

Subcells are Lagrangian volumes

Subcell mass mcp is constant in time so are cell/point masses

mc =
∑

p∈P(c)

mcp, mp =
∑

c∈C(p)

mcp,

cpNL cp

c

p −

p+

p

Ω c

Ω cp

Compatible discretization

Given total energy definition and momentum discretization (Newton’s 2nd law) imply energy
discretization as sufficient condition
Cornerstone : subcell force F cp that acts from subcell Ωcp on p.
� compile pressure gradient F cp = −PcLcpNcp , artificial visco, anti-hourglass, elasto forces.
Galilean invariance and/or momentum conservation implies

∑
p∈P(c)

F cp = 0
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2D Lagrangian Staggered Hydro scheme
Discretization

Time discretization : tn −→ tn+1

Originaly staggered placement of variable in time Un+1/2 and ρn, εn.

Improvement gained by same time location Un, ρn, εn. Side effect : This helped total
energy conservation.

� Predictor-Corrector P/C type of scheme is very often considered.
Predictor step is often used as to time center the pressure for correction step.
� Very seldom : GRP, ADER to reduce the cost of a two-step P/C process

Space discretization : Ωp,Ωc

d
dt

Vc −
∑

p∈P(c)

LcpNcp · Up = 0 or
d
dt

X p = Up, X p(0) = xp

mp
d
dt

Up +
∑

c∈C(p)

F cp = 0

mc
d
dt
εc −

∑
p∈P(c)

F cp · Up = 0
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2D Lagrangian Staggered Hydro scheme

Properties

General grid formulation

GCL

First order accurate scheme in space on non-regular grid,

Conservation of mass, momentum, total energy

Expected properties

Expected (internal) consistency

Expected second-order accuracy in time

Expected stability under classical CFL condition

Biblio

[1] Volume consistency in Staggered Grid Lagrangian Hydrodynamics Schemes, JCP, Volume 227, Pages 3731-3737 R. Loubère,
M. Shashkov, B. Wendroff,
[2] On stabiliy analysis of staggered schemes, A.L. Bauer, R. Loubère, B. Wendroff, SINUM. Vol 46 Issue 2 (2008)
[3] The Internal Consistency, Stability, and Accuracy of the Discrete, Compatible Formulation of Lagrangian Hydrodynamics, JCP,
Volume 218, Pages 572-593 A.L. Bauer, D.E. Burton, E.J. Caramana, R. Loubère, M.J. Shashkov, P.P. Whalen

R. Loubère (IMT and CNRS) Inconsistency and stability Workshop CEA, 09/2012 7 / 26



Internal consistency

General remark

The equations are essentially created in discrete form, as opposed to being the discretization of
a system of PDE’s. As such, one may or may not be able to rigorously take the continuum limit to
obtain the latter ; this depends on the kinds of forces that are employed to resolve shocks and to
counteract spurious grid motions.

Ambiguity of cell volume definition

Results from requiring both total energy conservation and the modeling of the internal energy
advance from the differential equation d

dt ε+ p d
dt (1/ρ) = 0 under assumptions

Vc can be computed from X p for all p ∈ P(c)

Up is constant for all t ∈ [tn; tn+1], so that X p(t) = X n
p + Up(t − tn)

There exist a coordinate and a compatible cell volume which may be different !
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Internal consistency
Ambiguity of cell volume definition

Implied coordinate cell volume

V n+1
c − V n

c =

∫ tn+1

tn

dVc

dt
dt =

∑
p∈P(c)

up

∫ tn+1

tn

∂Vc

∂xp
dt + vp

∫ tn+1

tn

∂Vc

∂yp
dt

=
∑

p∈P(c)

upAcp + vpBcp

with A,B are rectangular sparce matrices.

Remark

Not simple average of integrands unless for Cartesian geometry.
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Internal consistency
Ambiguity of cell volume definition

Implied coordinate cell volume

V n+1
c − V n

c =
∑

p∈P(c)

upAcp + vpBcp

Implied compatible cell volume

Discrete momentum + total energy conservation implicitely defines

mp(un+1
p − un

p )−
∑

c∈C(p)

Pcacp = 0, mp(vn+1
p − vn

p )−
∑

c∈C(p)

Pcbcp = 0

mc(εn+1
c − εn

c ) + Pc
∑

p∈P(c)

upacp + vpbcp = 0

with (acp,bcp) = ∆t LcpNcp. For adiabatic flows the entropy S satisfies T dS
dt = dε

dt + P dV
dt = 0.

mc

(
εn+1

c − εn
c

)
+ Pc

(
V n+1

c − V n
c

)
= 0
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Internal consistency
Ambiguity of cell volume definition

Implied coordinate cell volume

V n+1
c − V n

c =
∑

p∈P(c)

upAcp + vpBcp

Implied compatible cell volume

Discrete momentum + total energy conservation implicitely defines

mp(un+1
p − un

p )−
∑

c∈C(p)

Pcacp = 0, mp(vn+1
p − vn

p )−
∑

c∈C(p)

Pcbcp = 0

mc(εn+1
c − εn

c ) + Pc
∑

p∈P(c)

upacp + vpbcp = 0

with (acp,bcp) = ∆t LcpNcp, for adiabatic flows the entropy S satisfies T dS
dt = dε

dt + P dV
dt = 0.

mc

(
εn+1

c − εn
c

)
+ Pc

∑
p∈P(c)

upAcp + vpBcp = 0
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Internal consistency
Ambiguity of cell volume definition

Condition for uniqueness of cell volume definition

Same volume definition if

Acp = acp, and Bcp = bcp ∀c, p

along with total energy conservation and PdV work.
But a,b correspond to your prefered discrete gradient and A,B are given by the geometry !

Do the matrices match for different geometry and classical discrete gradient ?

1D Cartesian - Yes

1D cylindrical - No unless (time centering grid vectors + force=0)

1D spherical - No unless (time centering + 1D vector manipulation)

2D Cartesian - No unless (time centering + force=0).

2D cylindrical r − z - No

Remark : 2D Cartesian analysis shows that the difference is small (O(∆t3) for one time step)
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Internal consistency

Wendroff’s idea [(JCP, 227, 2010)]

Derive A,B for different geometries and deduce appropriate discrete gradient.

1D spherical : cell half-index i + 1
2 , vertices ri , ri+1, cell volume Vi+ 1

2
= 1

3

(
r3
i+1 − r3

i

)
.

V n+1
i+ 1

2
− V n

i+ 1
2

= ui+1

A
i+ 1

2 ,i+1︷ ︸︸ ︷∫ tn+1

tn

(
rn
i+1 + ui+1(t − tn)

)2 dt −ui

A
i+ 1

2 ,i︷ ︸︸ ︷∫ tn+1

tn

(
rn
i + ui (t − tn)

)2 dt

Matrix A is given by
A

i+ 1
2 ,k

=


−∆t

3

((
rn
i
)2 +

(
rn+1
i

)2
+ rn

i rn+1
i

)
if k = i

∆t
3

((
rn
i+1

)2
+
(

rn+1
i+1

)2
+ rn

i+1rn+1
i+1

)
if k = i + 1

0 if k 6= i, k 6= i + 1

Imposing ai± 1
2 ,i
≡ Ai± 1

2 ,i
leads to

mi (un+1
i − un

i ) = Ai+ 1
2 ,i

pi+ 1
2

+ Ai− 1
2 ,i

pi− 1
2

= −∆t

(
rn
i

)2
+
(

rn+1
i

)2
+ rn

i rn+1
i

3

(
Pi+ 1

2
− Pi− 1

2

)
−→ This is the good discrete gradient.
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Internal consistency

2D cylindrical r − z : quad. cell Vj , nodes (ri , zi ), i = 1, . . . , 4. Define

Ri→j =
(

2rn
i + rn

j

) (
zn+1

j − zn+1
i

)
+
(

2rn+1
i + rn+1

j

) (
zn

j − zn
i

)
+2
{(

2rn
i + rn

j

) (
zn

j − zn
i

)
+
(

2rn+1
i + rn+1

j

) (
zn+1

j − zn+1
i

)}
,

Zi→j =
(

2rn
i + rn

j

) (
rn+1
j − rn+1

i

)
+
(

2rn+1
i + rn+1

j

) (
rn
j − rn

i

)
+2
{(

2rn
i + rn

j

) (
rn
j − rn

i

)
+
(

2rn+1
i + rn+1

j

) (
rn+1
j − rn+1

i

)}
,

V n+1
j − V n

j =
∆t
36

{
(

u1 [R1→4 − R1→2] + u2 [R2→3 − R2→1] + u3 [R3→4 − R3→2] + u4 [R4→3 − R4→1]
)

+
(

v1 [Z1→4 − Z1→2] + v2 [Z2→3 − Z2→1] + v3 [Z3→4 − Z3→2] + v4 [Z4→3 − Z4→1]
)}
,

[R1→4 − R1→2] defines Ajp for p global index of vertex 1, [Z1→4 − Z1→2] defines Bjp

A,B being defined, it uniquely implies the discretizations of discrete gradient with a = A,b = B.

−→ This is the good discrete gradient.
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Internal consistency
Numerical scheme

Initialization : Pc = Pn
c , an+1

cp = an
cp, bn+1

cp = bn
cp

0- Outer iterations :
0- Inner consistency iterations :

Pressure Pc fixed solve the implicit system 1-2
1- Velocity

mp(un+1
p − un

p )−
∑

c∈C(p)

Pc an+1
cp = 0, mp(vn+1

p − vn
p )−

∑
c∈C(p)

Pc bn+1
cp = 0

2- Position and acp,bcp

xn+1
p = xn

p + ∆t
un

p + un+1
p

2
= 0, yn+1

p = yn
p + ∆t

vn
p + vn+1

p

2
= 0

3- Exit when convergence is reached for xp, yp, up, vp

1- Compute new cell volume V n+1
c and deduce internal energy

mc(εn+1
c − εn

c ) + Pc(V n+1
c − V n

c ) = 0

2- Deduce new pressure Pn+1
c and Pc = 1

2 (Pn+1
c + Pn

c )

3- Exit when convergence is reached for εn+1
c
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Internal consistency
Numerical scheme

Remarks

These schemes are indexed by (#outer,#inner)

Classical P/C staggered compatible scheme is a (2, 1) scheme. For 2D axisymetric
problem the Cartesian geometrical vectors are modified but this can not fulfill volume
consistency and total energy conservation.

Conversely our proposed scheme is a (2,∞) scheme which enjoys these properties.
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Internal consistency
Numerical scheme

Numerical results : Coggeshall adabatic compression in 2D r − z geometry - No artificial visco -
Exact solution exists

L1 Entropy error L1 Density err L1 Energy err
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Stability

Which stability ?

If the continuum system has no growing solutions, the discretized form should also contains no
growing solutions.

Predictor-corrector scheme

In general the prediction step only serves as to predict a time advanced pressure
P∗ = αPpredicted + (1− α)Pn with t∗ ∈ [tn; tn+1].

Scheme #1

Prediction

1- Predict Un+∗
p = Un

p + ∆t f (Pn
c ), and

Un+1/2 = 1
2 (Un + Un+∗)

2- Predict X n+∗
p = X n

p + ∆tUn+1/2
p

3- Compute V n+∗
c , ρn+∗

c

4- Predict εn+∗
c = εn

c + ∆t f (Un+1/2
p ,Pn

c )

5- Predict P∗c ≡ αPn+∗
c + (1− α)Pn

c

Correction

1- Compute Un+1
p = Un

p + ∆t f (P∗c ), and
Un+1/2 = 1

2 (Un + Un+1)

2- compute X n+1
p = X n

p + ∆tUn+1/2
p

3- Compute V n+1
c , ρn+1

c

4- Compute εn+1
c = εn

c + ∆t f (Un+1/2
p ,P∗c )

5- Compute Pn+1
c
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Stability

Scheme #1

1- Predict Un+∗
p = Un

p + ∆t f (Pn
c ), and

Un+1/2 = 1
2 (Un + Un+∗)

2- Predict X n+∗
p = X n

p + ∆tUn+1/2
p

3- Compute V n+∗
c , ρn+∗

c

4- Predict εn+∗
c = εn

c + ∆t f (Un+1/2
p ,Pn

c )

5- Predict P∗c ≡ αPn+∗
c + (1− α)Pn

c

1- Compute Un+1
p = Un

p + ∆t f (P∗c ), and
Un+1/2 = 1

2 (Un + Un+1)

2- compute X n+1
p = X n

p + ∆tUn+1/2
p

3- Compute V n+1
c , ρn+1

c

4- Compute εn+1
c = εn

c + ∆t f (Un+1/2
p ,P∗c )

5- Compute Pn+1
c

Scheme #2

1-

2- Predict X n+∗
p = X n

p + ∆tUn
p

3- Compute V n+∗
c , ρn+∗

c

4- Predict εn+∗
c = εn

c + ∆t f (Un
p,Pn

c )

5- Predict P∗c ≡ αPn+∗
c + (1− α)Pn

c

1- Compute Un+1
p = Un

p + ∆t f (P∗c ), and
Un+1/2 = 1

2 (Un + Un+1)

2- compute X n+1
p = X n

p + ∆tUn+1/2
p

3- Compute V n+1
c , ρn+1

c

4- Compute εn+1
c = εn

c + ∆t f (Un+1/2
p ,P∗c )

5- Compute Pn+1
c
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Stability
von Neumann stability study on 2D wave model

2D wave equation (as a model)

du
dt

=
∂p
∂x
,

dv
dt

=
∂p
∂y
,

dp
dt

=
∂u
∂x

+
∂v
∂ỹ
.

Prelims

Rectangular scheme, periodic BCs, staggered placement of variables ; cell centered pi+1/2,j+1/2
and nodal ui,j , vi,j . Mid-edge values are interpolated values

pi+ 1
2 ,j+1 = 1

2

(
pi+ 1

2 ,j+
3
2

+ pi+ 1
2 ,j−

1
2

)
, and ui+ 1

2 ,j+1 = 1
2

(
ui,j+1 + ui+1,j+1

)
, λx = ∆t/∆x and

Any variable w defined at two time levels tn+1 > tn on a point or in a cell, we define at an
intermediate time n + κ

wn+κ = κwn+1 + (1− κ) wn, 0 ≤ κ ≤ 1.
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Stability
von Neumann stability study

Fully implicit staggered scheme
un+1

i,j = un
i,j + λx

(
pn+α

i+ 1
2 ,j
− pn+α

i− 1
2 ,j

)
, vn+1

i,j = vn
i,j + λy

(
pn+α

i,j+ 1
2
− pn+α

i,j− 1
2

)
,

pn+1
i+ 1

2 ,j+
1
2

= pn
i+ 1

2 ,j+
1
2

+ λx

(
un+β

i+1,j+ 1
2
− un+β

i,j+ 1
2

)
+ λy

(
vn+β

i+ 1
2 ,j+1

− vn+β

i+ 1
2 ,j

)
.

M =

 0 0 Qx
0 0 Qy
−Q∗x −Q∗y 0

 , Λ =

 λx 0 0
0 λy 0
0 0 1

 .

(Qx p)i,j =
1

2

(
p

i+ 1
2 ,j+

1
2

+ p
i+ 1

2 ,j−
1
2
− p

i− 1
2 ,j+

1
2
− p

i− 1
2 ,j−

1
2

)
(
Q∗x u

)
i+ 1

2 ,j+
1
2

=
1

2

(
ui,j + ui,j+1 − ui+1,j − ui+1,j+1

)
.

Hence the implicit scheme also writes

wn+1 = wn + ΛMΛwα,β .

Theorem

The fully implicit scheme is stable for any λx,y is α ≥ 2 anb β ≥ 2.
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Stability
von Neumann stability study

P/C staggered scheme #1

Predictor step :

ũ n+1
i,j = un

i,j + λx
(

Qx pn
)

i,j
,

ṽ n+1
i,j = vn

i,j + λy
(

Qy pn
)

i,j
,

p̃ n+1
i+ 1

2 ,j+
1
2

= pn
i+ 1

2 ,j+
1
2
− λx

(
Q∗x un+β

)
i+ 1

2 ,j+
1
2

−λy
(

Q∗y vn+β
)

i+ 1
2 ,j+

1
2
.

Corrector step :

un+1
i,j = un

i,j + λx
(

Qx pn+α
)

i,j
,

vn+1
i,j = vn

i,j + λy
(

Qy pn+α
)

i,j
,

pn+1
i+ 1

2 ,j+
1
2

= pn
i+ 1

2 ,j+
1
2
− λx

(
Q∗x un+β

)
i+ 1

2 ,j+
1
2

−λy
(

Q∗y vn+β
)

i+ 1
2 ,j+

1
2
.

von Neumann analysis : pn
i+ 1

2 ,j+
1
2
7−→ p0e

θ(n∆t)+i
(

2δ
(

(i+ 1
2 )∆x

)
+2γ

(
(j+ 1

2 )∆y
))

, θ complex, δ, γ reals

S =


1− αΦ2

x −αΦx Φy iΦx
(

1− αβ(Φ2
x + Φ2

y )
)

−αΦx Φy 1− αΦ2
y iΦy

(
1− αβ

(
Φ2

x + Φ2
y

))
iΦx

(
1− αβ(Φ2

x + Φ2
y )
)

iΦy
(

1− αβ(Φ2
x + Φ2

y )
)

1 + αβ2(Φ2
x + Φ2

y )2 − β
(

Φ2
x + Φ2

y

)

 .

Setting Φx = 2λx sin ξ cos η and Φy = 2λy sin η cos ξ, we further study the boundness of numerical radius

R(S) = supw | 〈Sw,w〉 |, with 〈w,w〉 = 1.
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Stability
von Neumann stability study

P/C staggered scheme #2

Predictor step :

ũ n+1
i,j = un

i,j ,

ṽ n+1
i,j = vn

i,j ,

p̃ n+1
i+ 1

2 ,j+
1
2

= pn
i+ 1

2 ,j+
1
2
− λx

(
Q∗x un+β

)
i+ 1

2 ,j+
1
2

−λy
(

Q∗y vn+β
)

i+ 1
2 ,j+

1
2
.

Corrector step :

un+1
i,j = un

i,j + λx
(

Qx pn+α
)

i,j
,

vn+1
i,j = vn

i,j + λy
(

Qy pn+α
)

i,j
,

pn+1
i+ 1

2 ,j+
1
2

= pn
i+ 1

2 ,j+
1
2
− λx

(
Q∗x un+β

)
i+ 1

2 ,j+
1
2

−λy
(

Q∗y vn+β
)

i+ 1
2 ,j+

1
2
.

von Neumann analysis : pn
i+ 1

2 ,j+
1
2
7−→ p0e

θ(n∆t)+i
(

2δ
(

(i+ 1
2 )∆x

)
+2γ

(
(j+ 1

2 )∆y
))

, θ complex, δ, γ reals

S =


1− αΦ2

x −αΦx Φy iΦx

−αΦx Φy 1− αΦ2
y iΦy

iΦx
(

1− αβ(Φ2
x + Φ2

y )
)

iΦy
(

1− αβ(Φ2
x + Φ2

y )
)

1 + αβ2(Φ2
x + Φ2

y )2 − β
(

Φ2
x + Φ2

y

)

 .

Setting Φx = 2λx sin ξ cos η and Φy = 2λy sin η cos ξ, we further study the boundness of numerical radius

R(S) = supw | 〈Sw,w〉 |, with 〈w,w〉 = 1.
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Stability
von Neumann stability study

Theorem

The 2D staggered rectangular scheme #1 and #2 are stable if α ≥ 1
2 , β ≥

1
2 and

4αβmax
(
λ2

x , λ
2
y
)
≤ 1 and unstable if α < 1

2 and β < 1
2 .

Numerical tests
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2D wave equations
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2D Lagrang code

2D Euler equations, β = 1/2,
On a 100× 100 mesh one runs 105 cycles and compute the total kinetic energy Kλ(tn) = 1

2
∑[(

un
i,j

)2
+
(

vn
i,j

)2
]

for a

given CFL number λ at a given time tn . It must remain at the square of machine precision, about 10−28 ∼ 10−30
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Conclusion and Perspectives

Conclusions

Compatible staggered Lagrangian scheme is old and venerable but presents some
features that need to be pointed out

Inconsistency of cell volume definition can be overcome by iterations but seems to be a
second-order error

Particular stability diagram can be deduced from analysis and numerics

Perspectives

Moot points :

subcells are Lagrangian object ?

P/C scheme is 2nd order ? What about GRP, ADER type of schemes (one step second
order scheme) ?

impact of artificial viscosity always difficult to analyse.
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A votre avis

A priori ou a posteriori ?

a priori on pense savoir ce que nos schémas d’ordre
élevés/complexes font,
a posteriori on s’apperçoit qu’ils ne le font pas

Erreurs : bugs, mauvaise init, paramètres hors normes...
Comportements bizarres “explicables” : numériques (ou physiques)
ou inexplicables

Tester et réparer a posteriori vs Prédire (théorie du pire) et agir
(princip. précaution) a priori ?
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