Inconsistency and stability of the compatible staggered Lagrangian scheme

joint with: B. Wendroff, E. Caramana, A.L. Bauer, M.Shashkov

${ }^{1}$ Institut de Mathématique de Toulouse (IMT) and CNRS, Toulouse, France

Workshop CEA, 09/2012
R. Loubère (IMT and CNRS)

Plan

- Introduction and motivation
- 2D Lagrangian Staggered Hydrodynamics scheme
- Subcell formalism
- Specifics : Artificial viscosity, subpressure forces
- Properties
- Deaper studies
- Internal (and volume) consistency?
- Stability?
- Conclusions and perspectives

Introduction and motivation

Why do we still analyse a staggered Lagrangian scheme from the 50 's ?

2D Staggered Lagrangian scheme for hydrodynamics

- dates back to von Neumann, Richtmyer J. Appl. Phy. 1950)], Schultz, Wilkins [Green book (1964)] era.
- later improved by many authors in national labs or academy
- important subcell based compatible discretization of div/grad [Favorskii, Burton, Caramana] \triangleright improved artificial viscosity, hourglass filters, accuracy time/space, axisymetric geo.
\triangleright coupling with slide line, materials, diffusion, elastoplasticity, etc.
\triangleright "engine" of many ALE codes
- most of all this scheme has been and still is routinely used!
\Longrightarrow Need to deeply understand its behaviors!
- to explain already known features
- to chose between different "versions"
- to measure the relative importance of "improvements"
- to fight back, justify or simply understand urban legends

2D Lagrangian Staggered Hydro scheme

Governing equations

2D gas dynamics equations

$$
\rho \frac{d}{d t}\left(\frac{1}{\rho}\right)-\nabla \cdot \boldsymbol{U}=0 \quad \rho \frac{d}{d t} \boldsymbol{U}+\nabla P=\mathbf{0} \quad \rho \frac{d}{d t} \varepsilon+P \nabla \cdot \boldsymbol{U}=0
$$

Equation of state EOS $P=P(\rho, \varepsilon)$, where $\varepsilon=E-\frac{\boldsymbol{U}^{2}}{2}$.
Internal energy equation can be viewed as an entropy evolution equation (Gibbs relation $\left.T d S=d \varepsilon+P d\left(\frac{1}{\rho}\right) \geq 0\right)$

$$
\rho \frac{d}{d t} \varepsilon+P \nabla \cdot \boldsymbol{U}=\rho\left(\frac{d}{d t} \varepsilon+P \frac{d}{d t}\left(\frac{1}{\rho}\right)\right) \geq 0
$$

Trajectory equations

$$
\frac{d \boldsymbol{X}}{d t}=\boldsymbol{U}(\boldsymbol{X}(t), t), \quad \boldsymbol{X}(0)=\boldsymbol{x}
$$

Lagrangian motion of any point initially located at position \boldsymbol{x}.

2D Lagrangian Staggered Hydro scheme

Preliminaries

Staggered placement of variables

Point velocity \boldsymbol{U}_{p}, cell-centered density ρ_{c} and internal energy ε_{c}

Subcells are Lagrangian volumes
Subcell mass $m_{c p}$ is constant in time so are cell/point masses

$$
m_{c}=\sum_{p \in \mathcal{P}(c)} m_{c p}, \quad m_{p}=\sum_{c \in \mathcal{C}(p)} m_{c p}
$$

Compatible discretization
Given total energy definition and momentum discretization (Newton's 2nd law) imply energy discretization as sufficient condition
Cornerstone : subcell force $\boldsymbol{F}_{c p}$ that acts from subcell $\Omega_{c p}$ on p.
\triangleright compile pressure gradient $\boldsymbol{F}_{c p}=-P_{c} L_{c p} \boldsymbol{N}_{c p}$, artificial visco, anti-hourglass, elasto forces.
Galilean invariance and/or momentum conservation implies $\sum_{p \in \mathcal{P}(c)} \boldsymbol{F}_{c p}=\mathbf{0}$

2D Lagrangian Staggered Hydro scheme

Discretization

Time discretization : $t^{n} \longrightarrow t^{n+1}$

- Originaly staggered placement of variable in time $\boldsymbol{U}^{n+1 / 2}$ and $\rho^{n}, \varepsilon^{n}$.
- Improvement gained by same time location $\boldsymbol{U}^{n}, \rho^{n}, \varepsilon^{n}$. Side effect : This helped total energy conservation.
\triangleright Predictor-Corrector P/C type of scheme is very often considered.
Predictor step is often used as to time center the pressure for correction step.
\triangleright Very seldom : GRP, ADER to reduce the cost of a two-step P/C process

Space discretization : Ω_{p}, Ω_{c}

$$
\begin{array}{cl}
\frac{d}{d t} V_{c}-\sum_{p \in \mathcal{P}(c)} L_{c p} \boldsymbol{N}_{c p} \cdot \boldsymbol{U}_{p}=0 & \text { or } \quad \frac{d}{d t} \boldsymbol{X}_{p}=\boldsymbol{U}_{p}, \quad \boldsymbol{X}_{p}(0)=\boldsymbol{x}_{p} \\
m_{p} \frac{d}{d t} \boldsymbol{U}_{p}+\sum_{c \in \mathcal{C}(p)} \boldsymbol{F}_{c p}=\mathbf{0} \\
m_{c} \frac{d}{d t} \varepsilon_{c}-\sum_{p \in \mathcal{P}(c)} \boldsymbol{F}_{c p} \cdot \boldsymbol{U}_{p}=0
\end{array}
$$

2D Lagrangian Staggered Hydro scheme

Properties

- General grid formulation
- GCL
- First order accurate scheme in space on non-regular grid,
- Conservation of mass, momentum, total energy

Expected properties

- Expected (internal) consistency
- Expected second-order accuracy in time
- Expected stability under classical CFL condition

Biblio

[1] Volume consistency in Staggered Grid Lagrangian Hydrodynamics Schemes, JCP, Volume 227, Pages 3731-3737 R. Loubère, M. Shashkov, B. Wendroff,
[2] On stabiliy analysis of staggered schemes, A.L. Bauer, R. Loubère, B. Wendroff, SINUM. Vol 46 Issue 2 (2008)
[3] The Internal Consistency, Stability, and Accuracy of the Discrete, Compatible Formulation of Lagrangian Hydrodynamics, JCP, Volume 218, Pages 572-593 A.L. Bauer, D.E. Burton, E.J. Caramana, R. Loubère, M.J. Shashkov, P.P. Whalen

Internal consistency

General remark

The equations are essentially created in discrete form, as opposed to being the discretization of a system of PDE's. As such, one may or may not be able to rigorously take the continuum limit to obtain the latter; this depends on the kinds of forces that are employed to resolve shocks and to counteract spurious grid motions.

Ambiguity of cell volume definition

Results from requiring both total energy conservation and the modeling of the internal energy advance from the differential equation $\frac{d}{d t} \varepsilon+p \frac{d}{d t}(1 / \rho)=0$ under assumptions

- V_{c} can be computed from \boldsymbol{X}_{p} for all $p \in \mathcal{P}(c)$
- \boldsymbol{U}_{p} is constant for all $t \in\left[t^{n} ; t^{n+1}\right]$, so that $\boldsymbol{X}_{p}(t)=\boldsymbol{X}_{p}^{n}+\boldsymbol{U}_{p}\left(t-t^{n}\right)$

There exist a coordinate and a compatible cell volume which may be different!

Internal consistency

Ambiguity of cell volume definition

Implied coordinate cell volume

$$
\begin{aligned}
V_{c}^{n+1}-V_{c}^{n}=\int_{t^{n}}^{t^{n+1}} \frac{d V_{c}}{d t} d t & =\sum_{p \in \mathcal{P}(c)} u_{p} \int_{t^{n}}^{t^{n+1}} \frac{\partial V_{c}}{\partial x_{p}} d t+v_{p} \int_{t^{n}}^{t^{n+1}} \frac{\partial V_{c}}{\partial y_{p}} d t \\
& =\sum_{p \in \mathcal{P}(c)} u_{p} \mathbf{A}_{c p}+v_{p} \mathbf{B}_{c p}
\end{aligned}
$$

with $\boldsymbol{A}, \boldsymbol{B}$ are rectangular sparce matrices.

Remark
Not simple average of integrands unless for Cartesian geometry.

Internal consistency

Ambiguity of cell volume definition

Implied coordinate cell volume

$$
V_{c}^{n+1}-V_{c}^{n}=\sum_{p \in \mathcal{P}(c)} u_{p} \mathbf{A}_{c p}+v_{p} \mathbf{B}_{c p}
$$

Implied compatible cell volume
Discrete momentum + total energy conservation implicitely defines

$$
\begin{gathered}
m_{p}\left(u_{p}^{n+1}-u_{p}^{n}\right)-\sum_{c \in \mathcal{C}(p)} P_{c} \mathbf{a}_{c p}=0, \quad m_{p}\left(v_{p}^{n+1}-v_{p}^{n}\right)-\sum_{c \in \mathcal{C}(p)} P_{c} \mathbf{b}_{c p}=0 \\
m_{c}\left(\varepsilon_{c}^{n+1}-\varepsilon_{c}^{n}\right)+P_{c} \sum_{p \in \mathcal{P}(c)} u_{p} \mathbf{a}_{c p}+v_{p} \mathbf{b}_{c p}=0
\end{gathered}
$$

with $\left(\mathbf{a}_{c p}, \mathbf{b}_{c p}\right)=\Delta t L_{c p} \boldsymbol{N}_{c p}$. For adiabatic flows the entropy S satisfies $T \frac{d S}{d t}=\frac{d \varepsilon}{d t}+P \frac{d V}{d t}=0$.

$$
m_{c}\left(\varepsilon_{c}^{n+1}-\varepsilon_{c}^{n}\right)+P_{c}\left(V_{c}^{n+1}-V_{c}^{n}\right)=0
$$

Internal consistency

Ambiguity of cell volume definition

Implied coordinate cell volume

$$
V_{c}^{n+1}-V_{c}^{n}=\sum_{p \in \mathcal{P}(c)} u_{p} \mathbf{A}_{c p}+v_{p} \mathbf{B}_{c p}
$$

Implied compatible cell volume
Discrete momentum + total energy conservation implicitely defines

$$
\begin{gathered}
m_{p}\left(u_{p}^{n+1}-u_{p}^{n}\right)-\sum_{c \in \mathcal{C}(p)} P_{c} \mathbf{a}_{c p}=0, \quad m_{p}\left(v_{p}^{n+1}-v_{p}^{n}\right)-\sum_{c \in \mathcal{C}(p)} P_{c} \mathbf{b}_{c p}=0 \\
m_{c}\left(\varepsilon_{c}^{n+1}-\varepsilon_{c}^{n}\right)+P_{c} \sum_{p \in \mathcal{P}(c)} u_{p} \mathbf{a}_{c p}+v_{p} \mathbf{b}_{c p}=0
\end{gathered}
$$

with $\left(\mathbf{a}_{c p}, \mathbf{b}_{c p}\right)=\Delta t L_{c p} \boldsymbol{N}_{c p}$, for adiabatic flows the entropy S satisfies $T \frac{d S}{d t}=\frac{d \varepsilon}{d t}+P \frac{d V}{d t}=0$.

$$
m_{c}\left(\varepsilon_{c}^{n+1}-\varepsilon_{c}^{n}\right)+P_{c} \sum_{p \in \mathcal{P}(c)} u_{p} \mathbf{A}_{c p}+v_{p} \mathbf{B}_{c p}=0
$$

Internal consistency

Ambiguity of cell volume definition

Condition for uniqueness of cell volume definition
Same volume definition if

$$
\mathbf{A}_{c p}=\mathbf{a}_{c p}, \quad \text { and } \quad \mathbf{B}_{c p}=\mathbf{b}_{c p} \quad \forall c, p
$$

along with total energy conservation and $P d V$ work.
But \mathbf{a}, \mathbf{b} correspond to your prefered discrete gradient and \mathbf{A}, \mathbf{B} are given by the geometry !

Do the matrices match for different geometry and classical discrete gradient?

- 1D Cartesian - Yes
- 1D cylindrical - No unless (time centering grid vectors + force=0)
- 1D spherical - No unless (time centering + 1D vector manipulation)
- 2D Cartesian - No unless (time centering + force=0).
- 2D cylindrical $r-z-$ No

Remark : 2D Cartesian analysis shows that the difference is small ($\mathcal{O}\left(\Delta t^{3}\right)$ for one time step)

Internal consistency

Wendroff's idea [(JCP, 227, 2010)]
Derive \mathbf{A}, \mathbf{B} for different geometries and deduce appropriate discrete gradient.

Matrix \mathbf{A} is given by

$$
\mathbf{A}_{i+\frac{1}{2}, k}=\left\{\begin{array}{lll}
-\frac{\Delta t}{3}\left(\left(r_{i}^{n}\right)^{2}+\left(r_{i}^{n+1}\right)^{2}+r_{i}^{n} r_{i}^{n+1}\right) & \text { if } & k=i \\
\frac{\Delta t}{3}\left(\left(r_{i+1}^{n}\right)^{2}+\left(r_{i+1}^{n+1}\right)^{2}+r_{i+1}^{n} r_{i+1}^{n+1}\right) & \text { if } & k=i+1 \\
0 & \text { if } & k \neq i, k \neq i+1
\end{array}\right.
$$

Imposing $\mathbf{a}_{i \pm \frac{1}{2}, i} \equiv \mathbf{A}_{i \pm \frac{1}{2}, i}$ leads to
$m_{i}\left(u_{i}^{n+1}-u_{i}^{n}\right)=\mathbf{A}_{i+\frac{1}{2}, i} p_{i+\frac{1}{2}}+\mathbf{A}_{i-\frac{1}{2}, i} p_{i-\frac{1}{2}}=-\Delta t \frac{\left(r_{i}^{n}\right)^{2}+\left(r_{i}^{n+1}\right)^{2}+r_{i}^{n} r_{i}^{n+1}}{3}\left(P_{i+\frac{1}{2}}-P_{i-\frac{1}{2}}\right)$
\longrightarrow This is the good discrete gradient.

Internal consistency

2D cylindrical $r-z$: quad. cell V_{j}, nodes $\left(r_{i}, z_{i}\right), i=1, \ldots, 4$. Define

$$
\begin{aligned}
R_{i \rightarrow j}= & \left(2 r_{i}^{n}+r_{j}^{n}\right)\left(z_{j}^{n+1}-z_{i}^{n+1}\right)+\left(2 r_{i}^{n+1}+r_{j}^{n+1}\right)\left(z_{j}^{n}-z_{i}^{n}\right) \\
& +2\left\{\left(2 r_{i}^{n}+r_{j}^{n}\right)\left(z_{j}^{n}-z_{i}^{n}\right)+\left(2 r_{i}^{n+1}+r_{j}^{n+1}\right)\left(z_{j}^{n+1}-z_{i}^{n+1}\right)\right\}, \\
z_{i \rightarrow j}= & \left(2 r_{i}^{n}+r_{j}^{n}\right)\left(r_{j}^{n+1}-r_{i}^{n+1}\right)+\left(2 r_{i}^{n+1}+r_{j}^{n+1}\right)\left(r_{j}^{n}-r_{i}^{n}\right) \\
& +2\left\{\left(2 r_{i}^{n}+r_{j}^{n}\right)\left(r_{j}^{n}-r_{i}^{n}\right)+\left(2 r_{i}^{n+1}+r_{j}^{n+1}\right)\left(r_{j}^{n+1}-r_{i}^{n+1}\right)\right\},
\end{aligned}
$$

$$
V_{j}^{n+1}-V_{j}^{n}=\frac{\Delta t}{36}\{
$$

$$
\left(u_{1}\left[R_{1 \rightarrow 4}-R_{1 \rightarrow 2}\right]+u_{2}\left[R_{2 \rightarrow 3}-R_{2 \rightarrow 1}\right]+u_{3}\left[R_{3 \rightarrow 4}-R_{3 \rightarrow 2}\right]+u_{4}\left[R_{4 \rightarrow 3}-R_{4 \rightarrow 1}\right]\right)
$$

$$
\left.+\left(v_{1}\left[Z_{1 \rightarrow 4}-Z_{1 \rightarrow 2}\right]+v_{2}\left[Z_{2 \rightarrow 3}-Z_{2 \rightarrow 1}\right]+v_{3}\left[Z_{3 \rightarrow 4}-Z_{3 \rightarrow 2}\right]+v_{4}\left[Z_{4 \rightarrow 3}-Z_{4 \rightarrow 1}\right]\right)\right\}
$$

[$R_{1 \rightarrow 4}-R_{1 \rightarrow 2}$] defines $\mathbf{A}_{j p}$ for p global index of vertex 1, $\left[Z_{1 \rightarrow 4}-Z_{1 \rightarrow 2}\right.$] defines $\mathbf{B}_{j p}$
\mathbf{A}, \mathbf{B} being defined, it uniquely implies the discretizations of discrete gradient with $\mathbf{a}=\mathbf{A}, \mathbf{b}=\mathbf{B}$.
\longrightarrow This is the good discrete gradient.

Internal consistency

Numerical scheme

Initialization: $P_{c}=P_{c}^{n}, \mathbf{a}_{c p}^{n+1}=\mathbf{a}_{c p}^{n}, \mathbf{b}_{c p}^{n+1}=\mathbf{b}_{c p}^{n}$
0 - Outer iterations :
0- Inner consistency iterations :
Pressure P_{C} fixed solve the implicit system 1-2
1- Velocity

$$
m_{p}\left(u_{p}^{n+1}-u_{p}^{n}\right)-\sum_{c \in \mathcal{C}(p)} P_{c} \mathbf{a}_{c p}^{n+1}=0, \quad m_{p}\left(v_{p}^{n+1}-v_{p}^{n}\right)-\sum_{c \in \mathcal{C}(p)} P_{c} \mathbf{b}_{c p}^{n+1}=0
$$

2- Position and $\mathbf{a}_{c p}, \mathbf{b}_{c p}$

$$
x_{p}^{n+1}=x_{p}^{n}+\Delta t \frac{u_{p}^{n}+u_{p}^{n+1}}{2}=0, \quad y_{p}^{n+1}=y_{p}^{n}+\Delta t \frac{v_{p}^{n}+v_{p}^{n+1}}{2}=0
$$

3- Exit when convergence is reached for $x_{p}, y_{p}, u_{p}, v_{p}$
1- Compute new cell volume V_{c}^{n+1} and deduce internal energy

$$
m_{c}\left(\varepsilon_{c}^{n+1}-\varepsilon_{c}^{n}\right)+P_{c}\left(V_{c}^{n+1}-V_{c}^{n}\right)=0
$$

2- Deduce new pressure P_{c}^{n+1} and $P_{c}=\frac{1}{2}\left(P_{c}^{n+1}+P_{c}^{n}\right)$
3- Exit when convergence is reached for ε_{c}^{n+1}

Internal consistency

Numerical scheme

Remarks
These schemes are indexed by (\#outer, \#inner)

- Classical P/C staggered compatible scheme is a $(2,1)$ scheme. For 2D axisymetric problem the Cartesian geometrical vectors are modified but this can not fulfill volume consistency and total energy conservation.
- Conversely our proposed scheme is a $(2, \infty)$ scheme which enjoys these properties.

Internal consistency

Numerical scheme

Numerical results : Coggeshall adabatic compression in 2D $r-z$ geometry - No artificial visco Exact solution exists

Stability

Which stability?

If the continuum system has no growing solutions, the discretized form should also contains no growing solutions.

Predictor-corrector scheme

In general the prediction step only serves as to predict a time advanced pressure $P^{*}=\alpha P^{\text {predicted }}+(1-\alpha) P^{n}$ with $t^{*} \in\left[t^{n} ; t^{n+1}\right]$.

Scheme \#1

Prediction
1- Predict $\boldsymbol{U}_{p}^{n+*}=\boldsymbol{U}_{p}^{n}+\Delta t f\left(P_{c}^{n}\right)$, and $\boldsymbol{U}^{n+1 / 2}=\frac{1}{2}\left(\boldsymbol{U}^{n}+\boldsymbol{U}^{n+*}\right)$
2- Predict $\boldsymbol{X}_{p}^{n+*}=X_{p}^{n}+\Delta t \boldsymbol{U}_{p}^{n+1 / 2}$
3- Compute $V_{c}^{n+*}, \rho_{c}^{n+*}$
4- Predict $\varepsilon_{c}^{n+*}=\varepsilon_{c}^{n}+\Delta t f\left(\boldsymbol{U}_{p}^{n+1 / 2}, P_{c}^{n}\right)$
5- Predict $P_{c}^{*} \equiv \alpha P_{c}^{n+*}+(1-\alpha) P_{c}^{n}$

Correction
1- Compute $\boldsymbol{U}_{p}^{n+1}=\boldsymbol{U}_{p}^{n}+\Delta t f\left(P_{c}^{*}\right)$, and

$$
\boldsymbol{U}^{n+1 / 2}=\frac{1}{2}\left(\boldsymbol{U}^{n}+\boldsymbol{U}^{n+1}\right)
$$

2- compute $\boldsymbol{X}_{p}^{n+1}=X_{p}^{n}+\Delta t \boldsymbol{U}_{p}^{n+1 / 2}$
3- Compute $V_{c}^{n+1}, \rho_{c}^{n+1}$
4- Compute $\varepsilon_{c}^{n+1}=\varepsilon_{c}^{n}+\Delta t f\left(\boldsymbol{U}_{p}^{n+1 / 2}, P_{c}^{*}\right)$
5- Compute P_{c}^{n+1}

Stability

Scheme \#1

1- Predict $\boldsymbol{U}_{p}^{n+*}=\boldsymbol{U}_{p}^{n}+\Delta t f\left(P_{c}^{n}\right)$, and $\boldsymbol{U}^{n+1 / 2}=\frac{1}{2}\left(\boldsymbol{U}^{n}+\boldsymbol{U}^{n+*}\right)$
2- Predict $\boldsymbol{X}_{p}^{n+*}=X_{p}^{n}+\Delta t \boldsymbol{U}_{p}^{n+1 / 2}$
3- Compute $V_{c}^{n+*}, \rho_{c}^{n+*}$
4- Predict $\varepsilon_{c}^{n+*}=\varepsilon_{c}^{n}+\Delta t f\left(\boldsymbol{U}_{p}^{n+1 / 2}, P_{c}^{n}\right)$
5- Predict $P_{c}^{*} \equiv \alpha P_{c}^{n+*}+(1-\alpha) P_{c}^{n}$

1- Compute $\boldsymbol{U}_{p}^{n+1}=\boldsymbol{U}_{p}^{n}+\Delta t f\left(P_{c}^{*}\right)$, and $\boldsymbol{U}^{n+1 / 2}=\frac{1}{2}\left(\boldsymbol{U}^{n}+\boldsymbol{U}^{n+1}\right)$
2- compute $\boldsymbol{X}_{p}^{n+1}=X_{p}^{n}+\Delta t \boldsymbol{U}_{p}^{n+1 / 2}$
3- Compute $V_{c}^{n+1}, \rho_{c}^{n+1}$
4- Compute $\varepsilon_{c}^{n+1}=\varepsilon_{c}^{n}+\Delta t f\left(\boldsymbol{U}_{p}^{n+1 / 2}, P_{c}^{*}\right)$
5- Compute P_{c}^{n+1}

Scheme \#2

1-
2- Predict $\boldsymbol{X}_{p}^{n+*}=X_{p}^{n}+\Delta t \boldsymbol{U}_{p}^{n}$
3- Compute $V_{c}^{n+*}, \rho_{c}^{n+*}$
4- Predict $\varepsilon_{c}^{n+*}=\varepsilon_{c}^{n}+\Delta t f\left(\boldsymbol{U}_{p}^{n}, P_{c}^{n}\right)$
5- Predict $P_{c}^{*} \equiv \alpha P_{c}^{n+*}+(1-\alpha) P_{c}^{n}$

1- Compute $\boldsymbol{U}_{p}^{n+1}=\boldsymbol{U}_{p}^{n}+\Delta t f\left(P_{c}^{*}\right)$, and $\boldsymbol{U}^{n+1 / 2}=\frac{1}{2}\left(\boldsymbol{U}^{n}+\boldsymbol{U}^{n+1}\right)$
2- compute $\boldsymbol{X}_{p}^{n+1}=X_{p}^{n}+\Delta t \boldsymbol{U}_{p}^{n+1 / 2}$
3- Compute $V_{c}^{n+1}, \rho_{c}^{n+1}$
4- Compute $\varepsilon_{c}^{n+1}=\varepsilon_{c}^{n}+\Delta t f\left(\boldsymbol{U}_{p}^{n+1 / 2}, P_{c}^{*}\right)$
5- Compute P_{c}^{n+1}

Stability

von Neumann stability study on 2D wave model

2D wave equation (as a model)

$$
\frac{d u}{d t}=\frac{\partial p}{\partial x}, \quad \frac{d v}{d t}=\frac{\partial p}{\partial y}, \quad \frac{d p}{d t}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial \widetilde{y}}
$$

Prelims

Rectangular scheme, periodic BCs, staggered placement of variables ; cell centered $p_{i+1 / 2, j+1 / 2}$ and nodal $u_{i, j}, v_{i, j}$. Mid-edge values are interpolated values
$p_{i+\frac{1}{2}, j+1}=\frac{1}{2}\left(p_{i+\frac{1}{2}, j+\frac{3}{2}}+p_{i+\frac{1}{2}, j-\frac{1}{2}}\right)$, and $u_{i+\frac{1}{2}, j+1}=\frac{1}{2}\left(u_{i, j+1}+u_{i+1, j+1}\right), \lambda_{x}=\Delta t / \Delta x$ and Any variable w defined at two time levels $t_{n+1}>t_{n}$ on a point or in a cell, we define at an intermediate time $n+\kappa$

$$
w^{n+\kappa}=\kappa w^{n+1}+(1-\kappa) w^{n}, \quad 0 \leq \kappa \leq 1 .
$$

Stability

von Neumann stability study

Fully implicit staggered scheme

$$
\left.\begin{array}{c}
u_{i, j}^{n+1}=u_{i, j}^{n}+\lambda_{x}\left(p_{i+\frac{1}{2}, j}^{n+\alpha}-p_{i-\frac{1}{2}, j}^{n+\alpha}\right), \quad v_{i, j}^{n+1}=v_{i, j}^{n}+\lambda_{y}\left(p_{i, j+\frac{1}{2}}^{n+\alpha}-p_{i, j-\frac{1}{2}}^{n+\alpha}\right), \\
p_{i+\frac{1}{2}, j+\frac{1}{2}}^{n+1}= \\
p_{i+\frac{1}{2}, j+\frac{1}{2}}^{n}+\lambda_{x}\left(u_{i+1, j+\frac{1}{2}}^{n+\beta}-u_{i, j+\frac{1}{2}}^{n+\beta}\right.
\end{array}\right)+\lambda_{y}\left(v_{i+\frac{1}{2}, j+1}^{n+\beta}-v_{i+\frac{1}{2}, j}^{n+\beta}\right) . ~\left(\begin{array}{ccc}
0 & 0 & Q_{x} \\
0 & 0 & Q_{y} \\
-Q_{x}^{*} & -Q_{y}^{*} & 0
\end{array}\right), \quad \boldsymbol{\Lambda}=\left(\begin{array}{ccc}
\lambda_{x} & 0 & 0 \\
0 & \lambda_{y} & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Hence the implicit scheme also writes

$$
\boldsymbol{w}^{n+1}=\boldsymbol{w}^{n}+\boldsymbol{\Lambda} \boldsymbol{M} \boldsymbol{\Lambda} \boldsymbol{w}^{\alpha, \beta} .
$$

Theorem

The fully implicit scheme is stable for any $\lambda_{x, y}$ is $\alpha \geq 2$ anb $\beta \geq 2$.

Stability

von Neumann stability study

P/C staggered scheme \#1

Predictor step :

$$
\begin{aligned}
\widetilde{u}_{i, j}^{n+1}= & u_{i, j}^{n}+\lambda_{x}\left(Q_{x} p^{n}\right)_{i, j} \\
\widetilde{v}_{i, j}^{n+1}= & v_{i, j}^{n}+\lambda_{y}\left(Q_{y} p^{n}\right)_{i, j} \\
\widetilde{p}_{i+\frac{1}{2}, j+\frac{1}{2}}^{n+1}= & p_{i+\frac{1}{2}, j+\frac{1}{2}}^{n}-\lambda_{x}\left(Q_{x}^{*} u^{n+\beta}\right)_{i+\frac{1}{2}, j+\frac{1}{2}} \\
& -\lambda_{y}\left(Q_{y}^{*} v^{n+\beta}\right)_{i+\frac{1}{2}, j+\frac{1}{2}}
\end{aligned}
$$

Corrector step :

$$
\begin{aligned}
u_{i, j}^{n+1}= & u_{i, j}^{n}+\lambda_{x}\left(Q_{x} p^{n+\alpha}\right)_{i, j} \\
v_{i, j}^{n+1}= & v_{i, j}^{n}+\lambda_{y}\left(Q_{y} p^{n+\alpha}\right)_{i, j} \\
p_{i+\frac{1}{2}, j+\frac{1}{2}}^{n+1}= & p_{i+\frac{1}{2}, j+\frac{1}{2}}^{n}-\lambda_{x}\left(Q_{x}^{*} u^{n+\beta}\right)_{i+\frac{1}{2}, j+\frac{1}{2}} \\
& -\lambda_{y}\left(Q_{y}^{*} v^{n+\beta}\right)_{i+\frac{1}{2}, j+\frac{1}{2}}
\end{aligned}
$$

von Neumann analysis : $p_{i+\frac{1}{2}, j+\frac{1}{2}}^{n} \longmapsto p_{0} e^{\theta(n \Delta t)+\mathrm{i}\left(2 \delta\left(\left(i+\frac{1}{2}\right) \Delta x\right)+2 \gamma\left(\left(j+\frac{1}{2}\right) \Delta y\right)\right)}$, θ complex, δ, γ reals

$$
\mathbf{S}=\left(\begin{array}{ccc}
1-\alpha \Phi_{x}^{2} & -\alpha \Phi_{x} \Phi_{y} & \mathrm{i} \Phi_{x}\left(1-\alpha \beta\left(\Phi_{x}^{2}+\Phi_{y}^{2}\right)\right) \\
-\alpha \Phi_{x} \Phi_{y} & 1-\alpha \Phi_{y}^{2} & \mathrm{i} \Phi_{y}\left(1-\alpha \beta\left(\Phi_{x}^{2}+\Phi_{y}^{2}\right)\right. \\
i \Phi_{x}\left(1-\alpha \beta\left(\Phi_{x}^{2}+\Phi_{y}^{2}\right)\right) & \mathrm{i} \Phi_{y}\left(1-\alpha \beta\left(\Phi_{x}^{2}+\Phi_{y}^{2}\right)\right) & 1+\alpha \beta^{2}\left(\Phi_{x}^{2}+\Phi_{y}^{2}\right)^{2}-\beta\left(\Phi_{x}^{2}+\Phi_{y}^{2}\right)
\end{array}\right)
$$

Setting $\Phi_{x}=2 \lambda_{x} \sin \xi \cos \eta$ and $\Phi_{y}=2 \lambda_{y} \sin \eta \cos \xi$, we further study the boundness of numerical radius $R(\mathbf{S})=\sup _{\mathbf{w}}|\langle\mathbf{S w}, \mathbf{w}\rangle|$, with $\langle\mathbf{w}, \mathbf{w}\rangle=1$.

Stability

von Neumann stability study

P/C staggered scheme \#2

$$
\begin{aligned}
& \underline{\text { Predictor step : }} \\
\widetilde{u}_{i, j}^{n+1}= & u_{i, j}^{n}, \\
\widetilde{v}_{i, j}^{n+1}= & v_{i, j}^{n}, \\
\widetilde{p}_{i+\frac{1}{2}, j+\frac{1}{2}}^{n+1}= & p_{i+\frac{1}{2}, j+\frac{1}{2}}^{n}-\lambda_{x}\left(Q_{x}^{*} u^{n+\beta}\right)_{i+\frac{1}{2}, j+\frac{1}{2}} \\
& -\lambda_{y}\left(Q_{y}^{*} v^{n+\beta}\right)_{i+\frac{1}{2}, j+\frac{1}{2}} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Corrector step : } \\
u_{i, j}^{n+1}= & u_{i, j}^{n}+\lambda_{x}\left(Q_{x} p^{n+\alpha}\right)_{i, j}, \\
v_{i, j}^{n+1}= & v_{i, j}^{n}+\lambda_{y}\left(Q_{y} p^{n+\alpha}\right)_{i, j}, \\
p_{i+\frac{1}{2}, j+\frac{1}{2}}^{n+1}= & p_{i+\frac{1}{2}, j+\frac{1}{2}}^{n}-\lambda_{x}\left(Q_{x}^{*} u^{n+\beta}\right)_{i+\frac{1}{2}, j+\frac{1}{2}} \\
& -\lambda_{y}\left(Q_{y}^{*} v^{n+\beta}\right)_{i+\frac{1}{2}, j+\frac{1}{2}} .
\end{aligned}
$$

von Neumann analysis : $p_{i+\frac{1}{2}, j+\frac{1}{2}}^{n} \longmapsto p_{0} e^{\theta(n \Delta t)+\mathrm{i}\left(2 \delta\left(\left(i+\frac{1}{2}\right) \Delta x\right)+2 \gamma\left(\left(j+\frac{1}{2}\right) \Delta y\right)\right)}, \theta$ complex, δ, γ reals

$$
\mathbf{S}=\left(\begin{array}{ccc}
1-\alpha \Phi_{x}^{2} & -\alpha \Phi_{x} \Phi_{y} & i \Phi_{x} \\
-\alpha \Phi_{x} \Phi_{y} & 1-\alpha \Phi_{y}^{2} & i \Phi_{y} \\
i \Phi_{x}\left(1-\alpha \beta\left(\Phi_{x}^{2}+\Phi_{y}^{2}\right)\right) & i \Phi_{y}\left(1-\alpha \beta\left(\Phi_{x}^{2}+\Phi_{y}^{2}\right)\right) & 1+\alpha \beta^{2}\left(\Phi_{x}^{2}+\Phi_{y}^{2}\right)^{2}-\beta\left(\Phi_{x}^{2}+\Phi_{y}^{2}\right)
\end{array}\right)
$$

Setting $\Phi_{x}=2 \lambda_{x} \sin \xi \cos \eta$ and $\Phi_{y}=2 \lambda_{y} \sin \eta \cos \xi$, we further study the boundness of numerical radius $R(\mathbf{S})=\sup _{\mathbf{w}}|\langle\mathbf{S} \mathbf{w}, \mathbf{w}\rangle|$, with $\langle\mathbf{w}, \mathbf{w}\rangle=1$.

Stability

von Neumann stability study

Theorem

The 2D staggered rectangular scheme \#1 and \#2 are stable if $\alpha \geq \frac{1}{2}, \beta \geq \frac{1}{2}$ and $4 \alpha \beta \max \left(\lambda_{x}^{2}, \lambda_{y}^{2}\right) \leq 1$ and unstable if $\alpha<\frac{1}{2}$ and $\beta<\frac{1}{2}$.

Numerical tests

2D wave equations

2D Euler equations, $\beta=1 / 2$,

On a 100×100 mesh one runs 10^{5} cycles and compute the total kinetic energy $K^{\lambda}\left(t^{n}\right)=\frac{1}{2} \sum\left[\left(u_{i, j}^{n}\right)^{2}+\left(v_{i, j}^{n}\right)^{2}\right]$ for a given CFL number λ at a given time t^{n}. It must remain at the square of machine precision, about $10^{-28} \sim 10^{-30}$

Conclusion and Perspectives

Conclusions

- Compatible staggered Lagrangian scheme is old and venerable but presents some features that need to be pointed out
- Inconsistency of cell volume definition can be overcome by iterations but seems to be a second-order error
- Particular stability diagram can be deduced from analysis and numerics

Perspectives

Moot points :

- subcells are Lagrangian object?
- P/C scheme is 2nd order? What about GRP, ADER type of schemes (one step second order scheme)?
- impact of artificial viscosity always difficult to analyse.

A votre avis

A priori ou a posteriori?

- a priori on pense savoir ce que nos schémas d'ordre élevés/complexes font,
- a posteriori on s'apperçoit qu'ils ne le font pas
- Erreurs : bugs, mauvaise init, paramètres hors normes...
- Comportements bizarres "explicables" : numériques (ou physiques)
- ou inexplicables

Tester et réparer a posteriori vs Prédire (théorie du pire) et agir (princip. précaution) a priori?

Acknowledgments

THANK YOU!

This research was supported in parts by ANR JCJC "ALE INC(ubator) 3D".

