
Hybrid Parallelization of a pure Eulerian finite volume solver for
multimaterial fluid flows

M. Peybernes1,2

in collaboration with J.-Ph. Braeunig1, J. Costes3,5,
C. Delacourt4, P. Demichel6, J.-M. Ghidaglia2,5

1 CEA, DAM, DIF, F-91297, Arpajon, France
2 LRC MESO, ENS de Cachan et CEA, DAM

3 EUROBIOS, 86, Avenue Lénine, 94250 Gentilly, France
4 CAPS ENTREPRISE, 4 allée Marie Berhaut 35000 Rennes

5 CMLA UMR 8536, 65 avenue du Président Wilson, 94235 Cachan cedex

6 HP, HPC EMEA Competency Centre, Grenoble, France

CEA | 29 septembre 2012 | PAGE 1/59

Introduction : Exploiting current and future architectures

2 trends are seen in current calculators :

Bigger systems : Number of nodes in clusters increase ; Number of processors
in supercomputer increase.

More powerful components : increased number of cores ; Specialized
co-processors (GPU,MIC,...).

Middlewares are available to program those machines. Each middleware covers a
range of usage. Examples :

Distributed machines : MPI.

Multicore architectures : MPI, OpenMP, CILK, TBB,...

GPU : OpenCL, NVIDIA Cuda, HMPP, ...

CEA | 29 septembre 2012 | PAGE 2/59

Introduction : FVCF-NIP method

The FVCF-NIP 1 method is developed since Braeunig Phd Thesis (2007) for
compressible multimaterial fluid flows simulation. The main property of this pure
Eulerian method is the sliding condition at the interface between materials,
which is an improvement in the consistency of the discretization with respect to the
Euler equations model.The interface calculation NIP has been improved to
Enhanced-NIP by Loubère, Braeunig, Ghidaglia, 2011.

This method has been parallelized using a domain decomposition in slices
associated with transpositions using the MPI library (Sonnendrücker et al.,
GYSELA code), and not in blocs as we are used to do. This is a convenient choice
for this totally directionally splitted method.

Recently, we have developped an alternative hybrid parallel algorithm. Indeed,
this MPI decomposition in slices restricts the MPI communications to transpositions
at the end of each directional phase, leaving the algorithm almost sequential. It
is then as easy as for a sequential code to add OpenMP or HMPP (GPU)
directives in between transpositions. This hybrid parallel evolution becomes
particularly necessary in the context of hexascale computers.

1. J.-P. Braeunig and B. Desjardins and J.-M. Ghidaglia, Eur. J. Mech. B/Fluids, 2009
CEA | 29 septembre 2012 | PAGE 3/59

Introduction : Computing ressources

Numerical results and performance analysis

Computing Ressources :

Titane cluster built by Bull and located at Bruyères-Le-Chatel (2009) : 1068
nodes (including 2 processors Intel quadri-cores) and 48 NVIDIA Tesla S1070.

Curie cluster built by Bull and located at Bruyères-Le-Chatel (2012) : 3
different fractions of computing ressources.

Thin nodes : 10080 eight-core processors, 2 processors per node (targeted for
full MPI parallel codes).
Fat nodes : 1440 eight-core processors, 4 processors per node (targeted for
MPI+OpenMP parallel codes).
Hybrid nodes : total of 288 Intel quadri-cores + 288 GPU Nvidia.

HP cluster located at the HPC Competency Center (Grenoble), 2012 : ≈ 3000
nodes including Intel (six-cores) and AMD processors.

CAPS cluster located at Rennes.

CEA | 29 septembre 2012 | PAGE 4/59

Outline

Outline of the talk

Outline of the NIP method.

MPI parallelization algorithm using Transpositions.

Multi-threads parallelization with OpenMP.

Hybrid parallelization MPI+OpenMP.

GPU migrating with HMPP.

CEA | 29 septembre 2012 | PAGE 5/59

Outline of the NIP method

CEA | 29 septembre 2012 | PAGE 6/59

Outline of the NIP method

The underlying idea of the FVCF-ENIP method is to hybridize both Lagrangian
and Eulerian descriptions and take advantage of each :
Far from the interface, that is where the flow is locally monofluid, it is convenient
to use a Eulerian description.
On the contrary, in the neighborhood of the interface, a Lagrangian description
provides a natural framework for treating the interface :

CEA | 29 septembre 2012 | PAGE 7/59

Outline of the NIP method

The FVCF-ENIP method is an extension of the FVCF method 2 to multifluid
simulations.
It is a colocated Finite Volume method (no staggered mesh is used), based on a
directional splitting.
Major features of this method :

fluids are not miscible → there is no mixing zone ;

no numerical diffusion between materials and an exact conservation of mass,
momentum and total energy is granted ;

interfaces are reconstructed (using Young’s method 3) ;

the condensate concept allows to consider material interfaces as edges of
Lagrangian control volumes → explicit description of the interface ;

perfect sliding of materials along the interface.

For most physical models the treatment of material interfaces is a major issue and
is (almost) always crucial regarding precision and quality of numerical simulations.

2. J.-M. Ghidaglia and A. Kumbaro and G. Le Coq, Eur. J. Mech. B/Fluids (20), 2001
3. D.L. Youngs, Numerical Methods for Fluid Dynamics

CEA | 29 septembre 2012 | PAGE 8/59

Outline of the NIP method

Basics : from the continuous flow to numerical representation

Figure: Real situation vs. numerical representation.

Real situation can be as complicated as imaginable (fragmented interface, non
connected fluid subdomains, · · ·).
However, numerical representation is systematic, we distinguish between :

pure cells (containing one fluid) ;

mixed cells (containing two fluids).

CEA | 29 septembre 2012 | PAGE 9/59

Outline of the NIP method

Pure cells :

cell centered variables ;

Mixed cells :

more than 2 materials ;

interface is represented by a
straight line ;

volume fraction given for each
material ;

“partial volume” centered
variables.

CEA | 29 septembre 2012 | PAGE 10/59

Basics : directional splitting over a cartesian mesh

We solve systems of Partial Differential Equations of the type :

∂v

∂t
+
∂F (v)

∂x
+
∂G(v)

∂y
= 0,

with an alternating direction scheme (e.g. a Strang second order splitting) :

Figure: Solving ∂v
∂t

+ ∂F (v)
∂x

on each
horizontal slice.

Figure: Solving ∂v
∂t

+ ∂G(v)
∂y

on each

vertical slice.

Therefore, we will only consider a generic object of the type :

CEA | 29 septembre 2012 | PAGE 11/59

Parallelization with MPI

MPI Parallelization algorithm using transpositions

CEA | 29 septembre 2012 | PAGE 12/59

Parallelization with MPI

Figure: Rectangular subdomain decomposition (on the left) and slice subdomain
decomposition (on the right)

CEA | 29 septembre 2012 | PAGE 13/59

Parallelization with MPI

With classical rectangular subdomain decomposition, a condensate can cross
several subdomains and then it has to be computed by several processors.
Therefore, this kind of decomposition is not well suited to distributed memory
system.

To take advantage of the 1D directional splitting, we use a subdomain
decomposition in horizontal or vertical slices.

Each subdomain (slice) is computed by one proc, such that all condensates of
the slice are known and computed by this one.

A data transfer is needed to go from the x step to the y : we perform
Transpositions using MPI communications.

This method does not use ghost cells as in classical rectangular subdomain
parallelization. The number of degrees of freedom communicated per iteration
is constant with respect to the number of procs. It saves memory when using
a large number of procs.

CEA | 29 septembre 2012 | PAGE 14/59

Slice subdomain decomposition

Figure: x-step : decomposition in (n + 1) horizontal slices for (n + 1) procs, on a
distributed memory system

CEA | 29 septembre 2012 | PAGE 15/59

Slice subdomain decomposition

Figure: y -step : decomposition in (n + 1) vertical slices for (n + 1) procs, on a distributed
memory system

CEA | 29 septembre 2012 | PAGE 16/59

Transposition x → y algorithm

Figure: (n + 1)2 blocks decomposition of (n + 1) horizontal slices (x step), each one
associated with one proc.

CEA | 29 septembre 2012 | PAGE 17/59

Transposition x → y algorithm

Figure: Transposition : blocks communication.

CEA | 29 septembre 2012 | PAGE 18/59

Transposition x → y algorithm

Figure: New data organization : (n + 1) vertical slices (y step), each one associated with
one proc.

CEA | 29 septembre 2012 | PAGE 19/59

Transposition : block description

Communicated quantities :

Nbm := Number of materials in the cell

Num := Materials tags

Volm := Materials volumes in the cell

Vm := (ρ, ρux , ρuy , ρuz , ρE) = 5 quantities per material in the cell

Dimension of the communicated quantities in a block :

dimension(Nbm) = NbCells
n2

dimension(Num) = NbPure+NbMix
n2

dimension(Volm) = NbPure+NbMix
n2

dimension(Vm) = 5× NbPure+NbMix
n2

with n the number of computational procs.

CEA | 29 septembre 2012 | PAGE 20/59

Performances MPI, triple point shock tube

Figure: Pressure (left) and volume fraction (right) at initial time, triple point shock tube.

Figure: density at time 3.3 (left) and density at final time 5 (right), triple point shock
tube with mesh 210 × 90.

CEA | 29 septembre 2012 | PAGE 21/59

Performances MPI, triple point shock tube

Figure: Density full geometry (up) and zoom on small structures (down), mesh
6144x2048 triple point shock tube. CEA | 29 septembre 2012 | PAGE 22/59

Performances MPI, triple point shock tube

Number of procs 1 2 4 8 16 32 64 128 256
CPU time (s) 128246 64123 32050 16272 7997 4039 2154 1199 741

Speed up 1 2 4 7.88 16 31.75 59.53 106 173
Efficiency 1 1 1 0.98 1 0.99 0.93 0.83 0.67

Cells/proc (n) 12.6M 6.3M 3, 1M 1.6M 800K 400K 200K 100K 50K

Cells/block (n2) 12.6M 3.1M 800K 200K 50K 12K 3K 800 200

Table: Efficiency for the triple point shock tube with mesh 6144x2048 = 12.6 M cells

CEA | 29 septembre 2012 | PAGE 23/59

Speed up, triple point shock tube

Figure: Speed up, triple point shock tubeCEA | 29 septembre 2012 | PAGE 24/59

Summary of the MPI parallelization

No communication between two steps of the directional splitting ;

This parallel algorithm allows to separate completely the numerical part and
the MPI communication part of the code ;

These MPI communications are localized but each processor communicates
with all others, which can be too heavy for massively parallel architecture ;

MPI 3 : non-blocking collective operations into the MPI standard ;

No need of ghost cells : they become more and more memory consuming on
modern architectures ;

This MPI algorithm is less effective under ≈ 40 000 cells per processor.

CEA | 29 septembre 2012 | PAGE 25/59

Multi-threads parallelization with OpenMP

CEA | 29 septembre 2012 | PAGE 26/59

Distributed memory system

CEA | 29 septembre 2012 | PAGE 27/59

Shared memory system

CEA | 29 septembre 2012 | PAGE 28/59

	0:
	0:
	1:
	2:
	3:

	anm0:
	1:
	0:
	1:
	2:
	3:
	4:
	5:

	anm1:

