
OpenMP parallelization

CEA | 29 septembre 2012 | PAGE 29/59

OpenMP parallelization

Figure: x-step : each thread computes a slice

CEA | 29 septembre 2012 | PAGE 30/59

OpenMP Performances, Sod shock tube

Tests on Titane (CCRT) : processor Intel Xeon 5570 quadri-coeurs

Number of threads 1 2 4
CPU time (s) 530 310 230

Speed up 1.70 2.30
Efficiency 0.86 0.58

Cells/thread 25.6K 12.8K 6.4K

Table: Mesh 160 × 160

CEA | 29 septembre 2012 | PAGE 31/59

Summary of the OpenMP parallelization

A big restructuring of the sequential code was necessary to obtain an efficient
OpenMP version ;

This restructuring allows to use other pragma directives like HMPP ;

One this restructuring done, incremental OpenMP parallelization is possible
and quite easy. If we compare the source codes of the sequential
implementation to the OpenMP approach there is not much difference ;

The results do not depend on the threads number ;

The pragma directives allow to keep only one verion of the code ;

This OpenMP algorithm remains efficient under 10 000 cells per core ;

A OpenMP execution is restricted to only one shared memory node ;

The openMP part is decoupled of the MPI communications part, which makes
easier the development of a hybrid MPI+OpenMP version ;

More intrusive developements in the numerical scheme compared to the MPI
version, but less intrusive compared to other languages like Pthreads or TBB.

CEA | 29 septembre 2012 | PAGE 32/59

Hybrid parallelization MPI+OpenMP

CEA | 29 septembre 2012 | PAGE 33/59

Hybrid architecture

CEA | 29 septembre 2012 | PAGE 34/59

MPI + OpenMP parallelization

Figure: x-step : Multi-threading (with OpenMP) in each slice Pi

CEA | 29 septembre 2012 | PAGE 35/59

MPI + OpenMP parallelization

We associate the MPI slice decomposition with the OpenMP parallelization
(distributed memory between slices and shared memory into the slice).

Each sub-domain (slice) Pi is computed by a processor or a node denoted by
proci (for instance processeur Intel Xeon 5570 quadri-coeurs for Titane) and
MPI communications (transposition) are done between these proci as in the
full-MPI parallel algorithm (distributed memory).

In each slice (shared memory, for a given proci), the previous OpenMP
parallelization is used.

CEA | 29 septembre 2012 | PAGE 36/59

Algorithm description

CEA | 29 septembre 2012 | PAGE 37/59

Performances, triple point shock tube

Figure: Pressure (left) and volume fraction (right) at initial time, triple point shock tube.

Figure: density at time 3.3 (left) and density at final time 5 (right), triple point shock
tube with mesh 210 × 90.

CEA | 29 septembre 2012 | PAGE 38/59

Performances, triple point shock tube

Figure: Density full geometry (up) and zoom on small structures (down), mesh
6144x2048 triple point shock tube. CEA | 29 septembre 2012 | PAGE 39/59

Performances, triple point shock tube

Figure: Strong scalability using Pure MPI and MPI+OpenMP (8M cells, 5000 iterations).
CEA | 29 septembre 2012 | PAGE 40/59

Performances, triple point shock tube

Figure: Weak scalability using different parallelization strategies (different number of
OpenMP threads per MPI process). 64K cells per core, 5 000 iterations.

CEA | 29 septembre 2012 | PAGE 41/59

Scalasca analysis

Figure: Percentage time spent in important FluxIC subroutines for different number of
cores (8M cells, 5000 iterations). Pure MPI version.

CEA | 29 septembre 2012 | PAGE 42/59

Scalasca analysis

Figure: Percentage time spent in important FluxIC subroutines for different number of
cores (8M cells, 5000 iterations). MPI+OpenMP version (with 4 threads).

CEA | 29 septembre 2012 | PAGE 43/59

