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Abstract. This work is devoted to the study of migraine with aura
in the human brain. Following [6], we class migraine as a propagation
of a wave of depolarization through the cells. The mathematical model
used, based on a reaction-diffusion equation, is briefly presented. The
equation is considered in a duct containing a bend, in order to model one
of the numerous circumvolutions of the brain. For a wide set of para-
maters, one can establish the existence of a critical radius below which
the wave stops. The approximation scheme used for the simulations is
first described and then a numerical study is realized, precising the de-
pendence of the critical radius with respect to the different parameters
of the model.

Introduction

Migraine is a severe case of unilateral headache, often increased by clas-
sical symptoms like photophobia or nausea. In the specific case of migraine
with aura, some symptoms appear before the crisis announcing its beginning.
More than 30% of people who suffer migraine headache perceive an aura.
They experience alterations in feelings and bodily perceptions: weakness,
numbness of one side of the face, visual, auditory or olfactory hallucina-
tions, temporary aphasia, vertigo, tingling in arms and legs (see figure 1
for a visual example). These symptoms gradually appear less before the
headache and may last from five to twenty minutes, or may continue even
after the headache subsides.

Figure 1. Scintillating scotoma is the most common visual
aura preceding migraine.
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The understanding of the migraine phenomenon could help to prevent and
heal it better, but it’s a rather complex problem for which the simple ques-
tion: “physiologically, what is happening during a migraine with aura ?” is
still open. However, a few theories exist to answer to it. One of them is
based on the concept of Cortical Spreading Depression (CSD), first intro-
duced by Leão in [10]. Leão observed experimentally in 1944, on different
animal species, a wave of cellular depolarization through the brain. Since
then, the literature produced a high number of articles raising the CSD as a
possible cause of the human migraine with aura. Of course, the extrapola-
tion from CSD in animals to migraine for human is not straightforward, but
similarities between the two phenomena are numerous [9, 8, 7, 12]. In fact,
even the existence of spreading depressions for the human brain is discussed
([13, 5, 11] for example). Its experimental observation in the human cortex
could obviously give a straight answer, but has not yet been accomplished
(except for severe case of ischemic stroke [2]), as in vivo measurements are
difficult to perform on a human patient. However, it is experimentally es-
tablished that human migraine corresponds to a progressive neuronal dis-
turbance (associated to the evolution of the different auras), evolving with
the same rate as the CSD of Leão, hence studying the CSD could be a lead
to a further understanding of migraine with aura.

An intriguing fact is that the evolution of the aura (i.e. the wave of neural
disturbance) is highly dependent on the considered patient. Sometimes the
wave stops in a given point of the brain and may correspond to the different
auras observed. The question is then: why does this wave stop? Where?
If we admit that migraine corresponds with a CSD, can we recover this
behavior? As we will see further, the geometry of the human brain may
answer partially to all these questions, but let us before make a few recall
on the morphology of the human brain.

The cerebral cortex is the outermost layer of the brain; it’s often called
the grey matter, because in preserved brain it acquires this specific color.
This grey matter contains neurons (excitable cells of the nervous system,
“containing” the information) and their fibers. Below the cortex, the white

matter is principally formed by axons (“transporting” the information).
Whereas for animal species like rats for instance, the grey matter is a rather
regular convex region, for the human it is filled in by circumvolutions (see
figure 2).

Though the migraine may stop at different positions in the cortex, de-
pending on the patient, it is experimentally established that the wave always
stops before a peculiar circumvolution: the Rolando fissure or central sulcus

(see figure 3).
If one admits that the migraine does correspond to the propagation of a

wave (which would be a wave of depolarization in the case of CSD), the issue
reduces to understand the role of the geometry and specially the curvature
in the evolution of a travelling front. Following this remark Dronne, Grenier
et. al. elaborated in [6] a mathematical model and a numerical study of the
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Figure 2. Adult rat (left) and human (right) brains. The
human brain geometry is remarkably more complex.

Figure 3. The Rolando sulcus, a double S-shaped fissure
that extends obliquely upward and backward on the lateral
surface of each cerebral hemisphere of the brain, located at
the boundary between the frontal and parietal lobes.

blocking of migraine by the central sulcus. The considered model uses the so
called reaction-diffusion equation, which is known to describe quite properly
progressive waves. Rather than a binary state for the neurons (i.e. disturbed
because of the aura or not), this model assumes that they continually evolve
from the normal state to the ill one (i.e. depolarized in the case of CSD).
A state function is therefore defined, assumed to be equal to 0 in a normal
tissue and to 1 if this tissue is completely depolarized (i.e. the aura is at
its peak). This state function is the unknown of the model, solution to the
reaction-diffusion equation for which the parameters still have to be fixed.
Using this model, the authors of [6] proved numerically (in 2D) the existence
of parameters for which the travelling front stops because of the central
sulcus. In [4] a similar model is revisited, but in a domain with only grey
matter; the wave is studied in a cylindrical domain, which section may
vary. Two cases are studied: sudden change of radius, and linear change
of radius. In both cases, the authors made numerical experiments with
different parameters and studied the critical radii and angles allowing the
wave to propagate after the change of section.
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Theoretical study of reaction-diffusion is well known for classical nonlin-
earity in “simple” domains. As soon as the nonlinearity or the domain is a
little bit complex, the proof of existence and even the definition of travelling
fronts is a hard challenge. This justifies the “numerical strategy” that was
used in [6, 4] which may lead, after, to more theoretical results. We have
followed this methodology in our study, and obtained numerical results that
emphasize the role of the geometry in the wave. The propagation of a wave
in a duct containing a bend is studied. For a large number of parameters set
we exhibit a critical radius that stops the front wave. We have then studied
the influence of this critical radius with respect to some parameters of our
model.

This paper is organized as follows. In the first Section, we recall the
mathematical model given in [6]. We explain in detail the numerical scheme
used to approach the equation. In the second Section, we study numerically
the influence of the parameters of the model on the propagation of travelling
front. Finally we discuss these results and the numerical and theoretical
issues that may be purchased after our study in the third Section.

1. Mathematical model

1.1. Description of the analytical model. Following the work of [6], we
introduce a state function u(t, x) that reflects the presence of the aura. We
have 0 ≤ u ≤ 1 where u = 0 corresponds to a normal state and u = 1
expresses a peak of the aura. The depolarization responsible for the aura is
modelled by a bistable reaction-diffusion in the grey matter when the ionic
species responsible for the depolarization diffuse and are absorbed in the
white matter. Hence the variation of u can be described by the following
reaction-diffusion equation:

(1) ut − ν∆u = f(u) := bu(u − θ)(1 − u)χΩ − αuχΩc , on Ω ∪ Ωc.

where χD is the characteristic function of a domain D, Ω is the grey matter
of the brain and Ωc is the white matter, ν is the diffusive coefficient supposed
constant, b is the amplification coefficient of the grey matter, θ is the reaction
threshold of the grey matter and α is the absorption coefficient in the white
matter.

1.2. Numerical domain. Figure 4(a) reveals a complex geometry of the
grey matter. As we want to understand the influence of this complex geom-
etry on the spreading of the depolarization wave responsible for the aura, we
propose to work in the geometry represented by figure 4(b). This geometry
is characterized by the parameters R, l, L0, L1 and L2. The domain is com-
posed by two subdomains, Ω and Ωc. Ω is a U-shaped domain corresponding
to the grey matter whereas Ωc shown in the figure 4(b) represents the white
matter. In this paper we will pay a particular attention to the influence of
the radius R on the propagation of the aura.



NUMERICAL STUDY OF THE STOPPING OF AURA DURING MIGRAINE 5

(a) Zoom on a slice of brain.

(b) Numerical domain

Figure 4. The complex geometry of a sulcus of a brain
around the interface between white and grey matter.

We impose homogeneous Neumann boundary conditions on ∂ (Ω ∪ Ωc)\Γ,
where Γ is a part of ∂Ω that we call the entrance. On Γ we impose u = 1.

(2)
∂u

∂n
= 0 on ∂ (Ω ∪ Ωc) \ Γ, u = 1 on Γ.

We start from u = 0 on Ω ∪ Ωc. The boundary condition on Γ ensures the
propagation of a generalized travelling front for a short time. The long time
propagation of such a wave depends on the values of the parameters of the
model b, α, θ, ν and the radius R of the circumvolution.
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Figure 5. Uniform mesh used for our study.

The theoretical understanding of the wave propagation on such a domain
is a difficult problem and its numerical understanding will be of great im-
portance in the further development of the theory.

1.3. Discretization of the model. The equation (1) is discretized in time
by a semi-implicite Euler scheme.

(3)
um+1 − um

dt
− ν∆um+1 = f(um).

Simulations are made on FreeFem++, Third edition, Version 3.3-3. P1
finite elements method is used for the space discretization. Note that the
characteristic functions χΩ and χΩc are discretized by P0 elements. The
stability of the scheme is ensured by

(4) dt <
1

bθ
,

derived from the stability of the explicite Euler scheme of the ordinary dif-
ferential equation ut = bu(u − θ)(1 − u). We devote great attention to the
quality of the mesh, due to the complexity of the geometry (see figure 5).
Since the boundary conditions are unnatural, we have to choose L0, L1 and
L2 sufficiently large to avoid interference of the boundary on the propagation
of the wave. In the following, we have taken L0 = 1 and L1 and L2 between
3 and 5 depending on the values of R. Moreover, by a change of scale, the
diffusion coefficient ν can be assumed equal to 0.1 and in this work we will
take l = 0.2. We want now to study the influence of b, θ, α and R on the
propagation of the travelling front.
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2. Influence of the different parameters

Let us define for b > 0, θ ∈]0, 1/2[ and α > 0, the critical radius

Rc(b, θ, α) ∈ [0,+∞] such that for R < Rc the wave stops, otherwise it
does not. The existence of such a unique threshold between propagation
or not is still not proved, however the numerical experiments that we have
made lead us to be inclined to favour the existence of such a critical radius.

It has already been proved that no travelling wave can propagate on a
straight cylinder of grey matter with white matter outside if l is small enough
and that travelling fronts exist if l is large enough [3]. This limit value of
l depends on b, θ and α. Hence there exist values of b, θ and α such that
Rc(b, θ, α) = +∞. We assume that there also exist sets of parameters values
such that Rc = 0, i.e. for any value of R the travelling front will cross the U-
turn. This point however is still an open question. In the following, we want
to determine for a large set of values of parameters b, θ and α if the critical
radius Rc belongs to ]0,+∞[ and how it depends on these parameters.

First we have to specify a numerical criterium that ensures the stopping
of the wave. As the numerical scheme we use is of order 1 with respect to
the time steps dt and the space discretization step h, we will say that the
wave stops as soon as

(5)
‖um‖∞
‖um+1‖∞

< min(dt2, h2).

We call stopping set a set of values of parameters for which the wave stops
as for example (figure 6(b)):

(6) b = 14, θ = 0.2, α = 1, R = 0.4.

Similarly we call passing set a set of values of parameters for which the wave
passes as for example (figure 6(a)):

b = 14, θ = 0.2, α = 1, R = 1.

The numerical solution at different times for those two sets of parameters
is presented on figure 6. In both cases, the wave is slowed down when it
reaches the U-turn. Now for R = 1 (figure 6(a)), the speed of the wave is
positively bounded and the travelling front gets over the curved part of the
cylinder. On the opposite, for R = 0.4 (figure 6(b)), the speed of the wave
tends quickly to zero and the wave stops at the entrance of the U-turn.

In the following, we will take b between bmin = 14 and bmax = 20, α
between αmin = 0.28 and αmax = 1 and θ between θmin = 0.15 and θmax =
0.22. These ranges of values of the parameters ensure the propagation of
travelling front over the straight part of the cylinder (Rc < ∞). The question
is to know if the curved part of the domain will be able to stop the spreading
of the wave. For such range of b, we can fix dt = 0.04 to fulfill the stability
condition (4).

For a fixed set of parameters b, α, θ, we will find values Rmin and Rmax

such that the set {b, α, θ,Rmin} is a stopping set and {b, α, θ,Rmax} is a
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(a) R = 1

(b) R = 0.4

Figure 6. The solution u at different times (t = 6, t = 12,
t = 50 from left to right) and for different radii R.

passing set. This will ensure Rc ∈ [Rmin, Rmax] and we will use a dichotomy
algorithm to determine Rc(b, α, θ). The precision of the dichotomy algorithm
is of 5.10−4. For these sets of parameters, we took Rmin = 0.02 and Rmax =
1. Results are presented on figure 7.

We observe a decreasing behaviour of Rc with respect to b. On the op-
posite, Rc increases with α and with θ. These results are rather intuitive.
Particularly, the increasing behaviour of Rc depending on α can be proved
using the maximum principle. Let us fix α1 > α2 > 0. We denote by u1

(resp. u2) the solution of equation (1) with α = α1 (resp. α = α2). Then u1

is a supersolution of equation (1) with α = α2. Since 0 is a subsolution and
0 ≤ u1, by monotonous techniques we have u2 ≤ u1 and using the strong
maximum principle, we can even prove u2 < u1. Hence if {b, α1, θ,R} is a
stopping set, necessarly {b, α2, θ,R} is also a stopping set and we conclude
that Rc(α2) ≤ Rc(α1). For the dependance of Rc on θ or b, this proof does
not work since the sign of the nonlinearity is unknown.

We can also notice on figure 7 that Rc is much more sensible to changes
of θ than to changes of α or b.

We have made attempts to indentify more precisely the type of growth
or decay of Rc with respect to each parameter. For θ = 0.2 and α = 1,
Rc seems to decrease exponentially with b (figure 8(a)). For b = 14 and
θ = 0.2, the behaviour of Rc depending on α is rather linear (figure 8(b)).
Finally, for b = 14 and α = 1, Rc seems to increase rather exponentially
with θ (figure 8(c)) but the fitting of the exponential is less accurate. For
other sets of parameters, the fitting with exponential or linear functions is
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Figure 7. Behaviour of Rc depending on b for various values
of α and θ. Critical radius Rc less than 0.2 were not computed
in these simulations.
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more or less appropriate depending on the set of parameters. Specially it
can be observed that when the critical radius becomes too small (< 0.1), it
seems to leave the exponential or linear behaviour.

3. Discussion

Previous results show a strong influence of the circumvolutions of the
brain on the propagation of aura during migraine and that the aura stops
at the bottom of a circumvolution. The aura was modeled by a reaction-
difffusion equation of bistable type coupled with a diffusion-absorption equa-
tion. The parameters of the equation influence the critical radius of propa-
gation. The results obtained are rather intuitive. Hence if we want the aura
to stop earlier in less stiff circumvolution (with a larger radius), then we
have to decrease the strength of the reaction term, to increase the threshold
over which we have creation of depolarization or to increase the absorption
effect of the white matter. These effects could be obtained by blocking the
right ionic channels with the adapted therapeutic agents.

Note that many points of this study could be refined. First, the stopping
criterium of the dichotomy algorithm could be decreased to improve the
precision of the critical radius. Now computations are long since waves are
slowed down by the U-turn and specially for values of R near the critical
radius. For example in figure 6(a), computations until time 55 were needed
to be sure that the wave has passed the U-turn. As well, when the radius R
becomes too small, a good mesh is difficult to generate. Hence in this paper,
we were not able to compute critical radii less than 0.2. We are currently
working on generating refined meshes for very small radii.

We need refined computations for small radii to check what happens for
critical radius Rc near to 0. The poor fitting of these values of Rc to expo-
nential (resp. linear) functions may be related to a change of behaviour of
Rc when it tends to 0. Indeed if we assume that the critical radius is simply
exponentially decreasing with respect to b, but that for a large value of b
Rc = 0 and for a small value of b Rc = +∞, there must be discontinuities
for Rc(b). This is rather unlikely but cannot be neglected. It is more likely
that the behaviour is not exactly an exponential or linear function even if it
is that behaviour that dominates in the range of values of parameters chosen
in this paper.

Finally, a more realistic description of the human brain could be taken
into account. For instance, it is well known that the permeability is dis-
continuous across the interface white/grey matter and that the fibers of the
brain generate anisotropy in the permeability. The use of DDFV-scheme
[1] would be of great interest to study the influence of heterogeneity and
anisotropy in the brain.



NUMERICAL STUDY OF THE STOPPING OF AURA DURING MIGRAINE 11

References

[1] F. Boyer and F. Hubert. Finite volume method for 2d linear and nonlinear elliptic
problems with discontinuities. SIAM Journal of Numerical Analysis, 46(6):3032–3070,
2008.

[2] Dohmen C, Sakowitz OW, Fabricius M, Bosche B, Reithmeier T, Ernestus RI, Brinker
G, Dreier JP, Woitzik J, and Strong. Spreading depolarizations occur in human is-
chemic stroke with high incidence. Ann Neurol, 63(6):720–728, 2008.

[3] Guillemette Chapuisat. Existence and nonexistence of curved front solution of a bio-
logical equation. J. Differential Equations, 236(1):237–279, 2007.

[4] MA Dronne, S. Descombes, E. Grenier, and H. Gilquin. Examples of the influence of
the geometry on the propagation of progressive waves. Mathematical and Computer

Modelling, 49(11-12):2138–2144, 2009.
[5] A. Gorji. Spreading depression in humen neocortical slices. Brain Research, 906:74–

83, 2001.
[6] E. Grenier, M.A. Dronne, S. Descombes, H. Gilquin, A. Jaillard, M. Hommel, and J.P.

Boissel. A numerical study of the blocking of migraine by Rolando sulcus. Progress

in Biophysics and Molecular Biology, 97(1):54–59, 2008.
[7] M.F. James, J.M. Smith, S.J. Boniface, C.L.H. Huang, and R.A. Leslie. Cortical

spreading depression and migraine: new insights from imaging? TRENDS in Neuro-

sciences, 24(5):266–271, 2001.
[8] M. Lauritzen. Cerebral blood flow in migraine and cortical spreading depression. Acta

neurologica Scandinavica. Supplementum, 113:1, 1987.
[9] M. Lauritzen. Pathophysiology of the migraine aura: the spreading depression theory.

Brain, 117(1):199, 1994.
[10] A. de A. P. Leão. Spreading depression of activity in the cerebral cortex. Journal of

Neurophysiology, 7(6):359–390, 1944.
[11] A Mayevsky, A Doron, T Manor, S Meilin, N Zarchin, and GE Ouaknine. Cortical

spreading depression recorded from the human brain using a multiparametric moni-
toring system. Brain Res., 740:268–274, 1996.

[12] P.M. Milner. Note on a possible correspondence between the scotomas of migraine and
spreading depression of Leão. Electroencephalography and clinical neurophysiology,
10(4):705, 1958.

[13] Aitken PG, Jing J, Young J, Friedman A, and Somjen GG. Spreading depression in
human hippocampal tissue in vitro. Third IBRO Congr. Montreal Abstr., page 329,
1991.

C.P.: Dipartimento di Metodi e Modelli Matematici per le Scienze Appli-
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