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Jérôme Gilles and Yves Meyer, ∗†‡

February 6, 2010

Abstract

In this paper we present some theoretical results about a structures-
textures image decomposition model which was proposed by the second
author. We prove a theorem which gives the behavior of this model in
different cases. Finally, as a consequence of the theorem we derive an
algorithm for the detection of long and thin objects applied to a road
networks detection application in aerial or satellite images.

BV , G−space, image decomposition, textures

1 Introduction

A few years ago, the second author proposed several image decomposition
models which are aimed to split an image into three components. The first
component should describe the objects contained in the image, the second
one is given by the textured components and the third one is an additive
noise. The structures are modelized as functions belonging to the BV−space
(the space of bounded variations functions) and the textures as oscillating
functions belonging to a space, called G by the second author, which is
close to the dual of the BV−space. Many papers deal with numerical im-
plementation [1, 5, 4], extensions to other cases (like color images [12]) and
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some applications [13] but few of them study the theoretical behavior of this
model.

In this paper, we propose to explore this behavior through different re-
sults. The main theorem we present depicts the optimal decompositions
obtained by an adapted tuning of parameters and the properties in the dif-
ferent functional spaces of the image to be decomposed.

The remainder of the paper is organized as follows. In Section 2, we
remind the Rudin-Osher-Fatemi algorithm which is the origin of the work
of the second author about image decomposition model. In Section 3, we
present the BV − G model and give some notations which will be used in
the rest of the paper. Section 4 is the main section of the paper and presents
some theoretical results detailing the behavior of the model. In Section 5,
we present an application of the main theorem proved in Section 4 to the
enhancement of long and thin structures which can be used for example
for road networks detection in aerial or satellite images. We will finish by
concluding and giving some perspectives to this work for future research.

2 BV −L2 model - The Rudin Osher Fatemi algo-
rithm

The starting point of the second author’s work is the Rudin-Osher-Fatemi
(ROF) model [8]. At the origin, this algorithm was developped for image
restoration purposes. It gives good results and is nowadays currently used.
The authors propose to retrieve the restored image u from the corrupted
image f by assuming that u belongs to the space BV , the space of bounded
variations functions which is well adapted to modelize structures in an image
and widely used in the literature. They propose to minimize the functional
(1).

FROFλ (u) = J(u) + λ‖f − u‖2L2 (1)

where J(u) =
∫
|∇u| is the total variation (TV) of u (this corresponds to

the fact we want u belonging to BV ) and λ is a regularization parameter.
In [7] the author proposes, in the case of a numerical framework and for
bounded domain, a very efficient nonlinear projector (denoted PGλ) to find
the minimizer û of (1). Then û = f − PGλ(u) and the advantages of this
algorithm are twofold:
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1. it is very easy to implement by an iterative process,

2. a theorem gives the condition which ensures the convergence in the
discrete case.

Now, we take the point of view of image decomposition by assuming that
f = u + v where v corresponds to the textures of the image. We mean by
textures some oscillating patterns in the image. Then we can rewrite the
ROF model as (2) (in practice, the minimization occurs only on u and v is
obtained by v = f − u).

FROFλ (u) = J(u) + λ‖v‖2L2 . (2)

But this model is not adapted to capture textures. For example, let us
assume that g is a texture defined by g(x) = θ(x) cos(Nx1), where θ(x) is
the characteristic function on the unit square, N is the frequency and x1 a
direction in the image. Then, we can check that

‖g‖L2 ≈
1√
2
‖θ‖L2 (3)

which does not depend on N , and

‖g‖BV =
2N
π
‖θ‖L1 + εN (4)

which tends to infinity when N → ∞ (εN → 0 when N → ∞). So more
some patterns are oscillating, the less the algorithm is relevant to correctly
capture them.

More generally, the ROF model has three main defects.

First, in the continuous case the model has no meaning if the image is
corrupted by white noise. Indeed, the L2-norm of a white noise is infinite.
In dimension two, a gaussian white noise has a finite norm only in function
spaces with negative regularity indices.

The second one is that textures and noise are treated in the same manner
whereas textures is somewhat “structured” (like periodicity or high frequen-
cies for example) and noise is completely unstructured. In term of Fourier
analysis, some localized frequencies exist for textures while gaussian white
noise has a constant spectrum.
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The last one, as shown in [6], it exists a slight loss of intensity when f
is a constant times the characteristic function of a disk.

Based on these remarks, the second author proposed in [6] to use some
specific functional spaces and their associated norms to model textures. This
approach will be described in the next section.

3 BV −G decomposition model

In this section we present the model proposed by the second author [6] to
decompose an image f into two parts, structures u and textures v. We saw
in the previous section that the Rudin-Osher-Fatemi model is not adapted
to deal with the texture component. The author proposes to modify the
ROF functional as in (5).

F YM (u, v) = J(u) + (2λ)−1‖v‖G, (5)

In order to introduce the definition of the space G, let us recall some
properties of the space BV . It exists different (equivalent) ways to define
the space BV (see [18] for an introduction on total variation). The total
variation can be defined by duality: ∀u ∈ L1

loc(Ω), the total variation is
given by (6).

J(u) = sup
{
−
∫

Ω
udivφdx :φ ∈ C∞c (Ω,RN ), (6)

|φ| 6 1 ∀x ∈ Ω
}

which, ∀u ∈ C1, is equivalent to J(u) =
∫
|∇u|. Then the space of bounded

variation functions, BV , is endowed by the norm ‖.‖BV = ‖.‖L1 +J(.). The
dual of BV is not a functional space, but if we consider the closure of S(R2)
in BV (which is denoted BV), the dual of BV is a functional space denotedG.
The G−norm is defined by the following recipe. For v = div g = ∂1g1 +∂2g2

where g = (g1, g2) ∈ L∞(R2)× L∞(R2),

‖v‖G = inf
g

∥∥∥∥(|g1|2 + |g2|2
) 1

2

∥∥∥∥
L∞

. (7)

Even if there’s no direct duality relation between BV and G, it is easy to
see that the G−norm and the total variation have dual behaviors. We mean
that BV is devoted to modelize structures in an image (like characteristic
functions for example) and the space G is well-adapted to modelize oscillat-
ing patterns. We saw in the previous section that for g(x) = θ(x) cos(Nx1),
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(a) Original (b) Structures (c) Textures

Figure 1: Example of image structures+textures decomposition.

the BV − norm is not adapted to capture it. We can easily check that
‖g‖G 6 C

N which confirms that the oscillating pattern will be captured by
the G− norm.
Now, if we return to the functional (5) proposed by the second author, we
can easily understand its behavior. Assume we want to minimize this func-
tional over u and v, the BV − norm reaches its minimum if u corresponds
to structures in the image and the G−norm reaches its minimum for oscil-
lating patterns (like textures). Then this model permits a better structures
+ textures decomposition than the ROF model presented in the previous
section.

Vese and Osher, in [4] were the first ones to propose numerical experi-
ments of the second author’s model. In [1, 2], Aujol proposes to use the non-
linear projector of Chambolle to solve the model. It consists of an alternate
iterative algorithm which provides the minimizers of (5). These minimizers
are given by û = f − v̂ − PGλ(f − v̂) and v̂ = PGµ(f − û) where µ is an
upper bound for ‖v‖G. Figure 1 shows one example of a structure+texture
decomposition of an image.
In [9, 10, 14, 15] the authors propose different approaches to extend this
model to a three components model to deal with noisy images. These mod-
els permit to separate the structures, textures and noise respectively. In this
paper we restrict our study to the two components model.
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We begin the next section by giving new theoretical results.

4 Decomposition model output

4.1 General results

In this subsection we first recall some important results given by the second
author (proofs can be found in [6]) which will be useful to our work. The
first one concerns the following inequality

Lemma 1 If u ∈ L2(R2) and v ∈ BV (R2), then∣∣∣∣∫ u(x)v(x)dx
∣∣∣∣ 6 ‖u‖G‖v‖BV . (8)

The next two lemmas are general results on functional minimization in
Banach/L2-spaces and Banach/Banach-spaces respectively.

Lemma 2 Let E be an arbitrary Banach space and let ‖.‖E∗ be the dual
norm. Let us assume we want to minimize

‖u‖E + λ‖v‖2L2 (9)

for all decompositions f = u+ v of f ∈ L2(R2), then two cases appear

(1) if ‖f‖E∗ 6 1
2λ , then the minimum is reached for u = 0 and v = f ,

(2) if ‖f‖E∗ > 1
2λ , then the minimum is reached for v such that ‖v‖E∗ = 1

2λ
and 〈u, v〉 = 1

2λ‖u‖E.

Lemma 3 Let E1 and E2 two Banach spaces embedded in a vector space
E. We define the Banach space E3 which is the set of all z such that

z = x+ y , x ∈ E1 , y ∈ E2 (10)

provided with the norm

‖z‖E3 = inf{‖x‖E1 + ‖y‖E2}. (11)

Then E3 is the smallest Banach space containing E1 and E2. In addition,
E∗3 is the biggest Banach space contained in E∗1 and E∗2 . In other terms,
E∗3 = E∗1 ∩ E∗2 and the norm of g in E∗3 is defined by

‖g‖E∗3 = sup{‖g‖E∗1 , ‖g‖E∗2}. (12)
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4.2 Decomposition model properties

The space G is defined as above (Section 3). To study the BV −G decom-
position model, we propose to use the following approach. Let us assume
that we are given an image f ∈ L2(R2) and two positive parameters λ et µ.
Then we seek to decompose f as a sum

f = u+ v + w (13)

by minimizing the functional E(u, v, w) defined by

‖u‖BV + λ‖v‖2L2 + µ‖w‖G. (14)

The ROF model corresponds to the case µ = +∞. As BV ⊂ L2, we nec-
essarily have w ∈ L2. The existence of an optimal decomposition is given
by the “Hilbert’s direct method”. Since BV is a dual space, from every
bounded sequence uj ∈ BV we can extract a subsequence that converges,
in the distributionnal sense, to u ∈ BV . The same argument can be used
for L2 and G. The uniqueness is not ensured except for the v part. More
details will be given later in this paper.

Before demonstrating the main theorem, we introduce some intermediate
results.

Lemma 4 For all function f ∈ BV , we have

‖f‖L2 6
1

2
√
π
‖f‖BV (15)

and this implies

‖f‖G 6
1

2
√
π
‖f‖L2 6

1
4π
‖f‖BV . (16)

This lemma is a direct consequence of the isoperimetric inequality.
We deduce the following theorem.

Theorem 1 If 0 < µ < 4π, then the optimal decomposition f = u+ v + w
verifies u = 0.

Assume that we fix v and let u free. We will write u+ w = σ and then
σ = f − v. First, we want to minimize ‖u‖BV + µ‖σ − u‖G. If we assume
that 0 < µ < 4π, by Lemma 4 we get
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‖u‖BV + µ‖σ − u‖G > 4π‖u‖G + µ‖σ − u‖G (17)
> µ‖u‖G + µ‖σ − u‖G (18)
> µ‖σ‖G. (19)

In addition, if u is not zero then ‖u‖G > 0 and we have

‖u‖BV + µ‖σ − u‖G > µ‖σ‖G. (20)

We conclude that the minimum will be reached for u = 0.
The following theorem gives the behavior of the model described by (14).

Theorem 2 If ‖f‖G 6 1
2λ and ‖f‖BV 6 µ

2λ , then u = w = 0 and the opti-
mal decomposition is f = 0 + f + 0.

If ‖f‖G 6 1
2λ but ‖f‖BV > µ

2λ , three cases appear for an optimal decom-
position f = u+ v + w.

(1) u = 0, ‖v‖BV = µ
2λ , ‖v‖G < 1

2λ and 〈v, w〉 = µ
2λ‖w‖G,

(2) w = 0, ‖v‖BV 6 µ
2λ , ‖v‖G = 1

2λ and 〈u, v〉 = 1
2λ‖u‖BV and finally,

(3) ‖v‖BV = µ
2λ , ‖v‖G = 1

2λ , 〈u, v〉 = 1
2λ‖u‖BV and 〈v, w〉 = µ

2λ‖w‖G.

Conversely, all triplet (u, v, w) which fulfills (1), or (2), or (3) is optimal
for f = u+ v + w and their corresponding values of λ and µ.

An example of interest of Theorem 2 is given by the following observa-
tion. Let us assume that we have ‖f‖G < π

λµ . Then, the optimal decompo-
sition is given by case (1). Indeed, if we compare the optimal decomposition
f = u+ v + w to the trivial decomposition f = 0 + 0 + f , we have

‖u‖BV + λ‖v‖2L2 + µ‖w‖G 6 µ‖f‖G (21)

which implies

‖v‖L2 6
√
µ

λ
‖f‖G. (22)
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But ‖v‖G 6 1
2
√
π
‖v‖L2 which results in ‖v‖G < 1

2λ .

Let us return to the proof of Theorem 2. First, let us observe that in
the case 0 < µ < 4π the problem is equivalent to minimize

λ‖v‖2L2 + µ‖f − v‖G. (23)

Then we apply Lemma 2 (with E = G and E∗ = BV ) to λ‖v‖2L2 +µ‖f−
v‖G. If ‖f‖BV 6 µ

2λ , the minimum is reached if v = 0.

Here, we can make a partial conclusion: if 0 < µ < 4π then u = 0. Else
if ‖f‖BV 6 µ

2λ , then u = v = 0.

Furthermore, we need to miminize E(u, v) = ‖u‖BV + λ‖v‖2L2 + µ‖w‖G
under the constraint f = u + v + w (it implies w = f − u − v). Assume
that v is fixed and we seek for the minimum with respect to u. If we write
σ = u+ w and

9σ9 = inf{‖u‖BV + µ‖w‖G ; σ = u+ w} (24)

then
inf
u,v

E(u, v) = inf
σ
{9σ 9 +λ‖f − σ‖2L2}. (25)

To minimize 9σ 9 +λ‖f − σ‖2L2 , we apply Lemma 3. The dual norm of 9.9
is

9.9∗ = sup
{
‖.‖G ,

1
µ
‖.‖BV

}
. (26)

Our next step is the following lemma.

Lemma 5 If ‖f‖G 6 1
2λ and ‖f‖BV 6 µ

2λ , then the minimum of E(u, v) is
reached for u = w = 0 and is given by λ‖f‖2L2.

Indeed, as ‖f‖G 6 1
2λ and ‖f‖BV 6 µ

2λ , we get

9f9∗ = sup
{
‖f‖G;

1
µ
‖f‖BV

}
6

1
2λ
. (27)

That brings back us to the case (1) of Lemma 2. Then σ = 0 and v = f and
with the agreement to the definition of the norm 9.9, this implies u = w = 0.
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This result concludes the first assertion in Theorem 2. Now, let us look to
the second assertion where

‖f‖G 6
1

2λ
and ‖f‖BV >

µ

2λ
. (28)

Observing that ‖f‖G 6 1
4π‖f‖BV . Then we can’t have ‖f‖G > 1

2λ and
‖f‖BV 6 µ

2λ if 0 < µ 6 4π.
Under the assumption (28) Lemma 2 ensures us that the optimal σ fulfills

9v9∗ =
1

2λ
and 〈v, σ〉 =

1
2λ

9 σ 9 . (29)

In addition 9σ9 = ‖u‖BV + µ‖w‖G because u and w are optimized. We
either have

‖v‖BV =
µ

2λ
and ‖v‖G <

1
2λ

(30)

or
‖v‖BV 6

µ

2λ
and ‖v‖G =

1
2λ
. (31)

Let us examine the first case. We have

Lemma 6 If (28) and (30) are fulfilled simultaneously, then the optimal
decomposition f = u+ v + w verifies u = 0 and 〈v, w〉 = µ

2λ‖w‖G.

Indeed, Lemma 2 yields

〈v, u+ w〉 =
1

2λ
(‖u‖BV + µ‖w‖G) . (32)

But
〈v, w〉 6 ‖v‖BV ‖w‖G =

µ

2λ
‖w‖G (33)

while
〈v, u〉 6 ‖v‖G‖u‖BV <

1
2λ
‖u‖BV . (34)

Adding these two inequalities, we get (32). These inequalities must be equal-
ities. This implies u = 0 and 〈v, w〉 = µ

2λ‖w‖G.
Now look at the second case. We distinguish

‖v‖BV <
µ

2λ
and ‖v‖G =

1
2λ

(35)

and
‖v‖BV =

µ

2λ
and ‖v‖G =

1
2λ
. (36)
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From (35), by the same arguments previously used, we can conclude that
w = 0. Then f = u + v is the optimal decomposition and we have (see
Lemma 2) ‖v‖G = 1

2λ et 〈u, v〉 = ‖u‖BV 1
2λ .

Let us address the converse implication. The result is given by the following
lemma.

Lemma 7 Let us assume that ‖v0‖G = 1
2λ and ‖v0‖BV 6 µ

2λ where 〈u0, v0〉 =
1

2λ‖u0‖BV . We write f0 = u0 + v0.
Then for all functions α ∈ BV and all functions w ∈ L2(R2), we have

‖u0 + α‖BV +λ‖v0 − α− w‖2L2 + µ‖w‖G (37)

> ‖u0‖BV + λ‖v0‖2L2 .

This means that for such a function f0 and for these parameters λ and µ,
the decomposition u0 + v0 is optimal.

For proving Lemma 7, we divide (37) by 2λ = ‖v0‖−1
G and we get

‖u0 + α‖BV ‖v0‖G +
1
2
‖v0 − α− w‖2L2 + ‖v0‖BV ‖w‖G

=‖u0 + α‖BV ‖v0‖G +
1
2
‖v0‖2L2 − 〈v0, α〉+

1
2
‖α‖2L2

− 〈w, v0 − α〉+
1
2
‖w‖2L2 + ‖v0‖BV ‖w‖G

>〈u0, v0〉+ 〈α, v0〉+
1
2
‖v0‖2L2 − 〈α, v0〉+

1
2
‖α‖2L2

− 〈w, v0 − α〉+
1
2
‖w‖2L2 + ‖v0‖BV ‖w‖G

=
1

2λ
‖u0‖BV +

1
2
‖v0‖2L2 +

1
2
‖α‖2L2 − 〈w, v0 − α〉

+
1
2
‖w‖2L2 + ‖v0‖BV ‖w‖G

=
1

2λ
‖u0‖BV +

1
2
‖v0‖2L2 +

1
2
‖α+ w‖2L2 − 〈w, v0〉

+ ‖v0‖BV ‖w‖G

>
1

2λ
‖u0‖BV +

1
2
‖v0‖2L2 .

Let us notice that if we have an equality, we necessarily have α = −w
and 〈w, v0〉 = ‖v0‖BV ‖w‖G. We also get µ = 2λ‖v0‖BV . Let us return to
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(37) which can be written

‖u0 − w‖BV + λ‖v0‖2L2 + µ‖w‖G > ‖u0‖BV + λ‖v0‖2L2 (38)

or
‖u0 − w‖BV + 2λ‖v0‖BV ‖w‖G > ‖u0‖BV (39)

i.e
‖u0 − w‖BV ‖v0‖G + 〈w, v0〉 > ‖u0‖BV

1
2λ
. (40)

But we have

‖u0 − w‖BV ‖v0‖G > 〈u0 − w, v0〉 = 〈u0, v0〉 − 〈w, v0〉. (41)

Finally

〈u0, v0〉 = ‖u0‖BV
1

2λ
. (42)

If we have the equality, we must have

‖u0 − w‖BV ‖v0‖G = 〈u0 − w, v0〉. (43)

Let us examine the reciprocal of the lemma 6.

Lemma 8 Assume that f = v0 + w0 with ‖v0‖BV = µ
2λ , ‖v0‖G < 1

2λ and
〈v0, w0〉 = µ

2λ‖w0‖G.
Then f = v0 + w0 is the optimal decomposition.

If we write w = w0 + w̃ and v = v0, (14) is equivalent to

‖u‖BV + λ‖v0 − u− w̃‖2L2 + µ‖w0 + w̃‖G = J(u, w̃). (44)

Then, it comes

‖w0 + w̃‖G‖v0‖BV > 〈w0 + w̃, v0〉 = 〈w0, v0〉+ 〈w̃, v0〉 (45)

and, by assumption, 〈w0, v0〉 = µ
2λ‖w0‖G. Then

‖w0 + w̃‖G‖v0‖BV >
µ

2λ
‖w0‖G + 〈w̃, v0〉 (46)

and as ‖v0‖BV = µ
2λ , we deduce that

‖w0 + w̃‖G > ‖w0‖G +
2λ
µ
〈w̃, v0〉. (47)
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In addition,

λ‖v0 − u− w̃‖2L2 =

λ‖v0‖2L2 − 2λ〈w̃, v0〉 − 2λ〈u, v0〉+ λ‖u+ w̃‖2L2

=〈v0 − u− w̃, v0 − u− w̃〉 = 〈v0, v0〉 − 〈v0, u〉
− 〈v0, w̃〉 − 〈u, v0〉+ 〈u, u〉+ 〈u, w̃〉 − 〈w̃, v0〉
+ 〈w̃, u〉+ 〈w̃, w̃〉

=‖v0‖2L2 − 2〈u, v0〉 − 2〈v0, w̃〉+ 2〈u, w̃〉+ 〈u, u〉
+ 〈w̃, w̃〉.

But 2〈u, w̃〉+ 〈u, u〉+ 〈w̃, w̃〉 = ‖u+ w̃‖2L2 which implies

J(u, w̃) >λ‖v0‖2L2 + µ‖w0‖G + ‖u‖BV − 2λ〈u, v0〉 (48)

+ λ‖u+ w̃‖2L2 .

To conclude, Lemma 1 yields

|〈u, v0〉| 6 ‖u‖BV ‖v0‖G <
1

2λ
‖u‖BV (49)

and

‖u+ w‖2L2 = ‖f − v0−w0‖2L2 = 0 (50)
(we recall that f = v0 + w0).

At this stage, we have proved the points (1) and (2) of Theorem 2. To finish
the proof, we need to establish point (3). The direct part is proved by the
same arguments we used in (1) or (2). Let us examine the reciprocal. For
functions α ∈ BV and β ∈ L2 choosen arbitrarily, we want to prove that
E(α, β) ≥ E(0, 0) (see (14) for the definition of E(., .)). Then we need to
calculate

‖u+ α‖BV + λ‖v + β‖2L2 + µ‖w − α− β‖G. (51)

We know that u, v and w verify point (3). As ‖v‖BV = µ
2λ and ‖v‖BV ‖w−

α− β‖G > 〈v, w − α− β〉, we have

µ‖w − α− β‖G > 2λ (〈v, w〉 − 〈v, α〉 − 〈v, β〉) . (52)

In addition, as ‖v‖G = 1
2λ , we also have

‖u+ α‖BV > 2λ (〈u, v〉+ 〈α, v〉) . (53)
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Finally

λ‖v + β‖2L2 = λ‖v‖2L2 + 2λ〈v, β〉+ λ‖β‖2L2 , (54)

〈v, w〉 =
µ

2λ
‖w‖G and (55)

〈v, u〉 =
1

2λ
‖u‖BV . (56)

This permits to conclude that all the terms disapear and that only remains
(the minimum is reached for β = 0)

‖u‖BV + λ‖v‖2L2 + µ‖w‖G. (57)

This ends the proof of Theorem 2.
Let us notice that we do not have uniqueness of the decomposition. The

following counterexample will persuade us.

Let us denote by θ the characteristic function of the unit disk, then we
have ‖θ‖G = 1

2 and let us take f = 3θ. Let us consider the two decomposi-
tions f = θ+θ+θ and f = 2θ+θ+0. We assume, without loss of generality,
that λ = 1 and µ = 4π.
For the first one we have ‖v‖BV = µ

2λ , ‖v‖G = 1
2λ , 〈u, v〉 = π = ‖u‖BV

2λ and
〈v, w〉 = π = µ

2λ‖w‖G.
For the second one, we have well ‖v‖BV 6 µ

2λ , 〈u, v〉 = 1
2λ‖u‖BV and

‖v‖G = 1
2λ . We conclude that these two decompositions respect Theorem 2

and then we don’t have the uniqueness of the decomposition.

5 Application

In this section, we present an application of Theorem 2. Let us assume that
we deal with long and thin objects in an image. This kind of object can be
modeled by

f(x1, x2) = 1 if 0 6 x1 6 L, 0 6 x2 6 ε (58)

where L � 1 and 0 < ε � 1. Then ‖f‖G 6 ε while ‖f‖BV = 2(L + ε).
It’s easy to see that we are in the case 1 of Theorem 2 if ε <

√
π
λµ and

µ < 4λ(L+ ε) i.e if L is rather large compared to µ.

By Theorem 2, we conclude that u = 0, ‖v‖BV = µ
2λ . Then we have

‖w‖BV > ‖f‖BV − ‖v‖BV > 2(L + ε) − µ
2λ which is high. In this case, the

14



w part is the most important one. This means that this kind of objects will
be attracted in the w component.

This property was used in [11] as a preprocessing stage in an aerial road
networks detection. Indeed, road networks could be considered as long and
thin objects in the image. The previous result teaches us that this kind
of objects will be enhanced in the texture component (but u is not strictly
equal to 0 and w does not contain only roads because the original image
contains different kind of objects). So we decompose the image and then
apply a detection algorithm on the w component. Figure 2 shows a zoomed
portion of an aerial image and its w component, figure 3 exhibits the same
contrast evolution from one side to another of a road in the original image
and the texture component respectively. We clearly see that roads are the
most visible objects in the texture component. Figure 4 shows a result
we get, on a bigger image, by this approach with a very simple detection
algorithm applied on the w component (see the appendix for details about
the practical algorithm used).

6 Conclusion

In this paper, we present some new theoretical results about the second au-
thor’s BV −G decomposition model which separates structures and textures
from an original image. The main theorem we proved gives the optimal de-
composition we get with regard to the parameter selection and the properties
of the images, in terms of the different norms associated to the involved func-
tion spaces. This theorem permits us to propose an enhancement method
for long and thin objects before a detection stage. This method was tested
on an aerial or satellite road networks detection application.

In a future work, the results of the main theorem could be associated
with different kind of objects and could permit to help in selecting values
of the algorithm’s parameters in order to get good decomposition results.
Another way of research is to extend these results to other function spaces
(like Besov spaces) or to three parts decomposition models which deal with
noise (as cited in Section 3).
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Figure 2: Example of a portion of an aerial image: original image on top, w
component on bottom which lets appear enhanced roads.

A Practical algorithms

In this appendix we briefly recall the practical algorithms used in section
5. The whole algorithm can be split into three parts. First, the decompo-
sition which provides us the w component on which the detection is made.
The second part consists on a first stage of detection based on segments
detection. The last part is a refinement stage which converts the previously
detected segments into active contours in order to get the real topology of
roads. Let us give more details on each part.
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Figure 3: Illustration of the constrast enhancement of thin and long struc-
tures.

The image decomposition algorithm is the one proposed proposed by
Aujol in [1, 2] based on Chambolle’s projectors cited in section 3. The
slightly modified model of Aujol is defined by equation (59) (Aujol proved
that the minimizers of its model are also minimizers of the original model
of the second author).

FAUλ,µ (u, v) = J(u) + J∗
(
v

µ

)
+ (2λ)−1‖f − u− v‖2L2 (59)

where
(u, v) ∈ BV (Ω)×Gµ(Ω). (60)

and the set Gµ is the subset of G where ∀v ∈ Gµ, ‖v‖G 6 µ. Moreover,
J∗ is the characteristic function over G1 with the property that J∗ is the
dual operator of J (J∗∗ = J). Thus,

J∗(v) =

{
0 if v ∈ G1

+∞ else.
(61)

The minimizers can be found by the following iterative algorithm.

1. Initialization:
u0 = v0 = 0
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Figure 4: Example of road network detection: original image on top, de-
tected roads on bottom.

2. Iteration n+ 1:

vn+1 = PGµ(f − un)
un+1 = f − vn+1 − PGλ(f − vn+1)

3. We stop the algorithm if

max (|un+1 − un|, |vn+1 − vn|) 6 ε

or if we reach a prescribed maximal number of iterations.
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Figure 5: Segment to polygonal active contour conversion strategy.

The expressions of Chambolle’s projectors can be found in [1, 2] and are
very easy to implement.

The first stage of the detection algorithm is the one proposed by Morel’s
team in [16]. It is based on an a contrario formulation issued from the
Gestalt theory. The output of this algorithm is a set of segments corre-
sponding to aligned points in the image.

In the last stage, we start by filtering the set of segments. We mean that
we fusion very close segments, we supplement each segment which follows
another one. Then each segment is converted into an open polygonal active
contour (see figure 5). As they are very close to the final position (we
recall that it is a refinement stage), we can use the active contour algorithm
proposed by the first author in [17].
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