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Abstract. We consider the radiative transfer equation (RTE) with reflec-
tion in a three-dimensional domain, infinite in two dimensions, and prove an
existence result. Then, we study the inverse problem of retrieving the opti-
cal parameters from boundary measurements, with help of existing results by
Choulli and Stefanov. This theoretical analysis is the framework of an attempt
to model the color of the skin. For this purpose, a code has been developed
to solve the RTE and to study the sensitivity of the measurements made by
biophysicists with respect to the physiological parameters responsible for the
optical properties of this complex, multi-layered material.

Introduction

Skin is a complex multi-layered media and the most important organ of our body
in terms of weight, surface and functionalities. For many years, physicists have tried
to understand what physiological components or properties are responsible for its
color. The color of an object is defined by a unidimensional curve called the re-
flectance spectrum, which is the relative energy given back by the object for each
wavelength of the visible range, when it is enlighted with a white spot. Physicists
have developed a lot of models to link the physiological components of the skin
(like, for example, the blood concentration or the diameter of the melanosomes) to
its optical properties. Physicists have simulated, by many ways, how light travels
into the skin. What has not been theoretically investigated yet, even if very well
studied by Magnain and Elias in [2], is the inverse problem of retrieving the physi-
ological parameters from measurements made at the surface of the skin.
Before studying the inverse problem, we tried to simulate the direct one, and de-
veloped a small Matlab code to do so. This code is proved to be quite satisfying
for this purpose, hence we used it to make a sensitivity study of the reflectance
curves with respect to the physiological parameters. We went on with the theoret-
ical study of this inverse problem, in a very simplified framework and based on the
existing work of Choulli and Stefanov [5]. The paper is organized in the reverse
order: theoretical study, then numerical results.

1. Modeling

1.1. The radiative transfer equation. When light enters an object X , the pho-
tons propagate in straight line, unless they are absorbed by the material or scattered
(and possibly deviated) by various entities. One classical way to describe the light
intensity is the use of a probability density function (p.d.f.): f , that depends on the
position x and the velocity v of the photon.

The set of all possible directions, V is all or part of the sphere S
2. The physical

interaction with the material is described by:
1
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• the absorption coefficient µa (given in m−1), which is the number of absorp-
tion events per unit length and depend on the position and the direction:
µa = µa(x, v)

• the scattering coefficient µs = µs(x, v) (also in m−1), the same quantity for
the scattering

• the kernel p = p(x, v, w) which is a probability density with respect to v. It
denotes the probability for a photon arriving with the direction w, to get a
new direction v after having hit a scatterring center.

If the scattering centers are distant enough from one another (compared to
the wavelength), the radiative transfer equation (RTE) describes properly the be-
haviour of the light intensity, for (x, v) ∈ X × V :

v · ∇xf + (µa(x, v) + µs(x, v))f(x, v) =

∫

V

µs(x, w)p(x, v, w)f(x, w) dw(1)

1.2. Geometry and boundary conditions. The equation (1) has been written
with no internal source of light, and has to be complemented by boundary conditions
to model the enlightment of the object. The typical experiment we are interested
in is the following: the skin is enlighted from its top, on a large surface, and its
color is registered on the same zone. At this scale, the two others dimensions can
be considered as infinite. Indeed, the thickness of the whole skin is of the order of
10−3 m, whereas the skin is much more extended over our body. Hence, we will
model our skin sample as a box infinite in the two planar directions.

When travelling into the skin, the light will encounter several interfaces, one of
them being the epidermis-dermis junction. Part of the light will get through it, but
the remaining amount will be reflected. Hence, our boundary conditions will be:

• a source function f− modeling the enlightment on the top
• reflection of part of the light at each interface encountered.

2. Theoretical inverse problem

Choulli and Stefanov have already proved in [5] that the parameters can be
uniquely determined by surface measurements, under the following assumptions, in
the case where the RTE (1) is complemented with Dirichlet boundary conditions.
We will conduct the same study with mixed boudary conditions by adding a reflec-
tion operator. Before getting into the inverse problem, we have to show existence
of the light intensity for the direct problem.

2.1. Notations and functional framework. We focus in this study on a single
layer, so that the first interface encountered is the bottom of the sample. Hence,
the position and velocity spaces are:

(2) X =]0, L[×R
2, V = S

2.

We consider a system of axis on X whose first direction is normal to the plane
of the skin, as illustrated in Figure 1.2. All points belonging to the boundary of X
(that is ∂X = {0}×R

2∪{L}×R
2) are denoted with a prime symbol: x′, y′ and so

forth. For x′ ∈ ∂X , we denote by n(x′) the outward-pointing normal vector. The
following sets will be widely used:

Γ± = {ξ = (x′, v) ∈ ∂X × V/ ± v · n(x′) > 0},
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Figure 1. Model of the skin

with the measure dξ = |v.e1| dx′ dv. We define the first time of exit by outward
(resp. downward) directions:

τ±(x, v) = min{t ≥ 0|x ± tv ∈ ∂X}, τ(x, v) = τ−(x, v) + τ+(x, v).

We also introduce the absorption coefficient, and the full scattering kernel:

σa(x, v) = µa(x, v) + µs(x, v),

k(x, v, w) = µs(x, w)p(x, v, w).

The enlightment is modeled by f− ∈ L1(Γ−, dξ). The coefficients are assumed
to satisfy the following regularity properties [6]:

(i) 0 ≤ µs ∈ L∞(X × V ) and 0 < ν ≤ µa ∈ L∞(X × V )
(ii) 0 ≤ k(x, v, .) ∈ L1(V ) for a.e. (x, v) ∈ X × V

The problem will be studied in the following functional space:

(3) W = {f ∈ L1(X × V ) s.t. v · ∇f ∈ L1(X × V )}.

Thanks to Cessenat [3, 4], we know that if f ∈ W , its traces on Γ± exist and we
give the theorem in the case of L1 spaces:

Theorem 1 (Cessenat). The trace operator u 7→ u|Γ± is continuous from W in
L1(Γ±, dξ)

We denote classically the albedo operator as follows:

Af− = f |Γ+ ,

where f(x, v) satisfies (1) with the boundary condition f = f− on Γ−. The Bound-
ary Value Problem admits a unique solution in W if f− ∈ L1(Γ−, dξ) [6]. Also the

albedo operator A : L1(Γ−, dξ̃) → L1(Γ+, dξ̃) is a bounded operator, where the
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boundary measure dξ has been replaced by dξ̃ = min{τ(x, v), K}|v · e1| dx′ dv for
some positive number K [5].

2.2. The direct reflection problem. We define a general reflection operator R :
L1(Γ+, dξ) → L1(Γ−, dξ) by:

(4) Rϕ =

∫

w.n(x′)>0

m(x′, v, w)ϕ(x′, w) dw,

where m(x′, v, w) is a boundary transition kernel such that R satisfies the following
assumption: there exists 0 ≤ α < 1 such that,

(5) ∀ϕ ∈ L1(Γ+, dξ) ‖Rϕ‖L1(Γ−, dξ) ≤ α‖ϕ‖L1(Γ+, dξ)

If, under our geometrical framework (plane interfaces), we assume that the skin
satisfies Snell-Descartes reflection laws at its interfaces (like in our numerical im-
plementation), some grazing rays may be trapped in the material because of the
values of the optical indices if we do not remove the planar directions v (such that
v.e1 = 0). Hence, the latter assumption is not satisfied for the corresponding reflec-
tion operator. The equation (5) expresses that every direction is uniformly partially
absorbed (or refracted). In our code, we removed the grazing directions with the
angular discretization.

The direct problem we are interested in writes:

(6)







v · ∇xf(x, v) + σa(x, v)f(x, v) =

∫

V

k(x, v, w)f(x, w) dw in X × V

f |Γ− = f− + Rf |Γ− on Γ−

Theorem 2. Suppose that f− ∈ L1(Γ−, dξ), the reflection operator R verifies (5)
and assumptions (i) and (ii) hold true. Then the problem (6) has a solution f in
W .

Proof. We define the operator T : L1(Γ−, dξ) → L1(Γ−, dξ):

(7) T g = R ◦ Ag.

We know that this system has a unique solution in W . We have that T is a
contraction operator. Assume first that g and f are nonnegative functions. If we
integrate (1) on X × V and use Green formula, we get:
Z

Γ+

v · n(x′)f |Γ+(x′
, v) dx

′ dv +

Z

Γ−

v · n(x′)g(x′
, v) dx

′ dv +

Z

X×V

σa(x, v)f(x, v)dxdv

=

Z

X×V

Z

V

k(x, v, w)f(x, w)dxdvdw

=

Z

X×V

µs(x,w)f(x, w)dxdw.

Therefore we have:
∫

Γ+

f |Γ+ dξ −

∫

Γ−

g dξ = −

∫

X×V

µa(x, v)f(x, v)dxdv ≤ 0.

For a function whose sign is unknwon, we begin by multiplying (1) by sgn(f)(x, v)
and then we integrate by parts. Using the fact that ∇|f | = sgn(f)∇f , and
sgn(f)f = |f | we obtain the exact same conclusion for functions having no spe-
cific sign, namely that:

‖f‖L1(Γ+, dξ) ≤ ‖g‖L1(Γ−, dξ).
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The assumption (5) directly ensures that T is a contraction operator. Denoting by
I the identity of L1(Γ−, dξ), we know that I−T is invertible. Thereby the solution
of (6) satisfies

(8) (I − T )f = f− on Γ−.

�

2.3. The inverse problem without reflection. We assume in this Section that
the absorption coefficient σa does not depend on the velocity v. In [5], the authors
prove that under suitable assumptions, the albedo operator A : f− → f |Γ+ de-
termines uniquely the coefficient σa(x). In addition, when the space dimension is
higher than 3, the albedo operator also characterizes the scattering kernel k(x, v, w).

We briefly sketch their arguments below. The main idea is to decompose the
albedo operator into three parts: the solution to (1) with the boundary condition
f− = δΓ−(x′ − x′

0)δV (v − v0) is given by f(x, v) = f1(x, v) + f2(x, v) + f3(x, v),
where f1 is the contribution of an incoming laser subject to absorption only. It
verifies:

(9) v · ∇f1(x, v) + σa(x)f1(x, v) = 0,

and the solution is explicitely given by:
(10)

f1(x, v) = |n(x′

0) · v0|

Z τ+(x,v)

0

exp

 

−

Z τ−(x,v)

0

σa(x − pv) dp

!

δ(x− x
′

0 − tv)δ(v − v0) dt.

The second contribution f2 results from trace of this laser (a single line parametrized
by x′

0 + tv0) which is scattered and absorbed. It satisfies:

(11) v · ∇xf2(x, v) + σa(x)f2(x, v) = α(x, v0)k(x, v, v0)δ(x − τ−(x, v0)v0),

and the solution is explicitely given by:

(12) f2(x, v) = |n(x′
0) · v0|

∫ τ−(x,v)

0

∫ τ+(x,v)

0

exp

(

−

∫ s

0

σa(x − pv) dp

)

×exp

(

−

∫ τ−(x−sv,v0)

0

σa(x − sv − pv0) dp

)

k(x−sv, v0, v)δ(x−x′
0−sv−tv0) dt ds.

The reminder f3 has no explicit formulation. However it is proven in [5] that it is
a function. Namely, it satisfies the following estimate:

(13) (min{τ, K})−1|n(x′
0) · v0|

−1f3(x, v) ∈ L1(X × V ) uniformly in (x′
0, v0).

Let us sketch the arguments of [5] in our context (see also [1] for a comprehensive
review). We restrict to x′

0 = 0 for the sake of clarity. At first glance we look for a
solution of the form

(14) f(x, v) = α(x, v)δ(x − τ−(x, v)v)δ(v − v0) + g(x, v),

where g(x, v) contains lower order distribution terms (namely either the support
of the singular parts is of lower dimension, or they are simply functions [5, 1]).
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Plugging (14) into (1), we obtain the following equation for α and g:

v·

(

∇xα(x, v)δ(x − τ−(x, v)v) + α(x, v)

(

Id − e1 ⊗
v

v · e1

)

∇xδ(x − τ−(x, v)v)

)

δ(v−v0)

+ σa(x)α(x, v)δ(x − τ−(x, v)v)δ(v − v0) + v · ∇xg(x, v) + σa(x)g(x, v)

= α(x, v0)k(x, v, v0)δ(x − τ−(x, v0)v0) +

∫

w

k(x, v, w)g(x, w)dw,

where we have used the explicit formulation: τ−(x, v) =
x · e1

v · e1
. Therefore we get:

(15)

(v · ∇xα(τ−(x, v0)v0, v0) + σa(τ−(x, v0)v0)α(τ−(x, v0)v0, v0)) δ(x−τ−(x, v0)v0)δ(v−v0)

+v·∇xg(x, v)+σa(x)g(x, v) = α(x, v0)k(x, v, v0)δ(x−τ−(x, v0)v0)+

∫

w

k(x, v, w)g(x, w)dw.

By identifying the leading order term (a direct product of Dirac masses), we even-
tually obtain:

v · ∇xα(τ−(x, v0)v0, v0) + σa(τ−(x, v0)v0)α(τ−(x, v0)v0, v0) = 0,

in other words,

d

ds
α(x(s), v0) + σa(x(s))α(x(s), v0) = 0, x(s) = sv, s = 0 . . . τ+(0, v0).

This equation essentially determines the fate of a laser without scattering. The
solution is known as the Radon (or X-ray) transform of σa:

α(x, v) = exp

(

−

∫ τ−(x,v)

0

σa(x − sv)ds

)

.

In particular, this entirely determines the absorption rate σa(x) (cf. [7, 5] and
references therein).

The next contribution in the development of g = f2+f3 is issued from secondary
scattering of this first dominant laser trace, namely the transport equation with
source term (11), which is solved assuming that the last integral contribution is
negligible in (15). The boundary value is f2|Γ−

= 0. Consequently, one may
compute the measure solution of (11). It explicitely writes as follows:
(16)

f2(x, v) =

∫ τ−(x,v)

t=0

exp

(

−

∫ t

s=0

σa(x − sv)ds

)

α(x−tv, v)k(x−tv, v, v0)δ(x−tv−τ−(x−tv, v0)v0)dt.

One of the major conclusion of [5] concerns the role of the dimension. Indeed,
if N ≥ 3 a ray (x, v) in the phase space X × V will not go through the support of
the source {x = τ−(x, v0)v0} × {v0} except on a zero-measure set. This is not the
case in dimension 2. As a consequence, the distribution (16) is a singular measure
as soon as N ≥ 3, because it is supported on rays issued from the laser source.
Hence it can be distinguished from the reminder f3 (13). This enables to retrieve
the scattering kernel k. Such a procedure cannot be performed in dimension 2. The
stability issue of the inverse problem is discussed in [1].

To conclude this theoretical presentation of the inverse problem, let us mention
the generalization of above results to the case of pure reflection (without scattering
and refraction at the interface) when measurements are possible only at the upper
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boundary (from where the laser is issued). First, the dominant contribution is given
by the successive reflection of the laser:

f1(x, v) =
∑

n≥0

αn(x, v)δ (x − xn − τ−(x, vio)vio) δ (v − vio) + g(x, v),

where vio denotes successively the incoming vi = v0 or the outcoming vo = Rv0

velocity, and xn is the sequence of impact points. We focus on α1(x2, vo) which
combines successive absorptions along the two first rays:

α1(x, vo) = exp

(

−

∫ τ−(x1,vi)

0

σa(xi − sv)ds

)

×exp

(

−

∫ τ−(x2,vo)

0

σa(x2 − svo)ds

)

.

It is known that the first term in the product, namely the Radon transform, char-
acterizes the absorption rate σa [7]. It would be interesting to prove whether or not
the product also characterizes σa.

The second contribution f2 can be expressed as above. It shares similar proper-
ties with the case without reflection: namely it is a singular measure in dimension
N ≥ 3. So we expect the Albedo operator to characterize the scattering kernel in
the presence of reflection too.

3. Numerical simulations

3.1. Simplifying assumptions. We do not focus on a single layer anymore, be-
cause skin is structured in many of them. We only consider here the most important
ones: the epidermis, the dermis and the hypodermis. We assume that the absorp-
tion and scattering coefficients are constant in each part, and that the probability
density function obeys the Henvyey-Greenstein law, namely:

p(x, v, w) =
1 − g2

(1 + g2 − 2gv.w)
3
2

,

where g is the anisotropy factor and is constant in each layer, as described in [8].
The enlightment we want to model presents cylindrical symmetry, so we get rid of
the second spherical angle, to keep the angle with respect to the skin plane. Hence,
we only need two scalars: one for the depth (the position), and one for the angle
(the direction).

To model the Snell-Descartes law at each interface, we assigne the reflection
operator as follows: Rϕ(x′, v) = a(x′, v)ϕ(x′, ṽ), where ṽ = (−v1, v2, v3). But as
we are now interested in what happens on both sides of the interfaces, we have to
consider the refraction too. If we consider one of our interfaces, and denote by nu,
resp. nd, the optical index of the upward, resp. downward, layer, the refraction op-
erator can be expressed as Fϕ(x′, v) = b(x′, v)ϕ(x′, v̂) where v̂ is the direction after
refraction given by the well known Snell-Descartes formula nu sin αu = nd sin αd,
and b is the refraction factor, computed from the optical indices.

Remark 1. The factor a which is computed from the optical indices of the inner
layers of the skin is equal to 1 for sufficiently grazing directions. Indeed, the op-
tical indices are generically higher in the skin than in the air, hence grazing rays
are trapped inside the skin. Therefore the assumption (5) is not satisfied in this
framework. However it is not expected that the transfer of photons at the interface
between skin layers obeys perfect Snell-Descartes law (diffraction is expected to play
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a role). As far as numerics are concerned, we use the contractive effect of the
absorption part µa ≥ ν > 0 to ensure convergence of the scheme.

3.2. Implementation. To get the discretization formula, we evaluate (1) in x−tv,

then multiply by exp
(

−
∫ t

0
σa ds

)

and integrate from t = 0 to t = ∆t:

f(x, v) = exp

(

−

∫ ∆t

0

σa ds

)

f(x−v∆t, v)+

∫ ∆t

0

exp

(

−

∫ t

0

σa ds

)

A2f(x−tv, v) dt.

where A2 is the scattering operator. In this formula, x is implicitely assumed to
belong to R

3. In order to adapt it to our unidimensional case, we have to choose
properly the step ∆x. We opt for (v.e1)∆t = ∆x, where v.e1 = sin(∆θ) > 0 is the
vertical component of the first discrete velocity.

Assuming that the scattering is piecewise constant and writing this formula
between two points, we obtain the following discretization formula:
(17)

fn+1(x+∆x, v) = fn+1(x, v) exp

(

−
σa∆x

v.e1

)

+
1

σa

(

1 − exp

(

−
σa∆x

v.e1

))

A2(f
n)(x, v).

The inputs are the values of the physiological parameters, and the output of
interest is the reflectance spectrum of the corresponding skin (which is the infor-
mation collected at the outward surface of the skin). Nevertheless, the intensity of
the light is computed in the whole tissue. The structure of the code is the following:

• loop over all the wavelengths
• convergence loop, that does not stop until ‖fn+1 − fn‖ < ε
• loop over all the layers to propagate the light, using (17)
• loop over all the layers to update the boundary conditions at each interface,

using Snell-Descartes laws.

For each simulation, we monitor if the total mass is preserved, to ensure that
the code do not create or destroy too much energy. For a source of total energy
1, the loss due to the code never exceeds 2%. To obtain the reflectance curve, we
integrate, for a given wavelength, the light intensity at the upper surface over all
the outgoing directions. This gives the reflectance, denoted by S(λ). Then, we
compute the so-called relative reflectance, Sr(λ):

Sr(λ) =
S(λ) − S(380)

S(780)− S(380)
.

3.3. The direct problem. Our code has been compared to a reliable Monte-Carlo
code that sends directly photons in the material. The following results have been
obtained by setting in our code:

• [100, 100, 20] points for, respectively: epidermis, dermis, hypodermis,
• 160 angular samples for the whole sphere,
• 100 wavelengths, from 380 to 780 nm ,
• a tolerance of 10−7 for the convergence loop.

and by sending 10000 photons in the Monte-Carlo code.

Remark 2. During this validations, we noted that the optical index of the hypo-
dermis is crucial and severely affects both S and Sr.
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Our simulation is based on the three main layers, whereas in the Monte-Carlo
code, a multiplicative factor is used to take into account the full behaviour from
the hypodermis. When a photon arrives at the dermis-hypodermis junction, it is
either absorbed or reflected according to a pre-computed law. We show on the
figure 2 the most delicate numerical experiment to reproduce. The optical index of
the hypodermis has been carefully chosen to adjust the relative spectrum in a good
agreement. We gain a time factor from 2 up to 3 in the good cases as opposed to
the Monte-Carlo code.
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Figure 2. Relative reflectances for a given set of physiological parameters

The figure 4 is a representation of the light intensity in the whole skin and for
all the directions, for the wavelength λ = 456 nm and for the following values of
(µa, µs) in each layer: epidermis (1.69, 88.43), dermis (0.985, 260.11) and hypoder-
mis (9.2720, 1186.4).

3.4. Study of the derivatives. It would be interesting to retrieve the physio-
logical parameters from the reflectance curve. To this end, we observe that the
derivative of the intensity with respect to a parameter pi verifies the exact same
transport equation with a given source term:

(18)

v ·∇x

∂f

∂pl

+σa

∂f

∂pl

=

∫

S2

k(v, w)
∂f

∂pl

(x, w, λ) dw−
∂σa

∂pl

f +

∫

S2

∂k

∂pl

(v, w)f(x, w, λ) dw.

Hence the derivatives can be computed very easily from the same code and with
the same scheme. So, once we have computed the light intensity, we use it in the
source term of (18). From those derivatives, we can compute the derivatives of
the reflectance curve with respect to each physiological parameter. On the figure
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Figure 3. Relative reflectances for another set of physiological parameters

Figure 4. Light intensity for λ = 456 nm

5, we present the derivatives of the reflectance curve with respect to three physi-
ological parameters. This kind of result can help to understand in which range of
wavelengths each component has a relative influence on the color of the skin. For
example, looking at the right image, we can deduce that this physiological param-
eter has an influence on the color on the skin only for the wavelengths belonging to
[450nm; 540nm].
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Figure 5. Derivatives of Sr(λ) w.r.t. various physiological parameters
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