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Abstract. We consider a selection mutation equation for the density of in-
dividuals with respect to a continuous phenotypic evolutionary trait in which
the competition term for an individual of a given trait depends on the traits
of all the other individuals giving then an infinite dimensional nonlinearity.
Mutation is modelled by means of an integral operator. We prove existence of
steady states and we show that their asymptotic profile, when the mutation
rate goes to zero, is a Cauchy distribution.

1. Introduction. In this paper we consider a selection mutation equation for the
density of individuals of a biological population with respect to a continuous pheno-
typic evolutionary trait. Selection mutation equations in the continuous framework
were introduced in [10] and [18] in order to explain the maintenance of variability
in a continuum of alleles due to the balance effect of selection and mutation. A
continuation of this work can be found in [3] and more extensively in [4].

With an ecological point of view this type of equations has been used to model
the evolution of phenotypical traits (see for instance [5, 6, 11]).
One of the main goals in this topic is the study of the existence and the properties
of the stationary solutions of these equations. An important feature of these pre-
vious works is that the feedback variable (also called environment, see e.g [21]) is
finite-dimensional and therefore the equations reduce to linear when a finite number
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of quantities is considered fixed. This is what happens when individuals compete
for a given number of different nutrients (see e.g. [11], [5]).
More precisely, this means that these equations can be written in the form ft =
A(E(f))f where f denotes the density of individuals with respect to the evolu-
tionary trait, ft is time derivative, E is a (usually linear) function from the state
space to a finite dimensional space and A(E) is a linear operator on the state space.
Then the problem of looking for steady states is equivalent to finding positive eigen-
functions corresponding to the zero eigenvalue of the linear operator plus solving
a fixed point problem in a finite dimensional space (nonlinear due to the nonlinear
dependence of the operator A(E) with respect to E, see [7, 8, 9]).

However, in many applications, the environment is not finite dimensional (see
[26, 27, 22], for instance), we thus consider (like in [12] and [16]) in the present
paper the more general case where the competitive stress that an individual of a
given trait feels (undergoes) turns out to be the sum of the individual competitions
caused by all the other individuals, typically in such a way that they are stronger
when individuals have closer traits.

In this article, we model mutations by means of an integral operator like in
[27, 25, 11, 23, 2]. Notice that mutations have also been modelled using a diffusion
operator in e.g. [22, 26, 6, 19].

Typically, only a small proportion of offspring are affected by mutations having
an influence on the considered phenotype. Notice that this assumption of rare
mutations is at the basis of the so-called Adaptive Dynamics Theory (see [20, 14]),
where the ecological time scale (that is, the time scale of the selection phenomena) is
considered as infinitely faster than the evolutionary time scale (that is the time scale
of mutations). On the other hand pure selection models for continuous phenotypic
traits are often used in theoretical works on biological evolution (see e.g. [15]). For
mathematical studies on pure selection models see for instance [1, 12, 24].

We are thus interested in an asymptotic study of the steady states of the popula-
tion when the proportion of mutants goes to zero. In [7, 8, 9], it has been shown (in
the case of a finite-dimensional environment) that the steady states tend to concen-
trate around a Dirac mass at an ESS value of the trait (that is, a value of the trait
such that if there is no mutation and all individuals share this trait, they are un-
invadable by small populations with a different trait value, see [20]). In the case of
a small mutation modelled by a diffusion, formal asymptotics (see [18, 17]) suggest
that the asymptotic profile of the population should be a Gaussian distribution. In
this paper we show rigorously that in the case of mutation modelled by an integral
operator, the asymptotic profile of a steady state is a Cauchy distribution (see (1)).

In Section 2, we introduce the model and some notation that will be useful
throughout the article.

In Section 3, using Schauder’s fixed point theorem, we show (under reason-
able technical assumptions on the coefficients) that the model admits a non-trivial
steady-state if (and only if) the per capita growth rate is positive for some value of
the trait when the population is small.

Section 4 is devoted to an asymptotic analysis of the shape of steady populations,
when the mutation rate tends to zero. As in [7, 8, 9], we consider cases where the
monomorphic population f = δ0 would be globally stable in the corresponding
pure selection model, and we study what happens when the mutation rate is small,
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but not zero. In order to do it, we perform a rescaling on both dependent and
independent variables and we obtain that the steady states tend, when the mutation
rate goes to zero, to a Cauchy distribution:

fε(x) ∼ 1/ε

C1 + C2(x/ε)2
, (1)

where ε is the mutation rate, and C1, C2 are constants that can be computed
explicitly.

2. The model. Let us consider the following selection mutation model


























∂tf(t, x) =
(

(1 − µ)b(x) − d0(x) −
∫

X
d(x, y)f(t, y)dy

)

f(t, x)

+ µ
∫

X
b(y)β(x, y)f(t, y)dy,

f(0, x) = f0(x),

(2)

for the density of individuals f(t, x) with respect to an (abstract) evolutionary trait
x ∈ X , a bounded interval of R such that 0 ∈ Int X .
The parameter µ ∈ [0, 1] stands for the probability of mutation in every reproduc-
tion, b(x) is the trait specific birth rate and β(x, y) is the density of probability that
the offspring of an individual with trait y has trait x.
The quantity (1− µ)b(x)f(t, x) gives then the density of newborns per unit of time
due to faithful reproduction and µ

∫

X
b(y)β(x, y)f(t, y)dy the density of newborns

per unit of time due to mutant reproduction. The trait specific per capita death
rate is given by the terms d0(x) and

∫

X
d(x, y)f(t, y)dy. The last one is the only

nonlinear term which models the interaction between individuals through competi-
tion for resources.
Typically we think of a function d(x, y) = d̃(|x − y|) such that the function d̃ is
bounded below by a strictly positive constant (meaning that any individual com-
petes with all individuals having any value of the trait) and having a maximum at
zero (meaning that the maximum competition occurs between identical individu-
als). Obviously this means that the function d has critical points on the diagonal.
However we will assume a weaker hypothesis on d (see Assumption 3 in section 4).
To simplify notations in the proofs, we will denote from now on by µm(x, y) the
rate of mutants of trait x produced by a parent of trait y:

m(x, y) := b(y)β(x, y),

and by aµ the intrinsic growth rate if we forget the mutant newborns:

aµ(x) := (1 − µ)b(x) − d0(x).

We will also define the fitness of an individual of trait x as

s[f(t, ·)](x) = aµ(x) −
∫

X

d(x, y)f(t, y) dy.

3. Existence of steady-states. This section is devoted to prove existence of
steady states of (2). We introduce the notation

d∗̃f(x) :=

∫

y∈X

d(x, y)f(y) dy,

and the same for the mutation kernel m. To avoid cases where the population
concentrates on the boundary, we will make the following assumption:
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Assumption 1: For any f ∈ L1
+(X) such that max s[f ] = min(d∗̃f−(1−µ)b+d0) ≤

1, the maximum of s[f ] = (1 − µ)b − d0 − d∗̃f is reached in the interior of X .

This assumption seems difficult to check. However it is possible to give easier
conditions on the parameters of the model that imply it and that we state in the
following remark.

Remark 1. Notice that max s[f ] = min(d∗̃f − (1 − µ)b + d0) ≤ 1 implies that

‖f‖L1 ≤ max((1−µ)b−d0)+1
min d .

Assumption 1 is then satisfied if one of the following two conditions is satisfied:

• There exists x̄ ∈ Int X such that

(1 − µ)b(x̄) − d0(x̄) = max((1 − µ)b − d0)

and for any x ∈ ∂X ,

(1 − µ)b(x) − d0(x) ≤ max((1 − µ)b − d0)

−(‖d‖∞ − min d)
max((1 − µ)b − d0) + 1

min d
.

Indeed, this implies that for x ∈ ∂X

s[f ](x) − s[f ](x̄) ≤ ‖d‖∞‖f‖L1 − max((1 − µ)b − d0)

−min d‖f‖L1 + ((1 − µ)b − d0)(x)

≤ 0,

Then, s[f ](x̄) ≥ s[f ](x), and the maximum of s[f ](x) is necessarily reached in
the interior of X .

• Let X = [x1, x2],

(1 − µ)b′(x1) − d′0(x1) − ‖∂1d‖∞ max((1−µ)b−d0)+1
min d ≥ 0

(1 − µ)b′(x2) − d′0(x2) + ‖∂1d‖∞ max((1−µ)b−d0)+1
min d ≤ 0.

This implies that d
dxs[f ](x1) > 0 > d

dxs[f ](x2), and the maximum of s[f ] is
then reached in the interior of X .

In order to prove the theorem of existence of steady states we first prove the following
technical lemma.

Lemma 3.1. Let C1, C2, C3, C4, C5, C6 > 0. If δ > 0 is small enough, then there
exists α̂ > 0 such that:

α̂ ≤ (1 − δ)C1
(

C2 + C3

(

C4 + C5

α̂ δ
)) − C6δ. (3)

Proof. α̂ satisfies (3) if and only if

0 ≥ α̂ ((C2 + C3C4)α̂ − C1) + δ((C1 + C3C5)α̂ + C6(C2α̂ + C3(C4α̂ + C5δ)))

which is satisfied (for instance) by α̂ = C1

2(C2+C3C4)
> 0, if δ > 0 is small enough.

Theorem 3.2. Let µ ∈ [0, 1], b, d0 ∈ W 2,∞(X), d ∈ W 2,∞(X×X), β ∈ W 1,∞(X×
X) such that min d > 0, min β > 0, min b > 0 and such that max((1−µ)b−d0) > 0.
Under Assumption 1 there exists a non trivial (i.e. non 0 everywhere) steady state
f̄ ∈ W 1,∞(X) of (2). Moreover, if (for some k ∈ N) b, d0 ∈ W k,∞(X) and
d, β ∈ W k,∞(X × X), then f̄ ∈ W k,∞(X).
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Proof. Let δ > 0. We define,

F (f) := (1 − δ)f + δ
µm∗̃f
−s[f ]

,

and (for ᾱ > 0, Λ̄ > 0, γ > 0 to be chosen later) the sets

F :=
{

f ∈ L1
+; α(f) ≥ ᾱ, ‖f‖L1 ≤ Λ̄

}

,

where α(f) := min {−s[f ]}, and

G := F ∩
{

g ∈ W 1,∞(X); ‖g′‖∞ ≤ γ
}

.

We notice that G is a convex, bounded and closed set in (C(X), ‖ · ‖∞). Then,
thanks to Ascoli Theorem, it is compact in (C(X), ‖ · ‖∞). We will show that it is
not empty (see (11) below), and that, for δ small enough, one can find ᾱ, Λ̄ such
that F (G) ⊂ G. We can then apply Schauder’s fixed point theorem to the set G and
obtain the existence of f̄ ∈ G such that

f̄ = F (f̄) = (1 − δ)f̄ + δ
µm∗̃f̄
−s[f̄ ]

,

and therefore

0 = (s[f̄ ])f̄ + µm∗̃f̄ ,

which proves the existence of a steady-state f̄ ∈ W 1,∞(X) of (2). Notice that f̄ is
non trivial because 0 /∈ F since α(0) = min(−aµ) = −max((1 − µ)b − d0).
Let us prove that, for δ small enough, F (G) ⊂ G. We will do it in four steps.

Step 1: We bound {α(F (f)); f ∈ F} from below.

α(F (f)) = min {−s[F (f)]}

= min

{

d∗̃
[

(1 − δ)f + δ
µm∗̃f
−s[f ]

]

− aµ

}

≥ min {−s[f ]} + δ min

{

d∗̃
(

µm∗̃f
−s[f ]

− f

)}

≥ α(f) + δ

(

µ(min d) (min m) ‖f‖L1

∫

X

dx

−s[f ]
− ‖d‖∞‖f‖L1

)

.

Thanks to Assumption 1, if α(f) ≤ 1, there exists x0 ∈ IntX such that (−s[f ])(x0) =
min(−s[f ]) = α(f). Then, (−s[f ])′(x0) = 0, and

(−s[f ])(x) ≤ α(f) +
1

2
‖(−s[f ])′′‖∞(x − x0)

2,

which gives the following estimate on
∫

X
dx

−s[f ] , provided that α(f) ≤ min
( ‖a′′

µ‖∞

8 |X |2, 1
)

,

∫

X

dx

−s[f ]
≥

∫ |X|/2

0

dy

α(f) + 1
2 (‖a′′

µ‖∞ + ‖∂2
11d‖∞‖f‖L1)y2

=

√

2

α(f) (‖a′′
µ‖∞ + ‖∂2

11d‖∞‖f‖L1)
arctan





√

‖a′′
µ‖∞ + ‖∂2

11d‖∞‖f‖L1

2α(f)

|X |
2





≥ π

2
√

2α(f) (‖a′′
µ‖∞ + ‖∂2

11d‖∞‖f‖L1)
.
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Then,

α(F (f)) − α(f) ≥ δ‖f‖L1







µ(min d) (min m)

π
2
√

2
√

α(f) (‖a′′
µ‖∞ + ‖∂2

11d‖∞Λ̄)
− ‖d‖∞







≥ 0,

if α(f) ≤ min

{

π2

8 µ2 (min d)2 (minm)2

‖d‖2
∞

(‖a′′

µ‖∞+‖∂2
11d‖∞Λ̄)

,
‖a′′

µ‖∞

8 |X |2, 1

}

.

We define a constant Λ̃ that will be used in Step 2 by:

Λ̃ :=
1

min d
(µ‖m‖∞|X | + maxaµ) . (4)

We also define the constant Cα by

Cα := (‖a′′
µ‖∞ + ‖∂2

11d‖∞Λ̃)min
{ π2

8 µ2 (min d)2 (min m)2

‖d‖2
∞ (‖a′′

µ‖∞ + ‖∂2
11d‖∞Λ̃)

,

‖a′′
µ‖∞
8

|X |2, 1, µ‖m‖∞|X |
}

, (5)

(the last term µ‖m‖∞|X | will be useful at the end of Step 3) and α̃Λ̄ by:

α̃Λ̄ :=
Cα

(‖a′′
µ‖∞ + ‖∂2

11d‖∞Λ̄)
. (6)

From now on we assume Λ̄ ≥ Λ̃ and ᾱ ≤ α̃Λ̄.
Let us take f ∈ F . If α(f) ≤ α̃Λ̄ then we have just proved that α(F (f)) ≥ α(f) ≥ ᾱ.
On the other hand if α(f) ≥ α̃Λ̄ then

α(F (f)) = min

{

(1 − δ)(−s[f ]) + δ

[

d∗̃
(

µm∗̃f
−s[f ]

)

− aµ

]}

≥ (1 − δ)α̃Λ̄ + δ min

{

d∗̃
(

µm∗̃f
−s[f ]

)

− aµ

}

≥ (1 − δ)α̃Λ̄ − δ max aµ

=
(1 − δ)Cα

(‖a′′
µ‖∞ + ‖∂2

11d‖∞Λ̄)
− δ max aµ.

That is, we have shown that for any f ∈ F ,

α(F (f)) ≥ (1 − δ)Cα

(‖a′′
µ‖∞ + ‖∂2

11d‖∞Λ̄)
− δ max aµ or α(F (f)) ≥ ᾱ. (7)

Step 2: We bound {‖F (f)‖L1; f ∈ F} from above.

‖F (f)‖L1 =

∫ [

f + δ

(

µm∗̃f
−s[f ]

− f

)]

dx

= ‖f‖L1 + δ

[∫

µm∗̃f
−s[f ]

dx − ‖f‖L1

]

≤ ‖f‖L1 + δ

[

µ‖m‖∞|X |
min(−s[f ])

− 1

]

‖f‖L1

≤ ‖f‖L1 + δ

[

µ‖m‖∞|X |
‖f‖L1 min d − max aµ

− 1

]

‖f‖L1,
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So, if ‖f‖L1 ≥ 1
min d (µ‖m‖∞|X | + maxaµ) = Λ̃ then ‖F (f)‖L1 ≤ ‖f‖L1 ≤ Λ̄.

We consider next f ∈ F such that ‖f‖L1 ≤ Λ̃. Then

‖F (f)‖L1 ≤ (1 − δ)‖f‖L1 + δµ‖m‖∞‖f‖L1

|X |
α(f)

≤ (1 − δ)Λ̃ + δµ‖m‖∞Λ̃
|X |
ᾱ

≤ Λ̃(1 + δµ‖m‖∞
|X |
ᾱ

).

That is, we have shown that for any f ∈ F ,

‖F (f)‖L1 ≤ Λ̃(1 + δµ‖m‖∞
|X |
ᾱ

) or ‖F (f)‖L1 ≤ Λ̄. (8)

Step 3: We show that if δ > 0 is small enough, there exist 0 < ᾱ, Λ̄ < ∞ such that
F (F) ⊂ F , and F 6= ∅.
Thanks to steps 1 and 2, in order to show that F (F) ⊂ F , we need to show that
for δ > 0 small enough, ᾱ > 0 and Λ̄ < ∞ can be chosen such that:















ᾱ ≤ (1 − δ)Cα

(‖a′′
µ‖∞ + ‖∂2

11d‖∞Λ̄)
− δ max aµ,

Λ̄ ≥ Λ̃(1 + δµ‖m‖∞|X|
ᾱ ).

(9)

In order to show that such a choice of ᾱ, Λ̄ is posssible, we apply Lemma 3.1 and
get that for δ > 0 small enough, there exists α̂ > 0 satisfying

α̂ ≤ (1 − δ)Cα

‖a′′
µ‖∞ + ‖∂2

11d‖∞
(

Λ̃(1 + δµ‖m‖∞|X|
α̂ )
) − δ max aµ. (10)

We define then ᾱ := α̂, and Λ̄ := Λ̃(1+ δµ‖m‖∞|X|
α̂ ). The second equation of (9) is

satisfied thanks to the definition of Λ̄, and the first equation of (9) is satisfied thanks

to (10). Finally, ᾱ ≤ α̃Λ̄ and Λ̄ ≥ Λ̃ thanks to (10). It follows that F (F) ⊂ F .

Finally, in order to show that F is not empty, we consider the constant function
g ∈ L1(X):

g(x) :=
Λ̃

|X | . (11)

Then, ‖g‖L1 = Λ̃ ≤ Λ̄, and

α(g) = min {−s[g]}

≥ Λ̃

|X | |X |min d − max aµ

= µ‖m‖∞|X |
≥ α̃Λ̄,

thanks to the definitions of (4)-(6). Then, α(g) ≥ ᾱ, and g ∈ F which cannot be
empty. Notice that g ∈ G.

Step 4: We conclude.
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We choose δ, ᾱ, Λ̄ > 0 such that F (F) ⊂ F , which is possible thanks to Step 3. We
compute the first derivative of F (f) as follows:

F (f)′ = (1 − δ)f ′ + δ

[

µ∂1m∗̃f
−s[f ]

+ (µm∗̃f)
a′

µ − ∂1d∗̃f
(−s[f ])2

]

,

and then, if f ∈ F ∩ W 1,∞(X),

‖F (f)′‖∞ ≤ (1 − δ)‖f ′‖∞ + γδ, (12)

where γ := µ‖∂1m‖∞Λ̄
ᾱ + µ‖m‖∞Λ̄

‖a′

µ‖∞+‖∂1d‖∞Λ̄

ᾱ2 .
Then, F (G) ⊂ G thanks to Step 3 and (12). Thus, we can apply Schauder’s fixed
point theorem, which proves the existence of a steady-state f̄ ∈ W 1,∞(X) of (2),
and concludes the proof.

Remark 2. If b, d0 ∈ W k,∞(X), d, β ∈ W k,∞(X ×X), the same argument can be
used to build a set Gk ⊂ W k,∞(X) such that F (Gk) ⊂ Gk. It follows then that the
steady-state f̄ given by Theorem 3.2 satisfies f̄ ∈ W k,∞(X).

4. Asymptotics. In this section we perform an asymptotical analysis of the steady
states for small mutation rate. Since the mutation rate is supposed to be very small,
we denote it in this section by ε. The model (2) then reads (recall the notation at
the end of Section 2)

∂tf
ε(t, x) = s[fε(t, ·)](x)fε(t, x) + ε

∫

X

m(x, y)fε(t, y) dy for t ≥ 0, x ∈ X. (13)

Assumption 2: We assume that b′(0) = d′0(0) = 0. We also assume that d ∈
W 3,∞(X × X), b, d0 ∈ W 3,∞(X), and for some 1 > ε̄ > 0,

max
x∈X

max (b′′(x), (1 − ε̄)b′′(x)) − min
x∈X

d′′0 (x)

+
max(b − d0) + ε̄ maxy∈X ‖m(·, y)‖L1(X)

min d
‖∂2

11d‖∞ ≤ −δ < 0. (14)

Remark 3. Notice that Assumption 2 implies that b−d0 admits a unique maximum
at x = 0 and that for any ε ∈ (0, ε̄), aε = (1− ε)b− d0 has also a unique maximum
at x = 0.

Assumption 3: The following ”symmetry” condition holds:

∀x ∈ X, ∂1d(x, x) = 0.

Assumption 4: The mutation kernel satisfies:

m ≥ 0, min
X×X

m > 0, m ∈ C1(X × X) ∩ L∞(X × X).

The next theorem gives the result on the asymptotics of the steady states.
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Theorem 4.1. Assume Assumptions 2, 3 and 4. For ε ∈ (0, ε̄) (where ε̄ is defined
as in Remark 3), let fε be a steady-state of (13). Then, there exists x̄ε = O(ε−1/3),
such that

εfε(ε(x̄ε + x)) =

m(0, 0) a0(0)
d(0,0) + O(

√
ε) + O(εx)

2(m(0,0)π)2

−[a′′

0 (0)− a0(0)

d(0,0) ∂2
11d(0,0)]

+ O(
√

ε) + 1
2

(

−[a′′
0(0) − a0(0)

d(0,0)∂
2
11d(0, 0)] + O(

√
ε) + O(εx)

)

x2

Remark 4. Note that this theorem shows that asymptotically, fε is of the form of

a Cauchy distribution centered in εx̄ε = O(ε
2
3 ).

If mutations are modelled by a diffusion (instead of an integral operator as in this
article), formal asymptotics (see [18, 17]) suggest that the asymptotic profile of the
population should be a Gaussian distribution.

Proof. We introduce the change of variable fε(t, x) = 1
εgε(t, x

ε ), and consider the
nontrivial steady-states uε ≥ 0 for the equation on gε

∀x ∈ ε−1X, 0 = sε[uε](x)uε(x) + ε2

∫

ε−1X

m(εx, εy)uε(y) dy, (15)

where sε[uε](x) := aε(εx) −
∫

ε−1X d(εx, εy)uε(y) dy. Then,

uε(x) =

∫

ε−1X
m(εx, εy)uε(y) dy

− 1
ε2 sε[uε](x)

. (16)

Let x̄ε ∈ ε−1X be such that

sε[uε](x̄ε) := max
x∈ε−1X

sε[uε](x). (17)

Remark 5. Notice that, since uε(x) ≥ 0, the second term on the right hand side
in (15) is strictly positive and therefore uε(x) > 0 and sε[uε](x) < 0 for x ∈ ε−1X .

Step 1: We show that 1
ε2 ∂2

xxsε[uε] ≤ −δ.

Since uε satisfies (15),

0 =

∫

ε−1X

[(

aε(εx) −
∫

ε−1X

d(εx, εy)uε(y) dy

)

uε(x)

]

dx

+

∫

ε−1X

[

ε2

∫

ε−1X

m(εx, εy)uε(y) dy

]

dx

≤
(

max aε − (min d) ‖uε‖L1(ε−1X)

)

‖uε‖L1(ε−1X)

+ε

(

max
y∈X

‖m(·, y)‖L1(X)

)

‖uε‖L1(ε−1X),

we can thus bound ‖uε‖L1(ε−1X) from above as follows

‖uε‖L1(ε−1X) ≤
max aε + ε maxy∈X ‖m(·, y)‖L1(X)

min d
. (18)

Moreover ∂2
xxsε[uε] satisfies

∂2
xxsε[uε](x) = ε2a′′

ε (εx) − ε2

∫

ε−1X

∂2
11d(εx, εy)uε(y) dy

≤ ε2
[

max
X

a′′
ε + ‖uε‖L1(ε−1X)‖∂2

11d‖L∞(X×X)

]

.
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Thanks to (18) and Assumption 2,

1

ε2
∂2

xxsε[uε](x) ≤ max
X

a′′
ε

+
maxX aε + ε maxy∈X ‖m(·, y)‖L1(X)

min d
‖∂2

11d‖L∞(X×X)

≤ −δ < 0,

which proves Step 1.

Remark 6. Step 1 proves that sε[uε] is concave. Then, x̄ε is well defined (unique)
by (17).

Step 2: We show that |εx̄ε| = O(
√

ε).

We show that if εx̄ε > 0 then εx̄ε ≤ O(
√

ε). The case εx̄ε < 0 can be dealt with in
the same way.
Since εx̄ε > 0, [0, εx̄ε) ⊂ X , and thanks to the definition (17) of x̄ε,

0 ≤ ∂xsε[uε](x̄ε). (19)

Then,

a′
ε(εx̄

ε) ≥
∫

ε−1X

∂1d(εx̄ε, εy)uε(y) dy

=

∫

|y−x̄ε|≤1/
√

ε

∂1d(εx̄ε, εy)uε(y) dy

+

∫

|y−x̄ε|≥1/
√

ε

∂1d(εx̄ε, εy)uε(y) dy. (20)

We perform a Taylor expansion to estimate the first term on the right hand side of
the equality in (20), using Assumption 3 and (18)

∫

|y−x̄ε|≤1/
√

ε

∂1d(εx̄ε, εy)uε(y) dy ≥
∫

|y−x̄ε|≤1/
√

ε

∂1d(εx̄ε, εx̄ε)uε(y) dy

+ε

∫

|y−x̄ε|≤1/
√

ε

∂2
12d(εx̄ε, εθ(y))(y − x̄ε)uε(y) dy

≥ 0 − ε‖∂2
12d‖∞

1√
ε
‖uε‖L1

≥ −C1

√
ε,

for some C1 > 0. To estimate the second term of (20), we first estimate sε[uε],
thanks to a Taylor expansion: for εx ∈ X ,

sε[uε](x) = sε[uε](x̄ε) + (x − x̄ε)∂xsε[uε](x̄ε) +
1

2
(x − x̄ε)2∂2

xxsε[uε](θ)

≤ sε[uε](x̄ε) − ε2

2
δ(x − x̄ε)2, (21)
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where we used (19) to estimate ∂xsε[uε](x), and Step 1 to estimate ∂2
xxsε[uε](θ).

Then, using (16), we get (thanks to Remark 5):
∫

|y−x̄ε|≥1/
√

ε

∂1d(εx̄ε, εy)uε(y) dy

≥ −‖∂1d‖∞
∫

|y−x̄ε|>1/
√

ε

||m||∞‖uε‖L1

− 1
ε2 sε[uε](x̄ε) + δ

2 (y − x̄ε)2
dy,

and then (thanks to Remark 5 and (18)),
∫

|y−x̄ε|≥1/
√

ε

∂1d(εx̄ε, εy)uε(y) dy

≥ −‖∂1d‖∞‖uε‖L1

∫

|y−x̄ε|>1/
√

ε

||m||∞
0 + 1

2δ(y − x̄ε)2
dy

≥ −C2

√
ε, (22)

for some C2 > 0. Finally, thanks to estimates (21) and (22), (20) becomes

a′
ε(εx̄

ε) ≥ −C
√

ε,

where C = C1 + C2. We assumed that εx̄ε > 0. Then, thanks to Assumption 2,
a′

ε(εx̄
ε) ≤ −εx̄εδ, and thus,

εx̄ε ≤ −a′
ε(εx̄

ε)

δ
≤ C

δ

√
ε.

Remark 7. Step 2 implies in particular that for ε > 0 small enough, εx̄ε ∈ IntX ,
and then,

0 = ∂xsε[uε](x̄ε).

Thanks to this equality and a Taylor expansion, (16) becomes:

uε(x) =

∫

ε−1X
m(εx, εy)uε(y) dy

− 1
ε2 sε[uε](x̄ε) + 1

2ε2 (−∂2
xx(sε[uε])(θ))(x − x̄ε)2

(23)

where θ ∈ [x̄ε, x] (or θ ∈ [x, x̄ε], if x < x̄ε).

Step 3: We bound Qε := − 1
ε2 sε[uε](x̄ε) from above and from below.

Let us remind what we showed in Step 1, that is,

∀x ∈ ε−1X, −∂2
xx(sε[uε])(x) ≥ δε2 > 0. (24)

Then, thanks to (23), (Qε > 0 thanks to Rem 5):

uε(x̄ε + x) ≤
∫

ε−1X m(ε(x̄ε + x), εy)uε(y) dy

Qε + 1
2δ x2

≤ ‖m‖∞
∫

ε−1X uε(y) dy

Qε + 1
2δ x2

, (25)

and then,
∫

ε−1X

uε ≤ ‖m‖∞
(∫

ε−1X

uε

)∫

ε−1X−x̄ε

dx

Qε + 1
2δ x2

≤ ‖m‖∞
(∫

ε−1X

uε

)∫

R

dx

Qε + 1
2δ x2

= ‖m‖∞
(∫

ε−1X

uε

)
√

2π√
Qεδ

,
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which yields the following upper bound on Qε (uniform in ε):

Qε ≤ 2π2‖m‖2
∞

δ
.

On the other hand, since

1

ε2
∂2

xxsε[uε](x) = a′′
ε (εx) −

∫

ε−1X

∂2
11d(εx, εy)uε(y) dy

≥
[

min a′′
ε − ‖uε‖L1(ε−1X)‖∂2

11d‖L∞(X×X)

]

≥
[

min a′′
ε − max aε̄ + ε̄ maxy∈X ‖m(·, y)‖L1(X)

min d
‖∂2

11d‖∞
]

=: −δ̃,

(where we have used (18)) we can obtain, using (23) the following estimate:

∫

ε−1X

uε ≥ (min m) ‖uε‖L1(ε−1X)

∫

ε−1X−x̄ε

dx

Qε − 1
2ε2 ∂2

xxsε[uε](θ)x2

≥ (min m) ‖uε‖L1(ε−1X)

∫

ε−1X−x̄ε

dx

Qε + 1
2 δ̃ x2

.

Since X is an interval, ε−1X − x̄ε contains the interval (−1
2ε |X |, 0], or [0, 1

2ε |X |).
Then,

1

min m
≥

∫ 1
2ε

|X|

0

dx

Qε + 1
2 δ̃ x2

=
π

√

2Qεδ̃
−
∫ ∞

1
2ε

|X|

dx

Qε + 1
2 δ̃ x2

≥ π
√

2Qεδ̃
− O(ε).

For ε > 0 small enough, we thus get a (uniform in ε) lower bound on Qε:

Qε ≥ π2 (min m)
2

2δ̃
> 0.

Step 4: We estimate
∫

ε−1X
uε, and Qε.

We first estimate
∫

ε−1X uε. Thanks to Step 3, Qε = O(1). Then,
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O(1) =
1

ε2
sε[uε](x̄ε)

=
1

ε2

(

aε(εx̄
ε) −

∫

ε−1X

d(εx̄ε, εy)uε(y) dy

)

=
1

ε2

(

aε(εx̄
ε) −

∫

|y−x̄ε|≤1/
√

ε

d(εx̄ε, εy)uε(y) dy

)

− 1

ε2

(

∫

|y−x̄ε|>1/
√

ε,y∈ε−1X

d(εx̄ε, εy)uε(y) dy

)

≥ 1

ε2

(

aε(εx̄
ε) −

∫

|y−x̄ε|≤1/
√

ε

(d(εx̄ε, 0) + O(εy))uε(y) dy

)

− 1

ε2

(

‖d‖∞
∫

|y−x̄ε|>1/
√

ε,y∈ε−1X

uε(y) dy

)

.

We estimate (using (18), Step 2 and (25) for the second estimate),
∣

∣

∣

∣

∣

∫

|y−x̄ε|≤1/
√

ε

O(εy)uε(y) dy

∣

∣

∣

∣

∣

≤
∫

|y−x̄ε|≤1/
√

ε

Cst ‖εy‖∞uε(y) dy

≤ Cst
√

ε‖uε‖L1(ε−1X)

= O(
√

ε), (26)

∣

∣

∣

∣

∣

∫

|y−x̄ε|>1/
√

ε,y∈ε−1X

uε(y) dy

∣

∣

∣

∣

∣

≤ ‖m‖L∞(X×X)‖uε‖L1(ε−1X)

∫

|y|>1/
√

ε

dy
1
2δy2

= O(
√

ε). (27)

Then,

O(ε2) ≥ aε(εx̄
ε) − d(εx̄ε, 0)

∫

|y−x̄ε|≤1/
√

ε

uε(y) dy − C
√

ε

= aε(εx̄
ε) − d(εx̄ε, 0)

∫

ε−1X

uε(y) dy − O(
√

ε).

We thus get

d(εx̄ε, 0)

∫

ε−1X

uε(y) dy ≥ aε(εx̄
ε) − O(ε2) − O(

√
ε). (28)

On the other hand, since

O(1) =
1

ε2
sε[uε](x̄ε)

≤ 1

ε2

(

aε(εx̄
ε) −

∫

|y−x̄ε|≤1/
√

ε

(d(εx̄ε, 0) + O(εy))uε(y) dy

)

+
1

ε2

(

‖d‖∞
∫

|y−x̄ε|>1/
√

ε,y∈ε−1X

uε(y) dy

)

,

we obtain

d(εx̄ε, 0)

∫

ε−1X

uε(y) dy ≤ aε(εx̄
ε) − O(ε2) + O(

√
ε). (29)
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¿From (28) and (29) we obtain

∫

ε−1X

uε(y) dy =
aε(εx̄

ε)

d(εx̄ε, 0)
+ O(

√
ε)

=
a0(0)

d(0, 0)
+ O(

√
ε). (30)

Next, using (23) and (27), we estimate Qε as follows,
∫

ε−1X

uε(x) dx =

∫

|x−x̄ε|≤1/
√

ε

uε(x) dx +

∫

|x−x̄ε|≥1/
√

ε, x∈ε−1X

uε(x) dx

=

∫

|x−x̄ε|≤1/
√

ε

∫

ε−1X
m(εx, εy)uε(y) dy

Qε + 1
2ε2 (−∂2

xxsε[uε](θ))(x − x̄ε)2
dx

+

∫

|x−x̄ε|≥1/
√

ε, x∈ε−1X

uε(x) dx

=

∫

|x−x̄ε|≤1/
√

ε

∫

ε−1X

(

m(0, εy) + O(ε 1√
ε
)
)

uε(y) dy

Qε + 1
2ε2 (−∂2

xxsε[uε](x̄ε) + ε2O(ε 1/
√

ε))(x − x̄ε)2
dx

+O(
√

ε). (31)

We estimate, using (26) and (27),
∫

ε−1X

m(0, εy)uε(y) dy =

∫

|y−x̄ε|≤1/
√

ε

m(0, εy)uε(y) dy

+

∫

|y−x̄ε|≥1/
√

ε

m(0, εy)uε(y) dy

=

∫

|y−x̄ε|≤1/
√

ε

(

m(0, 0) + O(ε 1/
√

ε)
)

uε(y) dy

+

∫

|y−x̄ε|≥1/
√

ε

m(0, εy)uε(y) dy

= m(0, 0)

∫

ε−1X

uε(x) dx + O(
√

ε),

and we estimate:
∫

|x−x̄ε|≤1/
√

ε

dx

Qε + 1
2ε2 (−∂2

xxsε[uε](x̄ε) + ε2O(
√

ε))(x − x̄ε)2

=

∫

R

dy

Qε + 1
2ε2 (−∂2

xxsε[uε](x̄ε) + ε2O(
√

ε))y2

−
∫

|y|≥1/
√

ε

dy

Qε + 1
2ε2 (−∂2

xxsε[uε](x̄ε) + ε2O(
√

ε))y2

=

√
2π

√

Qε
(

− 1
ε2 ∂2

xxsε[uε](x̄ε) + O(
√

ε)
)

+ O(
√

ε),

because, thanks to Step 1, we know that

0 ≤
∫

|y|≥1/
√

ε

dy

Qε + 1
2ε2 (−∂2

xxsε[uε](x̄ε) + ε2O(
√

ε))y2
≤
∫

|y|≥1/
√

ε

dy
δ
2y2

=
4
√

ε

δ
.

Then, (31) becomes:
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∫

ε−1X

uε(x) dx =

(

m(0, 0)

∫

ε−1X

uε(x) dx + O(
√

ε)

)





√
2π

√

Qε
(

− 1
ε2 ∂2

xxsε[uε](x̄ε) + O(
√

ε)
)

+ O(
√

ε)



 ,

so that

Qε =
2(m(0, 0)π)2

(−ε−2∂2
xxsε[uε](x̄ε) + O(

√
ε))

+ O(
√

ε)

=
2(m(0, 0)π)2

−1
ε2 ∂2

xxsε[uε](x̄ε)
+ O(

√
ε).

To estimate Qε further, we estimate − 1
ε2 ∂2

xxsε[uε](x̄ε) using (30),

∂2
xxsε[uε](x̄ε) = ε2a′′

ε (εx̄ε) −
∫

ε−1X

ε2∂2
11d(εx̄ε, εy)uε(y) dy

= ε2
[

a′′
ε (εx̄ε) −

∫

|y−x̄ε|≤1/
√

ε

∂2
11d(εx̄ε, εy)uε(y) dy

−
∫

|y−x̄ε|≥1/
√

ε

∂2
11d(εx̄ε, εy)uε(y) dy

]

= ε2
[

a′′
ε (0) + O(εx̄ε)

−
∫

|y−x̄ε|≤1/
√

ε

(

∂2
11d(0, 0) + O(εx̄ε) + O(εy)

)

uε(y) dy + O(
√

ε)
]

= ε2
[

a′′
0(0) − ∂2

11d(0, 0)

∫

ε−1X

uε + O(
√

ε)
]

= ε2
[

a′′
0(0) − a(0)

d(0, 0)
∂2
11d(0, 0) + O(

√
ε)
]

.

Finally, we obtain the following estimate on Qε:

Qε =
2(m(0, 0)π)2

−[a′′
0(0) − a0(0)

d(0,0)∂
2
11d(0, 0)]

+ O(
√

ε).

Step 5: We show that fε asymptotically has a Cauchy-like profile.

Thanks to (23), (27) and the estimates obtained in Step 4, we get (with θ ∈ [x̄ε, x],
or θ ∈ [x, x̄ε] if x < x̄ε),
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uε(x̄ε + x) =

∫

ε−1X
m(ε(x̄ε + x), εy)uε(y) dy

Qε + 1
2ε2 (−∂2

xx(sε[uε])(θ))x2

=

∫

|y−x̄ε|≤1/
√

ε (m(ε(x̄ε + x), εx̄ε) + O(ε(y − x̄ε)))uε(y) dy

Qε + 1
2ε2 (−∂2

xx(sε[uε])(x̄ε) + ε2O(ε(θ − x̄ε)))x2

+

∫

|y−x̄ε|≥1/
√

ε
m(ε(x̄ε + x), εy)uε(y) dy

Qε + 1
2ε2 (−∂2

xx(sε[uε])(x̄ε) + ε2O(ε(θ − x̄ε))) x2

=
m(ε(x̄ε + x), εx̄ε)

∫

ε−1X
uε(y) dy + O(

√
ε)

Qε + 1
2ε2 (−∂2

xx(sε[uε])(x̄ε) + ε2O(εx) + ε2O(εx̄ε))x2

=
m(0, 0) a(0)

d(0,0) + O(
√

ε) + O(εx)

2(m(0,0)π)2

−[a′′

0 (0)− a0(0)

d(0,0)
∂2
11d(0,0)]

+ O(
√

ε) + 1
2 (−[a′′

0 (0) − a0(0)
d(0,0)∂

2
11d(0, 0)] + O(

√
ε) + O(εx))x2

.

Step 6: We improve our estimate on x̄ε.

Thanks to Remark 7,

0 = ∂xsε[uε](x̄ε)

= εa′
ε(εx̄

ε) − ε

∫

ε−1X

∂1d(εx̄ε, εy)uε(y) dy

= ε2a′′
ε (εθ)x̄ε − ε

∫

ε−1X

∂1d(εx̄ε, εy)uε(y) dy,

where θ ∈ [0, x̄ε] (or θ ∈ [x̄ε, 0], if x̄ε < 0). Then,

x̄ε =
1

εa′′
ε (εθ)

∫

ε−1X

∂1d(εx̄ε, εy)uε(y) dy.

We consider C > 0 small enough so that [x̄ε−C, x̄ε+C] ⊂ ε−1X (C will be precisely
chosen later). Then,

∣

∣

∣

∣

∫

ε−1X

∂1d(εx̄ε, εy)uε(y) dy

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

|y−x̄ε|≤C

∂1d(εx̄ε, εy)uε(y) dy

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

|y−x̄ε|>C, y∈ε−1X

∂1d(εx̄ε, εy)uε(y) dy

∣

∣

∣

∣

∣

.

We estimate the first term using a Taylor expansion of y 7→ ∂1d(εx̄ε, y) around
y = εx̄ε (we assumed that d ∈ W 2,∞), and we estimate the second term using (25).
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Then, using Assumption 3,
∣

∣

∣

∣

∫

ε−1X

∂1d(εx̄ε, εy)uε(y) dy

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

|y−x̄ε|≤C

[

∂1d(εx̄ε, εx̄ε) + ∂2
12d(εx̄ε, εx̄ε)ε(y − x̄ε) + O(ε2|x̄ε − y|2)

]

uε(y) dy

∣

∣

∣

∣

∣

+ ‖∂1d‖∞
∫

|z|>C, z∈R

‖m‖∞‖uε‖L1(ε−1X)

1
2δ z2

dz

≤
∣

∣

∣

∣

∣

ε∂2
12d(εx̄ε, εx̄ε)

∫

|y−x̄ε|≤C

(x̄ε − y)uε(y) dy

∣

∣

∣

∣

∣

+ O(ε2C2)‖uε‖L1(ε−1X)

+ O(C−1). (32)

To estimate
∫

|y−x̄ε|≤C(x̄ε − y)uε(y) dy, we use (23) as follows (with θ ∈ (y, x̄ε) if

y ≤ x̄ε, or θ ∈ (x̄ε, y) otherwise, and in particular |θ − x̄ε| ≤ C),
∫

|y−x̄ε|≤C

(x̄ε − y)uε(y) dy

=

∫

|y−x̄ε|≤C

(x̄ε − y)
(∫

ε−1X m(εy, εz)uε(z) dz
)

Qε + 1
2ε2 (−∂2

xxsε[uε](θ))(y − x̄ε)2
dy

=

∫

|y−x̄ε|≤C

(x̄ε − y)
(∫

ε−1X
m(εy, εz)uε(z) dz

)

Qε + 1
2ε2 (−∂2

xxsε[uε](x̄ε))(y − x̄ε)2
dy

−
∫

|y−x̄ε|≤C

1
2ε2 (x̄ε − y)

[

∂2
xxsε[uε](x̄ε) − ∂2

xxsε[uε](θ)
]

[

Qε + 1
2ε2 (−∂2

xxsε[uε](θ))(y − x̄ε)2
] ×

(y − x̄ε)2
(∫

ε−1X m(εy, εz)uε(z) dz
)

[

Qε + 1
2ε2 (−∂2

xxsε[uε](x̄ε))(y − x̄ε)2
] dy

=: I1 + I2. (33)

We use symmetry arguments to estimate I1:

I1 =

∫

|y−x̄ε|≤C

(x̄ε − y)
[∫

ε−1X (m(εx̄ε, εz) + O(ε(x̄ε − y)))uε(z) dz
]

Qε + 1
2ε2 (−∂2

xxsε[uε](x̄ε))(y − x̄ε)2
dy

= 0 +

∫

|y−x̄ε|≤C

(x̄ε − y)O(ε(x̄ε − y))

Qε + 1
2ε2 (−∂2

xxsε[uε](x̄ε))(y − x̄ε)2
dy

∫

ε−1X

uε(z)dz

= O(εC2)

∥

∥

∥

∥

1

Qε + 1
2ε2 (−∂2

xxsε[uε](x̄ε))(y − x̄ε)2

∥

∥

∥

∥

L1(ε−1X)

= O(εC2).

To estimate the term I2 of (33), we notice that (we recall that |θ − x̄ε| ≤ C),
∣

∣∂2
xxsε[uε](θ) − ∂2

xxsε[uε](x̄ε)
∣

∣ ≤ ‖∂3
xxxsε[uε]‖∞(θ − x̄ε)

≤ ε3 (‖aε‖W 3,∞ + Cst ‖d‖W 3,∞) (θ − x̄ε)

≤ Cst ε3C,

and that, thanks to Step 1 (see (24)),

(y − x̄ε)2

Qε + 1
2ε2 (−∂2

xxsε[uε](θ))(y − x̄ε)2
<

1
δ
2

. (34)
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We can thus estimate the second term of (33) using Step 1,

|I2| ≤
∫

|y−x̄ε|≤C

1
2ε2 C

[

Cst ε3C
]

δ
2

‖m‖∞ Cst
[

Qε + 1
2ε2 (−∂2

xxsε[uε](x̄ε))(y − x̄ε)2
] dy

≤ Cst ε C2

∫

R

dy
[

Qε + δ
2y2
]

≤ O(εC2).

Using these estimates in (32), we get
∣

∣

∣

∣

∣

∫

|y−x̄ε|≤C

(x̄ε − y)uε(y) dy

∣

∣

∣

∣

∣

≤ O(εC2),

and then, x̄ε can be estimated as follows, thanks to (32):

|x̄ε| ≤ 1

ε|a′′
ε (εθ)|

∣

∣

∣

∣

∫

ε−1X

∂1d(εx̄ε, εy)uε(y) dy

∣

∣

∣

∣

=
1

ε|a′′
ε (εθ)|

[∣

∣

∣

∣

∣

ε∂2
12d(εx̄ε, εx̄ε)

∫

|y−x̄ε|≤C

(x̄ε − y)uε(y) dy

∣

∣

∣

∣

∣

+ O(ε2C2) + O(C−1)

]

≤ 1

ε

[

ε O(εC2) + O(ε2C2) + O(C−1)
]

≤ O(εC2) + O(ε−1C−1).

If we choose C := ε
−2
3 , then, for ε > 0 small enough, the assumption [x̄ε − C, x̄ε +

C] ⊂ ε−1X (that we assumed on C at the beginning of this proof) is satisfied, since,
by Step 2,

[x̄ε − C, x̄ε + C] ⊂ B
(

0, |x̄ε| + ε
−2
3

)

⊂ B
(

0, O(ε
−1
2 ) + ε

−2
3

)

⊂ ε−1X.

Our estimates then apply to this specific choice of C, and yield the following estimate
on x̄ε:

x̄ε = O(ε
−1
3 ).

This estimate ends the proof of the theorem.

REFERENCES

[1] A. S. Ackleh, B. G. Fitzpatrick and H. Thieme, Rate distributions and survival of the fittest:

A formulation on the space of measures, Discrete Contin. Dynam. Systems. Ser. B., 5 (2005),
917–928.

[2] J. Cleveland and A. S. Ackleh. Evolutionary Game Theory on Measure Spaces, Manuscript.
[3] R. Bürger and I. M. Bomze, Stationary distributions under mutation-selection balance: Struc-

ture and properties, Adv. in Appl. Probab., 28 (1996), 227–251.
[4] R. Bürger, “The mathematical theory of selection, recombination, and mutation”. Wiley

Series in Mathematical and Computational Biology. John Wiley & Sons, Ltd., Chichester,
2000.
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