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Abstract. In this paper, we propose cost functions for signal and image recovery composed
of `1 data fitting and nonconvex nonsmooth regularization. The contribution of this paper is to
exhibit when and how to employ such cost functions. Our theoretical results show that the solution
of the `1 data fitting and nonconvex nonsmooth minimization problem is such that all the given data
samples are involved in an exact data fitting component of the data term or in a null component
of the regularization part. This is a strong and particular property that can be useful for various
image recovery problems. However, the practical interest of the `1 data fitting and nonconvex
nonsmooth minimization is limited by the difficulty of its computational task. Hence the next goal
of this paper is to develop a fast minimization algorithm to solve this difficult minimization problem.
Our experimental results show that the effectiveness of the proposed algorithm. Illustrations and
numerical experiments give a flavor of the possibilities offered by the solutions of cost functions
composed of `1 data fitting and nonconvex nonsmooth regularization.

Key words. Image recovery, Inverse problems, Non-smooth and non-convex analysis, Non-
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1. Introduction. Digital image restoration and reconstruction plays an impor-
tant part in various applied areas such as medical and astronomical imaging, film
restoration, image and video coding and many others [16, 13]. We focus on the
common data production model where the observed data v ∈ Rq are related to the
underlying n ×m image, rearranged into a vector u ∈ Rp (p = mn), according to a
linear model under perturbations

v = Au¯ n, (1.1)

where n ∈ Rq are the perturbations and “¯” represents the way in which n corrupts
the data, and A is a q × p matrix which can for instance be the identity Id or rep-
resenting optical blurring, distortion wavelets in seismic imaging and nondestructive
evaluation, a Radon transform in X-ray tomography, a Fourier transform in diffrac-
tion tomography. In noise models, a Gaussian noise can be considered to added to
corrupt the data, or an impulsive noise can be considered to be multiplied to corrupt
the data, see [16].

In most of the applications, the information provided by the forward model (1.1)
alone is not sufficient to find an acceptable solution u. Prior information on the un-
derlying image is needed to restore a convenient u – which is close to data production
model (1.1) and satisfies some prior requirements. A flexible means to define such
a solution is regularization, see e.g. [4, 7, 12, 1], where u is a minimizer of a cost
function of the form

Θ(Au− v) + βΦ(u). (1.2)
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In this expression, Θ forces closeness to data according to (1.1), Φ embodies the priors
and β > 0 is a parameter that controls the trade-off between these two terms. The
most usual choice for Θ is Θ(v) = ‖v‖22. Since [22, 9, 15], data terms Θ(v) = ‖v‖1 were
shown to be useful if some data entries have to be satisfied exactly. Such a property
is precious, for instance if n is impulse noise [23, 3] or in image decomposition [2], or
in hybrid restoration methods [8]. In this paper, we focus on `1 data fitting:

∑

i∈I

∣∣〈ai, u〉 − v[i]
∣∣

I = {1, · · · , q}
(1.3)

where the ith row of A is the transpose of ai, namely aT
i ∈ R1×p, 〈ai, u〉 refers to the

inner product between ai and u.
In many image processing applications, the regularization Φ reads

Φ(u) =
∑

j∈J

ϕ(‖Giu‖2),

J = {1, · · · , r}
(1.4)

where for any j ∈ J , Gj : Rp → Rs for s an integer s > 1, are linear operators. For
instance, the family {Gj} ≡ {Gj : j ∈ J} can represent the discrete approximation
of the gradient or the Laplacian operator on u, or finite differences of various orders,
or the combination of any of these with the synthesis operator of a frame transform.
Let us denote by G the matrix where all Gj are vertically concatenated, i.e.,

G = [GT
1 , · · · ,GT

r ]T ,

where the superscript stands for transpose.
The function ϕ : R 7→ R+ is called a potential function (PF). Various potential

functions (PFs) ϕ have been used in the literature, a review can be found for instance
in [5]. An important requirement is that ϕ allows the recovery of large differences
|djf |2 at the locations of edges and smooth the other differences. It is well known
that this requirement cannot be met by ϕ(t) = t2 which was originally used in [29].
Since the pioneering work of Geman & Geman [12], different non-convex functions
ϕ have been considered either in a statistical or in a variational framework, see e.g.
[4, 10, 11, 18, 19]. In order to avoid the numerical intricacies arising with nonconvex
regularization, since [14, 17, 28] in 1990, an important effort was done to derive
convex edge-preserving PFs, see [1] for an excellent account. Nevertheless, nonconvex
nonsmooth regularization offers much richer possibilities to restore high quality images
with neat edges: for regularizer functions of the form (1.4) a theoretical explanation
was provided in [24] while numerical examples can be found in numerous articles,
see e.g. [10, 11, 21, 27, 25]. However, to the best of our knowledge, there is no
results explaining cases when nonconvex nonsmooth regularization is combined with
`1 (nonsmooth, convex) data fitting.

This paper provides two main contributions. The theoretical one is to prove
that the minimizers û of energies of the form (1.2), (1.3) and (1.4), where ϕ(‖.‖2)
is nonconvex and nonsmooth at zero, are such that each one of its entries û[k] is
involved at least in one i ∈ I such that ai[k] 6= 0 and 〈ai, û〉 = 0 or one j ∈ J such
that for some ` ∈ {1, · · · , s} one has G`

j [k] 6= 0 and ‖Gj û‖2 = 0. In the simple case
when A = Id and {Gj} are discrete gradients or first-order differences, minimizers
are composed of (i) constant regions surrounded by closed contours and (ii) restored
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samples fitting observed samples exactly (i.e. equal to them). Theoretical results
are outlined in Section 2. We also derive fast algorithms to approximate faithfully
the global minimizer of these nonconvex and nonsmooth energies (Section 3). Our
experimental results (Section 4) show clearly the effectiveness and efficiency of the
proposed numerical schemes, as well as the interest for image recovery of the proposed
energies. Concluding remarks are given in Section 5.

2. Properties of Minimizers. In this section, we study the property of mini-
mizers of

F(u) = ‖Au− v‖1 + βΦ(u) (2.1)

where Φ is of the form (1.4). We adopt the usual assumption that
H1. kerA ∩ kerG = {0}.
We will also suppose that
H2. For any subset Ĩ ⊂ I with Ĩ 6= ∅, we have

w ∈ ker(G) ⇒ ∃i ∈ Ĩ such that 〈ai, w〉 6= 0.

This assumption might seem tricky. Nevertheless it holds true in the majority of
cases encountered in practice. E.g., it is true for all A mentioned in the introduction
when {Gi} involves some kind of difference or discrete differential operators.

H3. For any j ∈ J , we have Gj 6= 0.
The last H3 and is just a common sense trivial requirement.
The function t → ϕ(|t|) is nonconvex and nondifferentiable at zero. It is often

called a potential function (PF). The precise assumptions on ϕ are listed below.
H4. ϕ : R+ → R+ is C2 on R∗+ and ϕ(t) > ϕ(0) = 0, ∀t > 0;
H5. ϕ′(0+) > 0 and ϕ′(t) > 0 on R∗+.
H6. ϕ′′ is increasing on R∗+, ϕ′′(t) < 0, ∀t > 0 and lim

t↘0
ϕ′′(t) < 0 is well defined

and finite.
Note that the condition that limt↘0 ϕ′′(t) < 0 is well defined in H6 implies that

ϕ′(0+) > 0 in H5 is finite. Several examples of functions ϕ satisfying all assumptions
H4, H5 and H6 are shown in Table 2.1 and plotted in Fig. 2.1.

(f1) (f2) (f3) (f4)

ϕ(t)
α t

α t + 1
1− αt ln(αt + 1) (t + ε)α − εα

α > 0 0 < α < 1 α > 0 0 < α < 1, ε > 0

ϕ′(t) α
(αt+1)2 −αt ln α > 0 α

αt+1 α(t + ε)α−1

ϕ′(0+) α − ln α > 0 α αεα−1

ϕ′′(t) −2α2

(αt+1)3 −αt(lnα)2 −α2

(αt+1)2 α(α− 1)(t + ε)α−2 < 0
lim
t↘0

ϕ′′(t) −2α2 −(ln α)2 −α2 α(α− 1)εα−2 < 0

Table 2.1
Functions ϕ : R+ → R+ satisfying H4, H5 and H6.
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(f1) (f2)
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0

1

0 10
0

1

α t

α t + 1
, α = 4 1− αt, α = 0.5

(f3) (f4)

0 10
0

2

0 10
0

1

ln(αt+1), α=2 (t+ε)α−εα, α=0.3, ε=0.2

Fig. 2.1. Plots of the PFs ϕ given in Table 2.1. Note that (f1) an (f2) are bounded above,
which is not the case for (f3) and (f4).

2.1. Motivation. Two illustrations of minimizers of F in (2.1) for A = Id, {Gj}
first-order differences (hence H1, H2 and H3 hold) and a ϕ satisfying all assumptions
H4, H5 and H6 are given in Fig. 2.2. One observes that restored samples either fit data
samples exactly or form constant patches. Moreover, we see that when β decreases
the number of data samples that are fitted exactly increases whereas when β increases
more piecewise constant structures are recovered.

Example 1 (scalar case). This example is quite illuminating. Given v 6= 0,
consider the pair of functions given below

F(u) = |u− v|+ βϕ(|u|) for ϕ(u) =
αu

1 + αu
, ∀u ∈ R, (2.2)

F (u) = F(u), ∀u ∈ R \ {0, v}. (2.3)

Note that F is the restriction of F on R\{0, v}, and that ϕ is the PF (f1) in Table 2.1
meets all H4, H5 and H6.

As usual, we denote by Dj
kf the differential of order j of a function f with respect

to its k-th argument.
Let û be a minimizer of F . The necessary conditions for F to have a (local)

minimum at û 6= 0 and û 6= v, or equivalently, for F to have a (local) minimum at û,
namely DF(û) = 0 and D2F(û) > 0, do not hold:

DF(û) = DF (û) = sign(û− v) + βϕ′(|û|)sign(û) = 0
D2F(û) = D2F (û) = βϕ′′(|û|) < 0,

where the last inequality comes from the concavity of ϕ on R∗+, see H6. Hence there
is no minimizer such that û 6= 0 and û 6= v. In this way, F in (2.3) does not have
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Fig. 2.2. F(u) = ‖u − v‖1 + β
∑p−1

i=1 ϕ(|u[i + 1] − u[i]|) for ϕ(t) = α t
α t+1

. Data v (—), each

sample of the minimizer û is marked with +.

minimizers. Hence any minimizer of F in (2.2) satisfies

û ∈ {0, v}.

More precisely,

û1 = 0 ⇒ F(û1) = |v|
û2 = v ⇒ F(û2) = βϕ(|v|) = F(û2) = β

α|v|
1 + α|v| .
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Hence the global minimizer û is:

û = û1 = 0 if F(û1) < F(û2) ⇔ |v| < β
α|v|

1 + α|v| ⇔ |v| < β − 1
α

û = {0, v} ⇔ F(û1) = F(û2) ⇔ |v| = β − 1
α

û = û2 = v if F(û1) > F(û2) ⇔ |v| > β − 1
α

2.2. Preliminary results. When are we sure that our nonconvex nonsmooth
energies F do have minimizers?

Remark 1. We consider that ϕ satisfies H4, H5 and H6. Let one of the following
assumptions hold:

(a) rank (A) = p ;
(b) H1 holds and lim

t→∞
ϕ(t) = +∞.

Then for any v, we obviously have

lim
‖u‖→∞

F(u) = +∞, ∀u ∈ Rp.

This, combined with the fact that F is a continuous function guarantees that ∀v ∈ Rq

the function F in (2.1) does admit a minimum; see e.g. [6].
Note that the PFs (f3) and (f4) given in Table 2.1 satisfy the assumption on ϕ

in condition (b) above. We should emphasize that Remark 1 gives only sufficient
conditions for the existence of a minimizer. They are not necessary, as it can be
easily checked (e.g. by hand, using simple 3-pixel examples). We will not discuss
furthermore the question of existence of minimizers.

Given v ∈ Rq, let û be a (local) minimizer of F . With each such û we systemati-
cally associate the following subsets:

Î0 = {i ∈ I : 〈ai, û〉 = v[i]} and Îc
0 = I \ Î0 = {i ∈ I : 〈ai, û〉 6= v[i]} (2.4)

Ĵ0 = {i ∈ J : ‖Giû‖2 = 0} and Ĵc
0 = J \ Ĵ0 = {i ∈ J : ‖Giû‖2 6= 0} (2.5)

Note that Ĵ0 equivalently reads

Ĵ0 = {i ∈ J : Giû = 0 ∈ Rs}. (2.6)

For (u, v) ∈ Rp × Rq, denote

ψi(u) =
∣∣〈ai, u〉 − v[i]

∣∣, i ∈ I, (2.7)
φi(u) = ϕ(‖Giu‖2), i ∈ J. (2.8)

Lemma 2.1. Given v ∈ Rq, let F reach a (local) minimum at û. Let the assump-
tions H4 and H5 hold. Put

ρ = min

{
min
i∈Îc

0

|〈ai, û〉 − v[i]|
‖ai‖2 , min

j∈Ĵc
0

‖Gj û‖2
‖Gj‖2

}
.

Clearly ρ > 0. Let u ∈ B(û, ρ) def= {w ∈ Rp : ‖w − û‖2 < ρ} then

i ∈ Îc
0 ⇒ ψi(u) ∈ C2

(
B(û, ρ)

)
(2.9)

j ∈ Ĵc
0 ⇒ φi(u) ∈ C2

(
B(û, ρ)

)
(2.10)
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In words, ψi, ∀i ∈ Îc
0 and φj , ∀j ∈ Ĵc

0 , as given in (2.7) and (2.8), respectively, are
C2 smooth on the open ball B(û, ρ).

Proof. Notice that u ∈ B(û, ρ) is equivalent to u = û + w for ‖w‖2 < ρ. Therefore,
we consider an arbitrary w ∈ B(0, ρ).

Since ρ 6 min
i∈Îc

0

|〈ai, û〉 − v[i]|
‖ai‖2 , we have ‖w‖2 < min

i∈Îc
0

|〈ai, û〉 − v[i]|
‖ai‖2 . Using this fact,

we have the following inequality chain:

i ∈ Îc
0 ⇒ ψi(û + w) =

∣∣〈ai, û + w〉 − v[i]
∣∣ >

∣∣〈ai, û〉 − v[i]
∣∣− ∣∣〈ai, w〉

∣∣
>

∣∣〈ai, û〉 − v[i]
∣∣− ‖ai‖2‖w‖2

= ‖ai‖2
(∣∣〈ai, û〉 − v[i]

∣∣
‖ai‖2 − ‖w‖2

)

> ‖ai‖2
(

min
i∈Îc

0

∣∣〈ai, û〉 − v[i]
∣∣

‖ai‖2 − ‖w‖2
)

> 0 .

Hence (2.9).

Using that ρ 6 min
j∈Ĵc

0

‖Gj û‖2
‖Gj‖2 , we get ‖w‖2 < min

j∈Ĵc
0

‖Gj û‖2
‖Gj‖2 . Furthermore,

j ∈ Ĵc
0 ⇒ ‖Gj(û + w)‖2 > ‖Gj û‖2 − ‖Gjw‖2 > ‖Gj û‖2 − ‖Gj‖2‖w‖2

= ‖Gj‖2
(‖Gj û‖2
‖Gj‖2 − ‖w‖2

)

> ‖Gj‖2
(

min
j∈Ĵ0

‖Gj û‖2
‖Gj‖2 − ‖w‖2

)
> 0.

Combining this result with the fact that ϕ in (2.8) is C2 on R∗+ by H4 leads to (2.10).
¤

2.3. Exact fitting results. We will start by presenting the main result of this
subsection.

Given w ∈ Rp or w ∈ R1×p, we use the classical notation

supp(w) =
{
k ∈ {1, · · · , p} : w[k] 6= 0

}
.

For any j ∈ J , we denote G`
j ∈ R1×p, 1 6 ` 6 s whenever s > 2.

Theorem 2.2. Consider F of the form (2.1). Let all assumptions, H1, H2, H3,
H4, H5 and H6, hold. If s > 2, we add assumptions (a) and (b) of Proposition 2.4
below (see p. 9). For v ∈ Rq \ {0}, let û be a (local) minimizer of F . Then

1 6 k 6 p ⇒



∃i ∈ I such that k ∈ supp(ai) and 〈ai, û〉 = v[i],

or
∃j ∈ J, 1 6 ` 6 s such that k ∈ supp(G`

j) and Gj û = 0.
(2.11)

Moreover, the minimum reached by F at û is strict.
Using the definitions of Î0 and Î0 as given in (2.4) and (2.5), respectively, a more

compact way to state (2.11) is:

k ∈ {1, · · · , p} ⇒
∃i ∈ Î0 with k ∈ supp(ai) or ∃j ∈ Ĵ0, ∃` ∈ {1, · · · , s} with k ∈ supp(G`

j),
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where we use the notations introduced in (2.4)-(2.5). Note that k in (2.11) can belong
to both supp(ai) and supp(G`

j). In the simple case when {ai, i = 1, · · · , p} is the
canonical basis of Rp (i.e. A = Id) and Gj yield either discrete gradients or first-order
finite differences between adjacent samples, the result stated in (2.11) means that a
(local) minimizer is composed partly of constant patches, partly of pixels that fit data
samples exactly, as seen e. g. in Fig. 2.2.

The proof of the theorem is outlined later on (see p. 12). It involves a series of
intermediate results that are presented next.

Given v ∈ Rq and û—a (local) minimizer of F—we adopt the notations in (2.4),
(2.5) and define the manifolds below:

Kû = {w ∈ Rp : 〈ai, w〉 = v[i], ∀i ∈ Î0 and Giw = 0, ∀i ∈ Ĵ0}, (2.12)

Kû = {w ∈ Rp : 〈ai, w〉 = 0, ∀i ∈ Î0 and Giw = 0, ∀i ∈ Ĵ0}. (2.13)

Since

û ∈ Kû,

we are guaranteed that Kû is nonempty. Note that Kû is the vector subspace tangent
to Kû.

Given v ∈ Rq, we will focus on the following function:

F : Kû 7→ R
F (u) =

∑

i∈Îc
0

|〈ai, u〉 − v[i]|+ β
∑

j∈Ĵc
0

ϕ(‖Gju‖2). (2.14)

Lemma 2.3. Let H2 and H3 hold. We posit the definitions of Îc
0 and Ĵc

0 , see
(2.4)-(2.5), as well as the one of Kû in (2.13). Assume that the dimension of Kû

satisfies dim(Kû) > 1. Then

w ∈ Kû ⇒ Ĵc
0(w) def= {j ∈ Ĵc

0 : ‖Gjw‖2 6= 0} 6= ∅.

Proof. The proof is conducted by contradiction. So suppose that

∃w ∈ Kû such that ‖Gjw‖2 = 0, ∀j ∈ Ĵc
0 . (2.15)

By H3, we have Gj 6= 0, ∀j ∈ Ĵc
0 so that (2.15) makes sense. Combining (2.15) and

the definition of Kû in (2.13) shows that Gjw = 0, ∀j ∈ Ĵc
0 ∪ Ĵ0, i.e.

w ∈ ker(G).

Using H2, we know that for any w ∈ ker(G),

∃i ∈ Îc
0 such that 〈ai, w〉 6= 0.

Using the definition of Kû yet again entails that w 6∈ Kû. It follows that (2.15) is
false. Hence the statement of the lemma. ¤

Remark 2. Note that whenever Gj û 6= 0 and Gjw 6= 0, for j ∈ Ĵc
0 and w ∈

Kû \ {0},
‖Gjw‖22‖Gj û‖22
〈Gj û, Gjw〉2 > 1.
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Indeed, û ∈ Kû and w ∈ Kû \ {0}, Kû 6= Kû so by Schwarz’s inequality we have
|〈Gj û, Gjw〉| < ‖Gjw‖2‖Gj û‖2. This remark is behind the condition (b) in the propo-
sition below.

Proposition 2.4. Consider F of the form (2.1). Let the assumptions H2, H3,
H4, H5 and H6 hold. For v ∈ Rq \ {0}, let û be a (local) minimizer of F such that
Ĵ0 $ J . Put

τ
def= min

j∈Ĵc
0

‖Gj û‖2 > 0.

We adopt the notations introduced in (2.12) and (2.13) and suppose that dim(Kû) > 1.
Assume the following:

(a) there is a constant C > 1 such that

w ∈ Kû \ {0} ⇒ ‖Gjw‖22‖Gj û‖22
〈Gj û, Gjw〉2 6 C, ∀j ∈ Ĵc

0(w) ,

where Ĵc
0(w) is as defined in Lemma 2.3 ;

(b) ϕ′′(t) + (C − 1)
ϕ′(t)

t
< 0 for all t > τ .

Then the function F given in (2.14) satisfies

〈D2F (û)w, w〉 < 0, ∀w ∈ Kû \ {0}.

Proof. Using Lemma 2.1 and H4, for any i ∈ Îc
0 and j ∈ Ĵc

0 , the first and second
order differentials Dψi, D2ψi, Dφj and D2φj are well defined on B(û, ρ). Then for
any w ∈ Rp we have1

i ∈ Îc
0 ⇒

{
Dψi(û)w = sign

(〈ai, û〉 − v[i]
)〈ai, w〉 ;

〈D2ψi(û)w,w〉 = 0 ; (2.16)

j ∈ Ĵc
0 ⇒





Dφj(û)w = ϕ′(‖Gj û‖2) 〈Gj û, Gjw〉
‖Gj û‖2 ;

〈D2φj(u)w, w〉 = ϕ′′(‖Gj û‖2)
( 〈Gj û,Gjw〉

‖Gj û‖2

)2

+ϕ′(‖Gj û‖2)‖Gjw‖22‖Gj û‖22 − 〈Gj û, Gjw〉2
‖Gj û‖32

.

(2.17)

Combining H6 with the assumptions of the proposition, we derive the following chain

1Note that if i ∈ Îc
0 then

〈D2ψi(û)w, w〉 = lim
t→0

sign
(〈ai, û + tw〉 − v[i]

)〈ai, w〉 − sign
(〈ai, û〉 − v[i]

)〈ai, w〉
t

= 0.
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of inequalities:

〈D2F (û)w, w〉

= β
∑

i∈Ĵc
0

ϕ′′(‖Gj û‖2)
( 〈Gj û, Gjw〉

‖Gj û‖2

)2

+ β
∑

i∈Ĵc
0

ϕ′(‖Gj û‖2)‖Gjw‖22‖Gj û‖22 − 〈Gj û, Gjw〉2
‖Gj û‖32

(Lemma 2.3) = β
∑

i∈Ĵc
0 (w)

ϕ′′(‖Gj û‖2)
( 〈Gj û,Gjw〉

‖Gj û‖2

)2

+ β
∑

i∈Ĵc
0 (w)

(
ϕ′(‖Gj û‖2)
‖Gj û‖2

‖Gjw‖22‖Gj û‖22
〈Gj û, Gjw〉2 − ϕ′(‖Gj û‖2)

‖Gj û‖2

)( 〈Gj û, Gjw〉
‖Gj û‖2

)2

by (a) 6 β
∑

i∈Ĵc
0 (w)

(
ϕ′′(‖Gj û‖2) +

ϕ′(‖Gj û‖2)
‖Gj û‖2 (C − 1)

)( 〈Gj û, Gjw〉
‖Gj û‖2

)2

by (b) < 0, ∀w ∈ Kû \ {0}.
One can easily check that the same result holds true if Îc

0 = ∅. The proof is complete.
¤

Remark 3. If C = 2, assumption (a) in Proposition 2.4 is satisfied by the PF
(f1) in Table 2.1 for t > 1/α and by the PF (f2) for t > 1/(− ln α) > 0. These PFs are
bounded above. This assumption is not satisfied by the PFs (f3) and (f4) in Table 2.1
for any τ > 0.

Proposition 2.5. Consider F of the form (2.1) where Gj : Rp → R for all j ∈ J
(i.e. s = 1). Let the assumptions H2, H3, H4, H5 and H6 hold. For v ∈ Rq, let û

be a (local) minimizer of F such that Ĵ0 $ J . We adopt the notations introduced in
(2.12) and (2.13) and suppose that dim(Kû) > 1. Then the function F given in (2.14)
satisfies

〈D2F (û)w,w〉 < 0, ∀w ∈ Kû \ {0}.
Proof. We can denote ‖Gju‖2 = |Gju| since Gj ∈ R1×p. In this case (2.17) reads:

j ∈ Ĵc
0 ⇒





Dφj(û)w = ϕ′(|Gj û|)Gj ûGjw

|Gj û| = ϕ′(|Gj û|)sign(Gj û)Gjw

〈D2φj(û)w, w〉 = ϕ′′(|Gj û|) (Gjw)2

Using (2.16), Lemma 2.3 and H6, we find

〈D2F (û)w,w〉 = β
∑

i∈Ĵc
0

ϕ′′(|Gj û|) (Gjw)2 < 0, ∀w ∈ Kû \ {0}.

Hence the conclusion. ¤
Proposition 2.6. Consider F of the form (2.1). Let the assumptions H2, H3,

H4, H5 and H6 hold. If s > 2, we add assumptions (a) and (b) of Proposition 2.4
(see p. 9). For v ∈ Rq \ {0}, let û be a (local) minimizer of F . Then

Kû = {û} and Kû = {0}. (2.18)
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Proof. Suppose that dim(Kû) > 1.
Observe that F is (2.1) can be rewritten as

F(û) =
∑

i∈Î0

∣∣〈ai, û〉 − v[i]
∣∣ + β

∑

i∈Ĵ0

ϕ(‖Giû‖2) + F (û), (2.19)

where F is given in (2.14). The first two sums of the equation above are null, so

F(û) = F (û).

¿From the definition of Kû in (2.13), we have

w ∈ Kû ⇒
{
〈ai(û + w)〉 = 〈ai, û〉 = v[i] ∀i ∈ Î0

‖Gj(û + w)‖2 = ‖Gj û‖2 = 0 ∀j ∈ Ĵ0
. (2.20)

In particular,

û + w ∈ Kû, ∀w ∈ Kû.

Hence,

w ∈ Kû ⇒ F(û + w) =
∑

i∈Îc
0

∣∣〈ai, (û + w)〉 − v[i]
∣∣ + β

∑

i∈Ĵc
0

ϕ(‖Gi(û + w)‖2)

= F (û + w). (2.21)

Since F has a (local) minimum at û, there is 0 < % 6 ρ, for ρ > 0 as given in Lemma
2.1, such that

w ∈ Kû ∩B(0, %) ⇒ F(û) 6 F(û + w).

Combining this with (2.21) yields

w ∈ Kû ∩B(0, %) ⇒ F (û) = F(û) 6 F(û + w) = F (û + w). (2.22)

This shows that F has a (local) minimum at û since F is the restriction of F on
Kû ∩B(û, %). Then F must satisfy the second-order necessary condition for a (local)
minimum, namely 〈D2F (û)w, w〉 > 0, ∀w ∈ Kû. However, by Propositions 2.4 and
2.5, we know that

〈D2F (û)w, w〉 < 0, ∀w ∈ Kû \ {0},
which contradicts the fact that û is a (local) minimizer of F and F .

Since F (û) is well defined, the only possibility for û to be a (local) minimizer of
F is that w = 0, ∀w ∈ Kû. Using the definition of Kû in (2.13) yet again, the latter
means that we must have the implication given below:

{
〈ai, w〉 = 0 ∀i ∈ Î0 ,

Gjw = 0 ∀j ∈ Ĵ0,
⇒ w = 0. (2.23)

Let us denote

Î0 = {i1, · · · , i#Î0
} and Ĵ0 = {j1, · · · , j#Ĵ0

}.
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Then define the following matrices:

A0 =




aT
i1
...

aT
#Î0


 ∈ R#Î0×p and G0 =




Gj1
...

G#Ĵ0


 ∈ R#Ĵ0s×p , (2.24)

as well as

H0 =
[

A0

G0

]
∈ R(#Î0+#Ĵ0s)×p . (2.25)

For any integer m > 0 let Om be the m-length column vector composed of zeros:

Om = [0, · · · , 0]T ∈ Rm.

Define also the (#Î0 + #Ĵ0s)-length column vector v0 by

v0 =
[
v[i1], · · · , v[#Î0], OT

#Ĵ0s

]T

.

Using these notations, Kû in (2.12) and Kû in (2.13) equivalently read

Kû = {w ∈ Rp : H0w = v0} ;
Kû = {w ∈ Rp : H0w = O(#Î0+#Ĵ0s)} .

Then the implication stated in (2.23) equivalently reads

H0w = 0 ⇒ w = 0 ∈ Rp . (2.26)

It is well known that (2.26) cannot hold unless

rank (H0) = p .

Consequently, Kû = {0} and dim(Kû) = 0. Moreover, û is the unique solution of the
matrix equation given below

H0w = v0 . (2.27)

Then Kû in (2.12) reads

Kû = {û}.
The proof is complete. ¤

Proof of Theorem 2.2. When s > 2, we have to notice that each Gjk
composing

G0 as given in (2.24) is of the form

Gjk
=




G1
jk

...
Gs

jk


 ∈ Rs×p.

Since û is well defined as the unique solution of (2.27), all its entries û[k], 1 6 k 6 p
are well defined. This cannot hold true unless for every k ∈ {1, · · · , p} we have at
least an i ∈ Î0 such that ai[k] 6= 0 or a j ∈ Ĵ0 and 1 6 ` 6 s such that G`

i [k] 6= 0.
Hence the result stated in (2.11).

The fact that F has a strict minimum at û comes from the fact that the equations
in (2.27) admits a unique solution which is exactly û. ¤
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3. Minimization Methods. The minimization of nonconvex nonsmooth en-
ergy F given by (2.1) involves three major difficulties that drastically restrict the
methods that can be envisaged. Because of the nonconvexity of ϕ, F may exhibit a
large number of local minima which are not global. In addition, F is nonsmooth at
the minimizers (see section 2), and thus usual gradient-based methods are inappro-
priate even for local minimization. Finally, the matrix A can have numerous nonzero
elements beyond the diagonal and is often ill-conditioned. In [25], a nonsmooth GNC
continuation method is inaugurated to solve a nonconvex nonsmooth minimization
problem where F is similar of the form (2.1) except the data fitting term is `2-norm.
Here our goal is to conceive nonsmooth GNC schemes for F of the form given by
(2.1). The experimental results in [25] showed that the resultant method provides
better performance with significantly smaller computational cost, compared to a sim-
ulated annealing method.

Consider a sequence

ε0 = 0 < ε1 < · · · < εk < · · · < εn = 1. (3.1)

We approach ϕ by a sequence of ϕε : R → R+ such that ϕ0 is convex and ϕε

monotonously reaches ϕ when ε goes from 0 to 1 in (3.1), with ϕ1 = ϕ and ϕε is non-
smooth at 0 for any ε ∈ [0, 1]. (To simplify the notations, we write ε for εk whenever
this is clear from the context.) Correspondingly, our energy F is approximated by a
sequence Fε as given below:

Fε(u) = ‖Au− v‖1 + β
∑

j∈J

ϕε(‖Gju‖2), 0 6 ε 6 1. (3.2)

Thus F0 is convex (and nonsmooth), Fε monotonously goes to F when ε increases
and we have F1 = F .

Based on the assumptions H4-H6, we can rewrite ϕε as follows

ϕε(t) = ψε(t) + αε|t| where αε = ϕ′ε(0
+). (3.3)

We see that ϕε in (3.3) is composed of two terms: the first one ψε is C2-smooth and
concave whereas the second one αε|t| is convex and nonsmooth at zero. Decomposing
Fε in (3.2) according to (3.3) yields:

Fε(u) = ‖Au− v‖1 + βΨε(u) + βαε

∑

j∈J

‖Gju‖2 (3.4)

where Ψε(u) =
∑

j∈J

ψε(‖Gju‖2).

Our approach to tackle the difficulties for minimizing the function Fε in (3.4) is
to apply variable-splitting and penalty techniques to separate the nonconvex term
and the nonsmooth term using additional variables. In the following, we propose a
numerical scheme to minimize Fε in (3.4) for every ε ∈ [0, 1]. The minimizer u of F1

provides the sought-after approximation of the global minimizer of F .

3.1. Numerical scheme based on fitting to Gu. Here we derive a numerical
method to minimize (3.4). It is based on variable-splitting and penalty technique to
transfer the nonsmooth term out of Fεk

in such a way that the TV denoising step can
be done by a shrinkage operation, as proposed in [30]. To this end, we consider an
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augmented energy Jεk
: Rp × Rq × Rsp → R which involves a fitting of the auxiliary

variables z ∈ Rsp to Gu and w ∈ Rq to Au:

Jεk
(u,w, z) = γ‖Au−w‖22+‖w−v‖1+βΨεk

(u)+γ‖Gu−z‖22+βαεk

∑

j∈J

‖zj‖2, (3.5)

where γ > 0 and zj ∈ Rs for all j ∈ J . For u and w fixed, Jεk
(u,w, .) is convex

and non-differentiable because of the term
∑

j ‖zj‖2. For u and z fixed, Jεk
(u, ., z)

is convex and non-differentiable because of the term ‖w − v‖1. Here both terms
‖Au−w‖22 and ‖Gu− z‖22 are weighted by γ. In the proposed iterative algorithm, we
will make γ larger and larger so that w comes close enough to Au and z close enough
to Gu.

Given w and z, the function u 7→ Jεk
(u,w, z) is twice differentiable and nonconvex

so that it can be minimized by gradient-based methods. The computational steps are
given as follows:

z(l,k) = arg min
z∈Rsp

Jεk
(u(l−1,k), w(l−1,k), z)

= arg min
z∈Rsp





∑

j∈J

(
γ‖Gju

(l−1,k) − zj‖22 + βαε‖zj‖2
)


 (3.6)

w(l,k) = arg min
w∈Rq

Jεk
(u(l−1,k), w, z(l,k))

= arg min
w∈Rq

{
γ‖Au(l−1,k) − w‖22 + ‖w − v‖1

}
(3.7)

u(l,k) = arg min
u∈Rp

Jεk
(u,w(l,k), z(l,k))

= arg min
u∈Rp

{
γ‖Au− w(l,k)‖22 + βΨε(u) + γ‖Gu− z(l,k)‖22

}
(3.8)

In this case, we initialize with u(0,k) def= uεk−1 where uεk−1 results from the mini-
mization of Jεk−1 with respect to u. We remark that w(l−1,k) is not required in the
computation in (3.6).

3.1.1. Computation of z(l,k) according to (3.6). Solving (3.6) amounts to
solve p independent problems:

z
(l,k)
i = arg min

zj∈Rs

{
γ‖Gju

(l−1,k) − zj‖22 + βαε‖zj‖2
}

, ∀j ∈ J. (3.9)

As shown in [30, pp.251-252], each one of the problems in (3.9) can be solved efficiently
using s-dimensional shrinkage:

z
(l,k)
j =

Gju
(l−1,k)

‖Gju(l−1,k)‖ max
{
‖Gju

(l−1,k)‖2 − βαεk

2γ
, 0

}
, ∀j ∈ J. (3.10)

3.1.2. Computation of w(l,k) according to (3.7). The task is similar to the
computation of z(l,k). The solution in (3.7) can be found as follows:

w
(l,k)
i =

Au(l−1,k) − v

‖Au(l−1,k) − v‖ max
{
‖Au(l−1,k) − v‖2 − 1

2ω
, 0

}
, ∀i ∈ I. (3.11)
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3.1.3. Computation of u(l,k) according to (3.8). For ε0 = 0 (k = 0), the
finding of u(l,0) amounts to minimize the convex quadratic function:

min
u∈Rp

{
γ‖Au− w(l,0)‖22 + γ‖Gu− z(l,0)‖22

}
.

For εk > 0, the Quasi-Newton method can be used to solve (3.8). Since all the
terms in Jεk

(., w(l,k), z(l,k)) are twice differentiable, we can find out the correspond-
ing gradient vector ∇uJεk

def= ∇uJεk
(u, w(l,k), z(l,k)) and the Hessian ∇2

uJεk

def=
∇2

uJεk
(u,w(l,k), z(l,k)) of Jεk

(., w(l,k), z(l,k)) to tackle the minimization problem:

∇uJεk
= 2γAT (Au− w(l,k)) + β∇∇uΨεk

(u) + 2γ(GT Gu− z(l,k)) (3.12)

and

∇2
uJεk

= 2γAT A + 2γGT G + β∇2
uΨεk

(u). (3.13)

where ∇2
uΨεk

(u) def= ∇2
uΨεk

(u,w(l,k), z(l,k)) of Ψεk
(., w(l,k), z(l,k)). Since ∇2

uΨεk
(u) is

negative definite, the Hessian ∇2
uJεk

may be not positive definite. This may prevent
the Quasi-Newton method from convergence as the resultant search direction may
not be a descent direction. In order to ensure the descent direction, we simply use
the positive definite part of the Hessian matrix in the optimization procedure. Such
procedure can guarantee that the proposed algorithm is a descent method for the
minimization problem. Thanks to the term 2γGT G, the coefficient matrix 2γAT A +
2γGT G is always positive definite because of kerA ∩ kerG = {0} stated in (1). The
solution can be updated by

u(l,k) = u(l−1,k) + τ∆u(l,k)

where τ > 0 is the step-size and ∆u(l,k) is found by solving

(2γAT A + 2γGT G)∆u(l,k) = −∇uJεk
. (3.14)

We remark in image restoration that A is usually a blurring matrix generated by a
symmetric point spread function. The computational cost of the method is dominated
by three fast discrete transforms in solving the linear system in (3.14), see [20]. The
computational cost for each fast transform is only O(p log p) for a p×p blurring matrix
A [20].

Three different strategies to determine the step-size τ were tested: Armijo rule,
Goldstein rule and a fixed τ [26, Chapter 3]. By observing experimental results, we
found out that the numerical schemes based on these three rules converged to the
same solutions, while using the first two rules required heavy additional computation
cost. Therefore, we fixed τ = 1 for all of our experiments.

3.2. Algorithm.
Set ε0 = 0 and ∆ε = 1/n, and initialize u(0,0).
For k = 0 → n

Set l = 1, initial value of ω, and relerr = tol + 1
While relerr > tol do

Obtain z(l,k) by computing (3.10) and w(l,k) by computing (3.11);
If k = 0

Solve (2γAT A + 2γ
∑

j∈J

GT
j Gj)u(l,k) = AT w(l,k) + γ

∑

j∈J

GT
j z(l,k);
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Otherwise
Solve (2γAT A + 2γ

∑
j∈J GT

j Gj)∆u(l,k) = −∇uJεk
;

Update u(l,k) = u(l−1,k) + τ∆u(l,k);
End If;
Compute relerr = ‖u(l,k) − u(l−1,k)‖2/‖u(l,k)‖2;

End While
Increase γ and set l = l + 1;
Set u(0,k+1) = u(l,k) (for the initial guess of the next outer loop);
Update εk+1 = εk + ∆ε;

End For

4. Numerical Examples. In this section, we present the experimental results
to demonstrate the efficiency of the algorithm proposed in the last section. Signal
to noise ratio (SNR) is used to measure the quality of the restored images. The
parameter tol is set to be 10−4 in the proposed method. The initial value of γ is set
to be 0.1, and its value is updated by 1.3γ at each iteration. The PF used in all the
illustrations was also tested in [25]:

ϕ(t) =
α|t|

1 + α|t| , ϕε(t) =
α|t|

1 + εα|t| , 0 6 ε 6 1. (4.1)

Note that both ϕ and ϕε satisfy all assumptions H4, H5 and H6, see p. 3. In the tests,
we use α = αε = 0.5. All the computational tasks are performed using MATLAB on
a computer with Corel(TM)2 CPU with 2.66 GHz and 1.98GB of RAM.

In the first experiment, we consider to use the proposed algorithm to generate a
high-resolution image from a low-resolution image. The aim is to demonstrate that
the generated high-resolution image pixels can fit low-resolution image pixels exactly.
The original testing image is the picture of Lena of size 256× 256 as shown in Figure
4.1(a). To generate a low-resolution image, we take the pixels from the original image
by downsampling of factor 2. The observed image of size 128×128 is shown in Figure
4.1(b) and its gray values are in [0, 1]. Here we employ the discrete form of the
Laplacian operator given by




0 −1 0
−1 4 −1
0 −1 0


 .

The resulting high-resolution image of size 256× 256 generated by the proposed algo-
rithm is shown in Figure 4.2. All observed pixels are faithfully fitted by the relevant
pixels of the restored image since their average difference is 1.28× 10−6, with a max-
imum difference 1× 10−4 (i.e. the precision given by the parameter tol). This result
corroborates the theory in Section 2 and shows that the proposed algorithm can match
the observed samples quite exactly.

In the second experiment, we compare the proposed method with the TVL1
method [30]. The linear systems in (3.14) can be solved by fast discrete transforms
in the proposed method. The testing image is the modified Shepp-Logan image of
size 128× 128. To generate the observed images, we added impulsive noise with 10%,
20% and 30% with blurring. The blurring function is chosen to be a two dimensional
truncated gaussian function

h(s, t) = exp
(−s2 − t2

2σ2

)
, for − 3 6 s, t 6 3,
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Fig. 4.1. (a) The original high-resolution image and (b) the low-resolution image.

Fig. 4.2. The resulting high-resolution image by the proposed method.

with σ = 1.5. Different initial guesses have been considered, including the observed
image, the least squares solution and a flat image (all the pixel values are 0.5). From
our experimental results, the proposed method is not insensitive to all of the initial
guesses. Therefore, we only demonstrate the results which the initial guesses are the
observed images. In the experiments we test different values of β in order to find out
the restored image with the highest SNR among the tested values. Similarly, we also
test different values of the regularization parameter in the TVL1 [30] to find out the
restored image with the highest SNR.

Figure 4.3(a) shows the original images. Figures 4.3(b)-(d) show their correspond-
ing images with blur and noise as described in the above settings respectively. Figures
4.4(a)-(c) show the images restored by the proposed method, and Figures 4.4(d)-(f)
show the images restored by the TVL1 method. We see from the figures that the
images restored by the proposed method are visually better than those by the TVL1
method. In Figures 4.5 (the 40th row of the image) and 4.6 (the 40th column of the
image), we display two 1-dimensional sections of the restored images by the proposed
method and the TVL1 method. We see that the proposed method is more effective
for restoring images with constant regions surrounded by closed contours. The SNRs
of the restored images by the proposed method are 45.01dB, 40.73dB and 35.40dB for
10%, 20% and 30% impulsive noises respectively. However, the TVL1 method restores
images with SNRs 31.80dB, 30.71dB and 27.96dB for 10%, 20% and 30% impulsive
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noises respectively.

5. Concluding Remarks. In this paper, we considered image reconstruction
and image restoration using `1 data fitting and nonconvex and nonsmooth regulariza-
tion on the image. Our theoretical results show that the solutions of the corresponding
minimization problem are such that any pixel is involved in a data equation that is
fitted exactly or in a null component of the regularization term. This remarkable
property can be used in different ways in various imaging problems. From a practical
side, we conceived a fast numerical scheme to solve this difficult minimization prob-
lem. Experimental results have shown the effectiveness of the proposed numerical
scheme.
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(a)

Fig. 4.3. (a) The original image; (b) the observed image of 10% impulsive noise; (c) the
observed image of 20% impulsive noise; (d) the observed image of 30% impulsive noise.

(a) (b) (c)

(d) (e) (f)

Fig. 4.4. The restored images of (a) 10% impulsive noise (β = 0.04); (b) 20% impulsive noise
(β = 0.03); (c) 30% impulsive noise (β = 0.06) by the proposed method. The restored images of
(d) 10% impulsive noise (β = 0.02); (e) 20% impulsive noise (β = 0.02); (f) 30% impulsive noise
(β = 0.03) by the TVL1 method.
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Fig. 4.5. (a) The 1D section (the 40th row) of the original image. the restored 1D section of
(b) 10% impulsive noise; (c) 20% impulsive noise; (d) 30% impulsive noise by the proposed method
in Figure 4.2; the restored 1D section of (e) 10% impulsive noise; (f) 20% impulsive noise; (g) 30%
impulsive noise by the TVL1 method in Figure 4.2.
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Fig. 4.6. (a) The 1D section (the 40th column) of the original image. the restored 1D section of
(b) 10% impulsive noise; (c) 20% impulsive noise; (d) 30% impulsive noise by the proposed method
in Figure 4.2; the restored 1D section of (e) 10% impulsive noise; (f) 20% impulsive noise; (g) 30%
impulsive noise by the TVL1 method in Figure 4.2.


