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ABSTRACT
This paper proposes a statistical rejection rule, designed for

small baseline stereo satellites. The method learns an a contrario
model for image blocks and discards the casual matches between the
images of the stereo pair. A formula estimating the expected number
of false alarms under the background model is proved. Compar-
ative experiments on quasi-simultaneous stereo in aerial imagery
demonstrate the elimination of all incoherent motions.

Index Terms— Image matching, number of false alarms, a con-
trario models, Stereo vision, Satellite applications

1. INTRODUCTION

Rejecting false matches is a key problem in stereovision, especially
when computing digital elevation models from aerial or satellite
imaging. Indeed, using the same instrument for both views yields
non-simultaneous snapshots. In the case of a large baseline these
changes are dramatic, because the instrument has to travel a long
distance between shots. Fortunately, thanks to recent advances in
subpixel stereo [1, 2, 3], lower baselines have become tractable, thus
enabling quasi-simultaneous single-instrument stereo. For instance,
the upcoming Pleiades satellite shall allow for stereo pairs at about
three seconds interval by decreasing the baseline/height ratio to
0.15. This mission, which we are currently preparing, requires an
automatic and faultless stereo reconstruction. Even lower baselines
and lower time intervals are planned for future Earth observation
satellites. At such small time intervals illumination changes become
negligible, but moving vehicles or even pedestrians remain a serious
problem in urban areas. Their reliable detection is crucial for the
high resolution low baseline systems proposed at CNES by [4, 2].

The shortcomings of block-matching have led to the overall
dominance of global stereo reconstruction methods such as graph-
cuts [5]. Yet, a false match rejection is required for all methods.
Thus, even for global methods, a local rejection rule involving
block-matching seems necessary. The elimination of mismatches
in the block-matching framework was considered in [6], where the
two causes of mismatch are considered, namely the mismatches on
weakly textured objects, and on periodic structures. A confidently
stable matching was defined in order to establish the largest possible
unambiguous matching at a given confidence level. The method has
two parameters that control the compromise between the percentage
of bad matches and the density of the map, but the match density
falls dramatically when the percentage of mismatches decreases.
Similarly, [7] tries to eliminate errors on repeated patterns using a
self-similarity function, the auto-SSD function (see Section 3), but
with this method the matches seem to concentrate mainly on image
edges. This is problematic, because edges are prone to fattening
errors [2]. It is therefore important to confirm meaningful matches,

even in flat textured regions. Since such regions may look like noise,
a fine statistical decision is required to accept or reject matches in
texture. The auto-SSD strategy does not eliminate errors due to
moving objects, as will be shown in Section 3.

The method proposed here will be based on the a contrario ap-
proach [8], an adaptation to image analysis of hypothesis testing.
The basic assumption of a contrario methods is the Helmholtz prin-
ciple, according to which all perceptions can be characterized as hav-
ing a low expectation of occurring just by chance. This expectation
is estimated by a number of false alarms (NFA). The a contrario
method has been successfully applied in shape matching [9], Scale
Invariant Feature Transform (SIFT) [10], change detection [11, 12],
and region similarity [13, 14, 15], but not yet to block-matching.
The main ingredient of the a contrario method for blocks will be
the learning of an accurate probability distribution for image blocks
which generates a statistical background model for blocks. Precur-
sors on statistical background modeling are [16, 17].

Section 2 describes this learning and proves the main result, The-
orem 1, which guarantees a false alarm control. Section 3 contains
comparative experiments and a conclusion.

2. THE A CONTRARIO MODEL

In this section the ACBM (a contrario block-matching) model is pre-
sented. Consider a stereo image pair I , I ′ in epipolar geometry. With
a low baseline, the deformations between the images of the stereo
pair are minor. Thus, one can reject matches q ∈ I → q′ ∈ I ′

by comparing a block Bq around q with a block Bq′ around q′.
Realistically the blocks are s × s squares with s ranging from 5 to
11. The a contrario model for blocks will be defined after a di-
mension reduction by standard Principal Componet Analysis (PCA)
of the s2-dimensional set of all image blocks. By keeping the first
N < s2 components with larger eigenvalues, the dimension is re-
duced but the most significant information retained. A global order-
ing of PCA eigenvectors is used to select the main components. A
local ordering will instead be used for the statistical matching rule.
From now on the N PCA coordinates of each block Bq will be
ordered in decreasing absolute value. In that way, comparisons of
the PCA components of Bq to those of Bq′ will be made from the
most relevant to the least relevant one for this particular block. Let
(cσq(1)(q), . . . , cσq(N)(q)) be the PCA coefficients of Bq, ordered
in that way. By a slight abuse of notation, we will write ci(q) instead
of cσq(i)(q).

Let q be a point in the reference image I . We look for a pixel q′

in the secondary image I ′ such that Bq and Bq′ are similar and wish
to establish a rejection criterion. The idea is to estimate accurately
the probability that “just by chance” a block Bq′ in I ′ looks like
a block Bq in I . This will be done by learning from I ′ a realistic



random model for the PCA components ci(q
′) of blocks of I ′.

Definition 1 (empirical probability) Let Bq be a block in I . We
call empirical probability that an observed block Bq′ in I ′ be similar
to Bq for the feature i,

bpi
qq′ =

8

<

:

Hi(q
′) if Hi(q) < |Hi(q) − Hi(q

′)|
1 − Hi(q

′) if 1 − Hi(q) < |Hi(q) − Hi(q
′)|

2·|Hi(q) − Hi(q
′)| otherwise

where Hi(q) := Hi(ci(q)) is the normalized cumulative histogram
of ci(q) for I ′ (see Fig. 1).
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Fig. 1. Computation of the empirical probability.

The first principal components contain the more relevant infor-
mation in the block. Thus, if two blocks are not similar for one
of the first components, they should not be matched, even if their
next components are similar. Due to this fact, the components will
be compared with a nondecreasing exigency level. Furthermore, a
quantized definition of the empirical probabilities will be needed to
limit the number of tests.

Definition 2 (quantized probability) Let Bq be a block in I . Let
Π := {πj = 1/2j−1}j=1,...,Q be a set of probability thresholds and
let
Υ := { p=(p1, . . . , pN ) | pi ∈ Π, pi 6 pj if i < j}
be the family of non-decreasing N -tuples in ΠN . The quantized
empirical probability that Bq′ be similar to Bq for the feature i, is
defined by pi

qq′ = inf
t∈Π

{t > sup
j6i

( bpj
qq′)}.

In short, (p1
qq′ , . . . , pN

qq′) is the smallest upper bound in Υ of the

empirical probabilities ( bp1
qq′ , . . . , cpN

qq′).

Definition 3 ( a contrario model) We call a contrario model associ-
ated with a reference image a vectorial random field defined on the
image domain, with values in RN , C(q)=(C1(q),...,CN (q)) such that
• for each q ∈ I , the components Ci(q), i = 1, . . . , N are indepen-
dent random variables;
• for each i, the law of Ci(q) is the empirical histogram of ci(·) for
the reference image.

Thanks to the independence of the Ci(q), the above definition of the
a contrario model will allow one to compute a block resemblance
probability as the product of the marginal resemblance probabilities
of the Ci(q). There is a strong adequacy of this independence as-
sumption to the empirical model. Indeed, the PCA transform ensures
that the ci(q) are empirically uncorrelated.

Definition 4 (Number of false alarms) Let Bq ∈ I and Bq′ ∈ I ′

be two observed blocks. Define the Number of False Alarms of the
event “a random block Bq′ is as similar to Bq as Bq′ is” by

NFAqq′ = Ntest · Prqq′ ,

where Ntest is the number of tested matches, and Prqq′ the prob-
ability that Bq′ be as similar to Bq as Bq′ under the a contrario
model for Bq′ .

Since by Def. 3, the principal components are independent un-
der the a contrario model, the probability that Bq′ is that simi-

lar to Bq is equal to Prqq′ =
N

Y

i=1

pi
qq′ . Therefore, NFAqq′ =

Ntest ·
QN

i=1 pi
qq′ .

Definition 5 (ε-meaningful match) A pair of pixels q and q′ in a
stereo pair of images is an ε-meaningful match if

NFAqq′ 6 ε .

This generic definition from [8] gives here a tool to decide whether
a match is meaningful or not. The NFA of a match actually also
gives a security level: the smaller the NFA, the more meaningful the
match.

We now address the computation of Ntest, the number of per-
formed tests for comparing all the blocks. It is the product of three
terms. The first one is the image size #I . The second one is the size
of the search region which we denote by S′ ⊂ I ′. We mentioned
before that the search is done on the epipolar line. In practice, a seg-
ment of this line is enough. If q = (q1, q2) is the point of reference
we look for q′ = (q′1, q2) ∈ I ′ such that q′1 ∈ [q1 − R, q1 + R]
where R is a fixed integer larger than the maximal possible dispar-
ity. The third and most important factor is the number of tested non-
decreasing probability distributions FCN,Q = #Υ. This number
is a function of the number N of principal components and of the
number Q of probability quanta. Thus
Ntest = #I · #S′ · #Υ = n (2R + 1) FCN,Q, and it is an easy
check that FCN,Q =

PQ
t=0(t + 1) ·

`

N+Q−t−3
Q−t−1

´

.

Theorem 1 Let Γ = Σq,q′χBq,Bq′ be the random number of oc-
currences of an ε-meaningful match between a deterministic block
Bq in I and a random block satisfying the a contrario model in I ′.
Then the expectation of Γ is smaller than ε.

Proof 1 Using the linearity of the expectation to add:

χBq,Bq′ =



1, if NFA(Bq, Bq′) 6 ε
0, if NFA(Bq, Bq′) > ε

˛

˛

˛

˛

yields

E[Γ] =
P

q,q′ E[χq,q′ ] =
P

q,q′ P [NFA(Bq, Bq′) 6 ε] .
The probability inside the expectation can be computed using defi-
nitions 4 and 1 as E[χq,q′ ] := P [NFA(Bq, Bq′) 6 ε]

= P
h

QN
i pi(Bq, Bq′) 6 ε

Ntest

i

. The probability of the non-
disjoint union of events can be upper-bounded by their probability
sum, and the intersection below involves only independent events



according to our background model. Thus:

E[χq,q′ ] =

= P

2

6

6

4

[

p∈Υ
Q

i pi6ε/Ntest

\

i

`

2 · |Hi(ci(q)) − Hi(Ci(q
′))|6pi

´

3

7

7

5

6
X

p∈Υ
Q

i pi6ε/Ntest

Y

i

P [2 · |Hi(ci(q)) − Hi(Ci(q
′))|6pi]

=
X

p∈Υ
Q

i pi6ε/Ntest

Y

i

pi 6 ε

#I #S′ .

In the last line we used the fact that Hi(Ci(q
′)) follows a

Uni[0, 1] distribution, since the random variable Ci(q
′) is drawn

from the cumulative distribution Hi. Finally, recalling that Ntests =
#I #S′ #Υ, this last sum can be upper bounded by ε

#I #S′ . So we
have shown that

E[Γ] =
X

q,q′

E
h

χBq,Bq′

i

6
X

q,q′

ε

#I #S′ = ε.

Remark 1 The NFA indicates the level of similarity between two
points: the smaller the NFA, the more meaningful the match. In fact,
given ε, Def. 5 gives a tool to decide whether a match is meaning-
ful or not. Thanks to the Theorem 1 the ε parameter can be fixed
once and for all. If for instance the desired number of admissible
mismatches is 1, then fix ε = 1. This will mean that on average not
more than one mismatch will occur (provided the a contrario model
B for the blocks in I ′ is faithful). Other fixed parameters are: the
size of the patch (9×9), the number of components (N = 9) and the
number of probability thresholds (Q = 5). Since the dependency on
these parameters is very low, they are fixed for all the images. Then,
the presented accept/reject decision rule (ACBM) can be seen as a
parameterless method.

3. EXPERIMENTAL RESULTS, CONCLUSION

The a contrario test permits to eliminate systematically all unreliable
matches, in particular all wrong matches caused by moving objects
or poorly textured regions. Fig. 2 provided by CNES is a typical
urban aerial scene where vehicles and pedestrians have moved. The
rejected matches are left in black. The corresponding mask of ac-
cepted matches shows that the moving objects have not caused a
single mismatch. The rejection criterion of MARC (Multiresolution
Algorithm for Refined Correlation, CNES patented algorithm [4])
fails in the images having moving objects. Its final disparities on
streets have dark (too low) or white (too high) blobs corresponding
to vehicles and pedestrians with wrong disparities caused by their
motion.

Rejecting false matches in stereovision has already been ad-
dressed by computing the similarity of matches in one of the images.
This similarity is usually measured with SSD (Sum of Squared Dif-
ferences). This is the case of [7] which used the so-called auto-SSD
function. In [18] a similar criterion is proposed in the context of
matching of local image descriptors (SIFT).

More precisely, the test consists in matching q → q′ if
SSD(Bq, Bq′) < min{SSD(Bq, Br)| r ∈ I ∩ S(q)}, where
S(q) is a neighborhood of q.

Fig. 2. Top: Left and right aerial images. Several vehicles have
moved. Middle-left, disparity obtained with ACBM (black points
are rejected. The brighter the disparity the higher the point). Right,
mask of accepted (white) points. Bottom: Disparity map obtained
by MARC. Mismatches occur with moving vehicles.

The straightforward auto-SSD threshold is able to reject am-
biguous matches due to periodic structures in the epipolar direction
(Class 2 errors defined in [6]). But this test is not enough for reject-
ing matches in moving objects. Fig. 3 shows two examples where
there are pedestrians and vehicles moving. ACBM rejects the wrong
matches due to motion, and the auto-SSD test fails to do so. MARC
obtains several mismatches in its disparity map.

The ACBM method has also been compared to other non-dense
methods rejecting false matches in simultaneous stereo. Table 1
compares the ACBM results with the results in [6], [19] and [20],
published on the first Middlebury benchmark dataset [21].

The ACBM threshold is able to detect moving objects and poor
or periodic textured regions by performing a rigorous selection of
meaningful, reliable matches. This is particularly important in quasi-
simultaneous stereo. The ACBM method with fixed threshold ε = 1
can be seen as a completely automatic validation procedure. In fu-
ture research, it will be used either as a non dense stereo algorithm
which must be completed by global interpolation, or as an a posteri-
ori check of matches obtained by other stereo matching methods.1

1Work was supported by the French Space Agency (CNES). Input images
in this paper were provided and copyrighted by CNES.



Tsukuba Sawtooth Venus Map
Error Density Error Density Error Density Error Density

ACBM 0.31 45.6 0.09 65.7 0.02 54.1 0.0 84.8
Sara [6] 1.4 45 1.6 52 0.8 40 0.3 74

Veksler [19] 0.36 75 0.54 87 0.16 73 0.01 87
Mordohai [20] 1.18 74.5 0.27 78.4 0.20 74.1 0.08 94.2

Table 1. Quantitative results on the first Middlebury benchmark dataset. The error statistics (percentage) are computed on the mask of non
occluded pixels and a mismatch is an error bigger than 1 pixel. ACBM obtains many less mismatches in the four images with a comparable
proportion of good matches.

Fig. 3. Top: Left and right quasi-simultaneous aerial images. In the
first example, a pedestrian has moved several meters. In the second
one, a car disappears and several pedestrians have moved. 2nd line:
Disparity map obtained with ACBM and its associated mask of ac-
cepted points. 3d line: Disparity map and mask obtained with the
self-similarity threshold. Several mismatches (white points in the
disparity map) occur. Bottom: MARC disparity map. All bright or
dark disparities are wrong.
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