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ABSTRACT

This paper points out and attempts to remedy a serious dis-
crepancy in results obtained by global calibration methods:
The re-projection error can be rendered very small by these
methods, but we show that the optical distortion correction is
far less accurate. This discrepancy can only be explained by
internal error compensations in the global methods that leave
undetected the inadequacy of the distortion model. This fact
led us to design a model-free distortion correction method
where the distortion can be any image domain diffeomor-
phism. The obtained precision compares favorably to the dis-
tortion given by state of the art global calibration and reaches
a RMSE of 0.08 pixels. Nonetheless, we also show that this
accuracy can still be improved.

Index Terms— Planar textured pattern, virtual pinhole
camera, nonparametric, high-precision, lens distortion

1. INTRODUCTION

This paper presents a small step forward in a research pro-
gramme whose aim is to devise a highly accurate camera cali-
bration method. By highly accurate, we mean that the residual
error between the camera and its numerical model obtained by
calibration should be far smaller than the pixel size. At first
sight, this problem seemed to have been solved adequately by
recent global calibration methods. The celebrated Lavest et
al. method [13] yields a remarkably small re-projection error
of about 0.02 pixels. The experiments described below will
actually confirm this figure. For the goals of computer vision,
this precision would be more than sufficient. Yet, this paper
describes a seriously discrepant accuracy measurement con-
tradicting this hasty conclusion. As in [1] we shall use the
following fact:
Theorem 1[6] a camera follows the pinhole model if and
only if the projection of every straight line in space onto the
camera is a line.
Following this theorem, the accuracy criterion used herewith
directly measures the straightness of straight lines. We shall
see that this straightness criterion gives a RMSE in the order
of 0.2 pixel, which contradicts the 0.02 pixel re-projection ac-
curacy. This significant discrepancy means that, in the global
optimization process, errors in the external and internal cam-
era parameter are being compensated by opposite errors in the
distortion model. Thus, an inaccurate distortion model can
pass undetected. Such facts raise a solid objection to global
calibration methods, which estimate simultaneously the lens

distortion and the camera parameters. This paper reconsid-
ers the whole calibration chain and examines an alternative
way to guarantee a high accuracy. A useful tool toward this
goal will be proposed and carefully tested. It is a direct non-
parametric distortion correction method. By nonparametric,
we mean that the distortion model allows for any diffeomor-
phism.

We shall follow the usual assumption that a real camera
deviates from the ideal pinhole model [9] by a lens distortion
[3]. Thus, distortion correction is a fundamental step in multi-
view geometry applications such as 3D reconstruction. The
above mentioned error measurement discrepancy may explain
why three categories of distortion correction methods still co-
exist: classic pattern-based methods [19, 20, 13], plumb lines
methods [6, 11, 17, 1] whose goal it is to correct the distor-
tion only, and methods based on enlarged epipolar geometry
[14, 8, 12, 18]. Yet, these methods are all parametric and de-
pend on the a priori choice of a distortion model with a fixed
number of parameters. This per se is a drawback: such cal-
ibration methods require several trials and a manual model
selection. Most methods assume a radial distortion modeled
as a low-order even polynomial [19, 16] (models with more
parameters are needed for wide-angle or fish-eye lens [2, 6]).

The proposed distortion correction method does not
belong to any of the three categories. Indeed, it is non-
parametric, non-iterative and model-free. Like most methods
in the second and third category, the method decouples the
distortion estimation from the calibration of camera internal
parameters, thus avoiding any error compensation between
them [10, 14].

Our plan is as follows. Section 2 gives the necessary def-
initions of the real camera and the pinhole model. It explains
why a distortion correction up to a homography is sufficient
for 3D applications, and defines the concept of virtual pinhole
camera. The proposed nonparametric distortion correction is
detailed in section 3, and is followed by experimental results
in section 4. The last section 5 discusses how the high accu-
racy quest could be pursued.

2. THE VIRTUAL PINHOLE CAMERA

The classic camera model is

Ĉ := DKR[I | −T ] (1)

where T is a 3D point representing the optic center of camera,
R is a 3D rotation representing camera orientation, K is a
3 × 3 upper triangular matrix containing the camera internal
parameters, and D is a diffeomorphism of the image domain



representing the non-linear lens distortion. By pinhole camera
model we mean a distortion-free camera model

C := KR[I | −T ]. (2)

The nonparametric method will estimate the distortion up to
an arbitrary invertible homography H: D̃ = DH . The cor-
rection precision evaluation will be based on the straightness
of corrected lines, which is preserved by any homography.
Applying D̃−1 on Ĉ, yields

C̃ = D̃−1DKR[I |−T ]
= H−1D−1DKR[I |−T ] = H−1KR[I | −T ].(3)

Thus, inverting the distortion on all images produced by the
camera yields a new camera model which becomes pinhole.
H , K being invertible, the decomposition H−1K = K̃R′

is unique by QR decomposition. So after distortion correc-
tion (up to a homography) we have C̃ = K̃R′R[I | −T ] =
K̃R̃[I | −T ], which we call the virtual pinhole camera ob-
tained after distortion correction. The orientation and inter-
nal parameters of this virtual model do not match the physics
of the actual camera, but yield a virtual pinhole camera that
can be used to the very same purposes. Indeed, consider sev-
eral positions of the physical camera inducing as many cam-
era models Ci = DKRi[I | −Ti]. Applying the correc-
tion D̃−1 to all images obtained from these camera positions
yields virtual pinhole cameras C̃i = K̃R̃i[I | −Ti]. From
these cameras the whole 3D scene can be reconstructed by
standard methods, up to a 3D similarity.

3. NONPARAMETRIC DISTORTION CORRECTION

3.1. The experimental set up
A nonparametric method requires the use of a highly textured
planar pattern obtained by printing a textured image and past-
ing it on a very flat object (a mirror was used in the exper-
iments). Two photos of the pattern are taken by the camera
in a fixed lens configuration (e.g., with fixed zoom and fo-
cus). Ideally, the whole captor must be covered by the whole
pattern.

Fig. 1: Digital pattern: 1761× 1174 pixels.
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Fig. 2: Local approximation of distortion by the affine transforma-
tion between corresponding Delaunay triangles. Point x is mapped
to point X , by the affine transformation that maps triangle abc to
triangle ABC.

3.2. Feature points
The distortion is estimated (up to a homography) as the dif-
feomorphism mapping the original digital pattern to a photo-
graph of it. This requires a dense registration, which is ob-
tained by a recent version of the SIFT [15] method provid-
ing high-precision localization [4]. Denote by I the original
digital pattern, by P the printed pattern, and by v the photo
of P . The set of SIFT points matching from I to v is de-
noted by Iv and the corresponding points in v by vI . Since
the pattern is planar, there is a planar homography H such
that DHIv = vI . Knowing DH permits to synthesize a vir-
tual pinhole camera by applying (DH)−1 on Ĉ, as shown in
Eq. (3).

3.3. Triangulation and affine interpolation
The correspondences (Iv, vI) actually only define the distor-
tion field DH on the SIFT points Iv . The distortion being
very smooth and the SIFT points dense enough, an affine in-
terpolation is sufficient. This interpolation is performed after
the image domain has been partitioned by a Delaunay trian-
gulation of the SIFT points in v and I respectively (Fig. 2).
Fig. 1 shows the texture pattern, selected to yield a maximal
density of reproducible SIFT points at fine scales.

3.4. Outliers elimination: a loop validation
The few wrong SIFT matches (outliers) are nonetheless a se-
rious problem. In our case, precisely because of the lens dis-
tortion, matching points are not related by a homography, and
directly applying RANSAC [7] would not work. The problem
is solved by a loop validation (Fig. 3). Consider two similar
photos of the pattern, u and v (obtained by moving slightly
the camera between two successive snapshots). With straight-
forward notation we have uI = DHuIu and vI = DHvIv
(since the same camera and configuration are used, D does
not change). The points vI can be projected back on I by the
distortion field from u to I , obtaining Iuv = (DHu)−1vI . It
follows that Iv and Iuv are related by a homography (without
distortion) because

Iuv = (DHu)−1DHvIv = H−1
u HvIv. (4)

This is a typical situation where RANSAC can be applied suc-
cessfully to remove all outliers. The next subsection summa-
rizes the algorithm.
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Fig. 3: The loop validation used to remove outliers.

3.5. Algorithm summary
1. Take two slightly different photos of a textured planar

pattern with constant camera settings;
2. apply high precision SIFT between the original digital

pattern and both photographs;
3. eliminate outliers by the loop validation step;
4. interpolate the remaining matches to get a dense reverse

distortion field;
5. by applying the reverse distortion field to all images

produced by the real camera, the camera is converted
into a virtual pinhole camera.

4. EXPERIMENTS

The experiments were made with a Canon EOS 30D reflex
camera and an EFS 18−55mm lens. The minimal focal length
(18mm) was chosen to produce a fairly large distortion. The
RAW images were demosaicked by summing up the four pix-
els of each 2×2 Bayer cell, obtaining a half-size image. Fig. 1
shows the digital pattern I that was used.

Fig. 4a shows a subsampling of the resulting distortion
field, after the validation loop, and Fig. 4b shows the modu-
lus of the interpolated distortion field on the discrete image
domain. The distortion field is not circular symmetric, which
is natural, the distortion being estimated up to an unknown
homography.

(a) (b)

Fig. 4: (a) The (subsampled) distortion field directly defined on “in-
lier” correspondences after the loop validation. (b) Modulus of the
dense distortion field obtained by affine interpolation.

To check the quality of the correction, we built a pattern
with tightly stretched strings, that guarantees straightness, see

(a) distorted image of tightly
stretched strings

(b) corrected image by the nonpara-
metric method

Fig. 5: Distorted lines marked by numbers in (a) will be used to
evaluate the precision after distortion correction.

RMSE (in pixels)
our method Lavest method

line 1 0.095 0.170
line 2 0.066 0.083
line 3 0.067 0.100
line 4 0.059 0.078
line 5 0.079 0.089
line 6 0.126 0.178

Table 1: Each distorted line marked by a number in Fig. 5a, is
corrected either by the Lavest et al. method or by the proposed non-
parametric method. The edge points are detected by Devernay’s al-
gorithm. The distortion error is computed as the root-mean-square
distance (in pixels) from the edge points to their regression line.

Fig. 5a. The distortion is visible near the border of the im-
age. Fig. 5b shows the image corrected by our nonparametric
method. The lines numbered in Fig. 5a were used to evaluate
the distortion error and compare it with the error left by the
Lavest et al. algorithm [13]. On each corrected line, subpixel
precision edge points were obtained by Devernay’s algorithm
[5]. Then, their regression line was computed and the RMS
(root-mean-square) distance from each edge point to the line
was used as the error measure. Table 1 shows the results. The
proposed nonparametric method shows an improvement over
the Lavest et al. method. But this difference is not just quan-
titative. The Lavest et al. result is somewhat final. Indeed, it
already includes a correction of the non-flatness of the pattern
while the nonparametric method does not.

Figure 6 plots the straightness error of the proposed
method along line number one (that is, the distance between
edge points to the regression line). One can see small os-
cillations easily explained by noise and aliasing, but also a
global tendency which can only be due to the non-flatness
of the pattern. A parallel deterministic tendency observed on
the other lines confirms this explanation. Fig. 7 shows that
a flatness error of 100 µm (the thickness of a normal paper
sheet) can produce the observed tendency. This non-flatness
effect is stronger near the border of the image because the
angle-of-view is larger. Simple physical measurements by
the classic ruler method confirmed that the pattern showed a
non-flatness of this amount.



Fig. 6: The distance in pixels from the edge points to their re-
gression line on line 1 in Fig. 5a, after correction by the proposed
method.
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Fig. 7: A flatness error in the pattern can be mistaken for a “dis-
tortion”. In the experiments, with α ≈ 65 ◦ and a flatness er-
ror about 100 µm, the produced “distortion” error is about 64 µm
(flatness error × tan α

2
). Our pattern has the size 406 × 271 mm

and produces a 1761 × 1174 image, then one pixel corresponds to
230 µm. Thus the observed error would be approximately 0.3 pixel.

5. DISCUSSION

The above experimental setting suggests two ways to eventu-
ally reach a still higher precision. The first way would simply
be to use very flat patterns. But this raises the problem of
making smart patterns. An alternative strategy was suggested
in [1], using accurate straight objects, like the tightly stretched
strings we already used here. Yet, it seems advisable to try
to keep the strength and beauty of the Lavest et al. method,
which is to estimate and correct the pattern’s shape by the
calibration process itself. An iterative method could be envis-
aged where, first, the distortion is corrected by the proposed
nonparametric method and, second, the physical shape of the
pattern is computed by the Lavest et al. method with no dis-
tortion model. Using this correction the distortion would be
recomputed, and so on. This is, however, a complex process,
which will require a heavier procedure and a mathematical
analysis.
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