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Abstract. In this work, we investigate the numerical solving of the
one-dimensional pressureless gases system. After briefly recalling the
mathematical framework of the duality solutions introduced by Bouchut
and James [6], we point out that the upwind scheme for the density and
momentum does not satisfy the one-sided Lipschitz (OSL) condition on
the expansion rate required for the duality solutions. Then we build a
diffusive scheme which allows to recover the OSL condition by following
the strategy described in [9] for the continuous model.

1. Introduction

During the last two decades, there has been a lot of contributions dealing
with the pressureless gases system. It seems natural to tackle the question
of its discretization, to obtain a relevant numerical approximation of the
solution to this system. Indeed, it appears as a degenerate hyperbolic system
of conservation laws (the Jacobian is not diagonalizable), and it is interesting
to investigate if the numerical schemes fitted to nondegenerate systems are
also fitted to this system.

Let us first recall the one-dimensional system describing a pressureless
gas. Let T > 0. The gas density %(t, x) ≥ 0 and the momentum q(t, x) ∈ R

satisfy the following equations in (0, T )× R

∂t%+ ∂x(%u) = 0,(1)

∂tq + ∂x(qu) = 0.(2)

One must define the velocity u(t, x) ∈ R as a quotient of q by %, but it
may not be possible, since % can be nil. We shall discuss this issue below,
by recalling the notion of duality solutions [5]. Both equations consist in
a conservation law, (1) for mass and (2) for momentum. We also provide
initial conditions

(3) %(0, ·) = %in, q(0, ·) = qin,

in which the condition on the momentum can be replaced by an initial
condition on the velocity u(0, ·) = uin, and then written again as q(0, ·) =
%inuin.

The previous system can be seen as a simplified model of the Euler equa-
tions to describe gas dynamics, where the pressure has been set to 0. It can
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describe either cold plasmas or galaxies’ dynamics [25]. This system (1)–(2)
and related problems (traffic models, magnetohydrodynamics, astrophysics,
pressureless fluid equations...) have been widely studied, see, for instance,
[4, 18, 15, 11, 23, 6, 9, 24, 1, 21, 7, 16, 14, 2, 22, 10]. Those references use a
standard fluid setting or a kinetic one, involving the adhesion dynamics of
the so-called sticky particles.

When one studies smooth solutions of the pressureless gases system, (2)
can be replaced by the standard Burgers equation

(4) ∂tu+ ∂x

(

u2

2

)

= ∂tu+ u∂xu = 0.

In that case, % solves a plain transport equation, since u does not depend
on %. On the other hand, it is well-known that smooth initial data may
eventually result in mass concentration, for example, when the velocity does
not increase. In that case, the velocity cannot solve (4) anymore.

In [5], Bouchut and James introduced the notion of duality solution for
one-dimensional transport equations and conservation laws. In [6], they
proved that this framework was fitted the pressureless gases system. Let us
briefly recall the results obtained there.

Definition 1. A couple (%, q) ∈ C(R+; w*-Mloc(R))
2, with % ≥ 0, is a

duality solution to (1)–(2), if there exists a bounded Borel function a and
α ∈ L1

loc
(R∗

+) such that

∂xa ≤ α, q = α%, in R
∗
+ × R,

and, in the duality sense on (t1, t2)× R, for any 0 < t1 < t2,

∂t%+ ∂x(%a) = 0, ∂tq + ∂x(qa) = 0.

In that setting, u is defined %-almost everywhere, and we have u = a
%-a.e. Bouchut and James proved that duality solutions are stable, and also
entropic, i.e. the following inequality holds, in the distributional sense,

(5) ∂t(%S(u)) + ∂x(%uS(u)) ≤ 0,

for any convex function S. Using those properties and the sticky particles
dynamics, they obtained the following existence result.

Theorem 1. Let %in, qin ∈ Mloc(R), with %in ≥ 0 and |qin| ≤ U%in, U ≥ 0.
Then there exists a duality solution to (1)–(3), and we have ‖a‖∞ ≤ U and
α(t) = 1/t.

As proven in [19], the one-sided Lipschitz (OSL) condition on the expan-
sion rate ∂xa ≤ 1/t, also known as the Oleinik entropy condition, is optimal
for a convex scalar conservation law. In the proof of Theorem 1, it is clear
that the standard convex entropy condition (5) is not enough, and the OSL
condition is really required. Note that, when the solutions are smooth, this
estimate can easily be proven, since the Burgers equation (4) lies in the class
of convex scalar conservation laws [12, 20].
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Eventually, Bouchut and James also obtained uniqueness when %in is
nonatomic (essentially meaning that %in is smooth).

In this work, we also need to consider the addition of a viscosity term
in the pressureless gases system. For the study of this viscous system, as
shown in [9], (2) is replaced by an equation on the velocity itself. Indeed,
let us choose ε > 0. The gas density %(t, x) ≥ 0 and the velocity u(t, x) ∈ R

satisfy, in (0, T )× R, Equation (1) and

(6) ∂tu+ u∂xu =
ε

%
∂2
xxu,

with the same set of initial conditions (3). That writing imposes that %
remains nonnegative, which is proven to be true in [9] if one assumes that
the initial datum of % is also nonnegative. Note that (6) is equivalent, when
ε is fixed, to the following one

(7) ∂tu+ ∂x

(

u2

2

)

=
ε

%
∂2
xxu,

if we take into account the smoothness of the viscous velocity given in [9].
In fact, (6) or (7) can be rewritten as an equation on the momentum with

a viscosity term ε∂2
xxu

∂t(%u) + ∂x(%u
2) = ε∂2

xxu,

which yields (2) when ε goes to 0. In [9], the author proved the existence, in
the sense of distributions, of solutions to the viscous system (1) and (3)–(7),
and that the expansion rate satisfies a uniform (with respect to ε) upper
bound ∂xu ≤ A/(At + 1), when A = max(ess sup ∂xu

in, 0) is finite. He
also obtained the convergence of the viscous solutions towards the duality
solutions to the pressureless gases system when ε vanishes. More precisely,
the following convergence result holds.

Theorem 2. Let (%inε ), (u
in

ε ) such that, for any ε > 0,

%inε > 0, %inε ∈ L∞(R),
∥

∥1/%inε
∥

∥

L∞(R)
≤ Cε−1/4,

uin

ε ∈ L1 ∩  L∞(R),
∥

∥uin

ε

∥

∥

L∞(R)
≤ C,

∂xu
in

ε L
1 ∩ L2(R), ess sup ∂xu

in

ε ≤ Cε−1/2.

We assume that (%inε ) ⇀ %in and (%inε u
in

ε ) ⇀ qin in w*-Mloc(R). Then,
up to a subsequence, (%ε, %εuε), given by the solutions to (1) and (7), with
initial datum (%inε , %

in

ε u
in

ε ), converges in Ct(w*-Mloc(R)) towards the duality
solution (%, q) of (1)–(3).

Both previous (viscous and inviscid) systems can also be studied in a
periodic framework, i.e. we focus on the closed interval [0, 1] and impose
that all the physical quantities have the same values at both x = 0 and
x = 1, so that the solutions are 1-periodic.
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This work is dedicated to the numerical solving of the inviscid and viscous
pressureless gases system (1)–(2), where the latter may be replaced by (7).
For readability reasons, we choose the periodic framework.

There are two possible methods to get a priori relevant schemes. The first
one is to use the natural kinetic framework which underlies the pressureless
gas dynamics, with kinetic schemes, as in [4, 8], or with particle methods [13].
The second one is related to the discretization of hyperbolic conservation
laws. Gosse and James [17] pointed out the relevance of two families of
numerical schemes: the upwind schemes and the Lax-Friedrichs schemes. In
[3], the authors investigate a relaxation scheme for the pressureless gases
system in one and two-dimensional settings.

As we already pointed out, the key condition to obtain the duality solution
is that the velocity expansion rate must be upper-bounded by 1/t, which can
be discretized version, see [12]. In this work, we first investigate the upwind
scheme associated to (1)–(2), and prove that it fails to ensure the OSL
condition. Consequently, we try the upwind diffusive scheme associated to
(1) and (7), and explain how we can obtain a good numerical approximation
of the duality solution to the inviscid pressureless gases system using this
scheme. We do not study the Lax-Friedrichs schemes described in [17].
Indeed, the numerical dissipation induced by those first order schemes is
too significant. Since it is then natural to use higher order schemes, we
recover the same kind of problems as in the diffusive upwind scheme we
here propose, involving second order terms.

In the rest of the article, let ∆t, ∆x > 0 such that N = T/∆t ∈ N and
I = 1/∆x ∈ N, and set λ = ∆t/∆x. We respectively denote %ni , q

n
i and uni

the approximate values of %, q and u at time n∆t ∈ [0, T ] and coordinate
(i+ 1/2)∆x ∈ [0, 1), for 0 ≤ n ≤ N and 0 ≤ i < I. Since we use a periodic
framework, we define %ni , q

n
i and uni for any i ∈ Z, by

%ni+pI = %ni , qni+pI = qni , uni+pI = uni , 0 ≤ i < I, p ∈ Z
∗.

For the sake of readability, in the previous notations, we may drop the time
iteration index n and replace n + 1 by a prime symbol “ ′ ”. For instance,
the velocity at time (n + 1)∆t and coordinate (i + 1/2)∆x can be written
as u′i or u

n+1
i .

Apart from the density, momentum and velocity, the quantity of interest,
which we name the numerical expansion rate, will be, for each time and
space indices n and i,

wn
i := nλ(uni+1 − uni ).

Indeed, the OSL condition at time n∆t then reads max
i

wn
i ≤ 1.

2. Upwind scheme

Let us first denote the positive and negative parts of a ∈ R

a+ = max(0, a), a− = min(0, a).
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The upwind scheme then writes, for any 0 ≤ i ≤ I − 1,

%′i = %i − λ
[

%i(ui)
+ − %i−1(ui−1)

+
]

− λ
[

%i+1(ui+1)
− − %i(ui)

−
]

,

q′i = qi − λ
[

qi(ui)
+ − qi−1(ui−1)

+
]

− λ
[

qi+1(ui+1)
− − qi(ui)

−
]

,

u′i =
q′i
%′i
, if %′i > 0,

and u′i is not defined if %′i = 0. It is quite clear that the previous schemes on
both % and q are monotonic, if the standard Courant-Friedrichs-Lewy (CFL)
condition λmax |u| ≤ 1 is satisfied. Hence, we only focus on the positive
parts of the velocities, because we only choose positive initial data. The
scheme is then the following one:

%′i = (1− λui)%i + λui−1%i−1,(8)

q′i = (1− λui)qi + λui−1qi−1,(9)

u′i =
q′i
%′i
.(10)

As we already stated, this last equality allows to define u′i only when %′i > 0.
This fits the mathematical setting of the pressureless gases system, since u
can only be defined %-almost everywhere. Nevertheless, it is not satisfying
from a numerical viewpoint, since the computations should stop whenever
the density becomes equal to 0. Nevertheless, it seems reasonable to impose
whichever value we want, for instance, u′i = 0, when %′i = 0. Indeed, since
there is no matter at a given point, we do not care about the value of the
velocity at this same point. But that implies that we shall not use those
artificial nil values of u′i to study the associated numerical expansion rate.

Thanks to (10), we immediately have

%′i%
′
i+1(u

′
i+1 − u′i) = %′iq

′
i+1 − %′i+1q

′
i,

which implies

%′i%
′
i+1

w′
i

(n+ 1)λ
= (1− λui+1)%i+1%

′
i

wi

nλ
+ λui−1%i−1%

′
i+1

wi−1

nλ
.

Under the CFL condition λmax |u| ≤ 1, if (wi)0≤i<I are negative, and if
(%′i)0≤i<I are nonnegative, it is clear that the quantities (w′

i) also remain
negative. Unfortunately, if wj is nonnegative for a given j, the OSL condition
w′
i ≤ 1 for all imay eventually not be satisfied, as it is proven in the following

proposition.

Proposition 3. Let λ, U > 0 such that λ < 1 and λU < 1, and choose an
integer I > 2+ 1/λ. We consider the following set of numerical initial data

(11) %0i = 1, 0 ≤ i ≤ I − 1, u00 = U, u0i = 0, 1 ≤ i ≤ I − 1.

Then the upwind scheme (8)–(10) does not satisfy the OSL condition. More
precisely, we have

(12) max
i

wI−2
i > U.
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The assumption on the Courant number 0 < λ < 1 is standard and is a
natural consequence of the CFL condition λU ≤ 1 when U is large.

Proof. It is easy to simultaneously prove, by induction on the time step
0 ≤ j < I − 1, that

%ji > 0, 0 ≤ i ≤ I − 1,

and
uj0 = U, ujj+1 > 0, uji = 0, j + 2 ≤ i ≤ I − 1.

We must emphasize that the nil values of uji are obtained because qji = 0

and %ji > 0, and not because of the artificial choice of nil velocity when the
density equals 0.

Then we can write that

wI−2
I−1 = (I − 2)λ(uI−2

0 − uI−2
I−1) = (I − 2)λU.

That implies
max

i
wI−2
i ≥ (I − 2)λU > U,

by choice of I. Note that the first inequality is in fact an equality, but we
do not need to prove it here. �

Remark 1. As we already pointed out, the standard numerical version
of the OSL condition reads max

i
wn
i ≤ 1. It may have been relaxed into

max
i

wn
i ≤ K, where K is a nonnegative constant, which does not depend

on the initial data. But (12) implies that the quantity max
i

wI−2
i can be as

large as we want, depending on the choice of the value of U .

Proposition 3 means in particular that, if the space step ∆x is refined
enough, the numerical OSL condition cannot be satisfied anymore, with a
set of initial data given by (11). Moreover, we must point out that, whatever
the final time is, one can find a discretization for which the upwind scheme
cannot satisfy the OSL condition, because the choice of I does not depend
on T .

The initial datum chosen for u in the previous proposition is not smooth,
and one may argue that the smoothness may provide an upwind scheme
satisfying the OSL condition. In fact, even if the initial data are smooth
(and remain periodic), the OSL condition may not hold either. That will
be numerically shown in Section 4.

3. Adding artificial viscosity

We now put a small artificial viscosity to the problem, as it was done
in [9], and we give a discretization of (1) and (7). First of all, we have
to choose periodic initial data uin ≥ 0, %in ≥ 0, and regularize them so
that (keeping the same notations for both) uin, %in ∈ C1(R;R∗

+) remain
periodic. We must emphasize that the regularized %in must lie in R

∗
+, since

the continuous diffusive model involves a division by %.
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Let us then consider ε > 0. Note that the regularized initial data do not
depend on ε. In the following, we set

U = max
[0,1]

uin > 0, V = min
[0,1]

uin > 0,

A = max(0,max
[0,1]

(uin)′) ≥ 0, R = min
[0,1]

%in > 0.

Let ∆t,∆x > 0, and set

λ =
∆t

∆x
, σ =

∆t

∆x2
.

For the rest of the article, we shall make the following assumptions on the
time and space steps:

0 < ∆x ≤ 2V

1 +A
,(13)

0 < ∆t ≤ min

(

1

4A+ 1
,
1

4U
∆x,

R

4ε(1 +AT )
∆x2

)

.(14)

In fact, (13) is not restrictive, since, eventually, ∆x will go to 0.
With the same notations for quantities at times n∆t and (n + 1)∆t as

in Section 2, we now focus on the following scheme, corresponding to the
discretization of (1) and (7).

u′i = ui − λ

(

ui
2

2
− ui−1

2

2

)

+
εσ

%i
(ui−1 + ui+1 − 2ui),(15)

%′i = (1− λu′i)%i + λu′i−1%i−1.(16)

Note that (15) is obtained from (7), which is written under a conservative
form, as suggested in [12].

If we choose uin ≡ 1, we can note that both upwind and diffusive schemes
give uni = 1 for any i and n, which is reassuring: in that case, and when
% remains nonnegative, the velocity satisfies the Burgers equation, which
implies, at least formally, that u remains constant.

Remark 2. The velocity terms which appear in (16) are the ones at time
(n+ 1)∆t. They must not be at time n∆t to ensure the lower bound on %,
as we shall see in the proof of Theorem 4 below.

The following theorem states that the scheme (15)–(16) is L∞-stable,
consistent, monotonic, and that it satisfies the OSL condition. Consequently,
this scheme can eventually provide a good approximation of a solution of
the inviscid pressureless gases system, if one chooses ε small enough, and
regularized initial data close to the original ones. Indeed, since the numerical
scheme (15)–(16) satisfies Theorem 4, that ensures that it converges, when
both ∆t and ∆x go to 0 under assumptions (13)–(14), towards the solution
of the viscous pressureless gases system. Thanks to [9], we know that the
latter solution converges to the solution of the (inviscid) pressureless gases
system, when ε goes to 0.



8 L. BOUDIN AND J. MATHIAUD

Theorem 4. We assume that (13)–(14) hold. Then we have, for any i and
n ≥ 0,

V ≤ uni ≤ U,(17)

uni − uni−1 ≤
A∆x

1 +An∆t
,(18)

%ni ≥ R

1 +An∆t
≥ R

1 +AT
> 0.(19)

Moreover, the discrete total mass is conserved, i.e., for any n ≥ 0,

(20)
∑

i

%ni ∆x =
∑

i

%0i∆x.

Finally, the scheme (15)–(16) is consistent of order 1 in time and space,
and is monotonic.

Equations (17) and (19) respectively correspond to the maximum princi-
ples on the velocity and the density, (18) stands for the discrete version of
the OSL condition.

Remark 3. The assumptions (14) on ∆t ensure the stability of the scheme.
More precisely, the second one is induced by the CFL condition and the third
one is similar to standard stability conditions for explicit diffusive schemes.
The first one is needed for the required properties of the scheme, as it will
be detailed in the proof of Theorem 4.

Proof. We proceed by induction on n ∈ N, and first investigate the case
when n = 0. Equations (17) and (19) are obviously satisfied by definitions
of U , V and R, and thanks to (13). The fact that (18) holds comes from the
fact that uin is smooth, and consequenly satisfies the intermediate values
inequality.

In the rest of the proof, we shall suppose that A > 0. The case when
A = 0 can easily be treated. Let us assume that (17)–(19) hold for a fixed
n, and prove them for n+1. Equation (15) can be rewritten under the form

(21) u′i =

(

1− λ
ui + ui−1

2
− 2εσ

%i

)

ui+
εσ

%i
ui+1+

(

λ
ui + ui−1

2
+

εσ

%i

)

ui−1.

Under this form, u′i is a convex combination of ui−1, ui and ui+1, since
the corresponding coefficients in (21) live in [0, 1] and their sum equals 1.
Indeed, we clearly have, thanks to (14) and (19),

0 ≤ 2εσ

%i
≤ 1

2
,

and, thanks to (14) and (17),

0 ≤ λ
ui + ui−1

2
≤ 1

4
.

Then it is easy to check that u′i satisfies (17).
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Let us now define, for any i,

δi = ui+1 − ui −
A∆x

1 +An∆t
,

which we know it is negative, and prove that δ′i is also negative, for any i.
Thanks to (21), we can write

u′i+1 − u′i =

[

1− λ

2
(ui+1 + ui)−

εσ

%i
− εσ

%i+1

]

(ui+1 − ui)

+
εσ

%i+1
(ui+2 − ui+1) +

[

λ

2
(ui + ui−1) +

εσ

%i

]

(ui − ui−1).

Then we have

δ′i =
εσ

%i+1
δi+1 +

[

λ

2
(ui + ui−1) +

εσ

%i
− Aλ∆x

2(1 +An∆t)

]

δi−1

+

[

1− λ

2
(ui+1 + ui)−

εσ

%i
− εσ

%i+1
− Aλ∆x

2(1 +An∆t)

]

δi

+
A∆x

1 +An∆t

(

1− A∆t

1 +An∆t

)

− A∆x

1 +A(n+ 1)∆t
.

The coefficient before δi+1 is clearly positive. Let us check that the ones
before δi−1 and δi are positive too. We have

Aλ∆x

2(1 +An∆t)
≤ λ

2
(ui + ui−1)

and
λ

2
(ui+1 + ui) +

εσ

%i
+

εσ

%i+1
+

A∆t

2(1 +An∆t)
≤ 1,

because of (13)–(19). Since the (δi) are all negative, we still have to prove
that the remaining term is negative to get δ′i ≤ 0. After simplifying by A∆x,
which has no influence on the sign, we write

1 +A(n− 1)∆t

(1 +An∆t)2
− 1

1 +A(n+ 1)∆t
=

−(A∆t)2

(1 +An∆t)2(1 +A(n+ 1)∆t)
,

which is clearly negative, and ensures that (18) holds for n+ 1.

We now focus on the properties of %. We successively have, thanks to
(19) for n and (18) for n+ 1,

%′i ≥
[

1− A∆t

1 +A(n+ 1)∆t

]

R

1 +An∆t
=

R

1 +A(n+ 1)∆t
,

which concludes the induction. Note that, as we pointed out in Remark 2,
if (16) only involved velocities at time n∆t, the previous inequality would
not hold, and we would not get any maximum principle on 1/%.

We easily notice that in the equality
∑

i

%′i∆x =
∑

i

%i∆x− λ∆x
∑

i

%iu
′
i + λ∆x

∑

i

%i−1u
′
i−1,
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the last two terms cancel, which ensures the discrete total mass conservation.

Finally, let us investigate some basic properties of the scheme (15)–(16).
The consistency is quite clear. Moreover, if we study u′i as a function of
ui−1, ui and ui+1, we immediately have

∂u′i
∂ui−1

= λui−1 +
εσ

%i
≥ 0,

∂u′i
∂ui

= 1− 2εσ

%i
− λui ≥ 0,

∂u′i
∂ui+1

=
εσ

%i
≥ 0,

which ensures the required property of monotonicity for (15), whereas it is
clear for (16).

That ends the proof of Theorem 4. �

Remark 4. Let us check the behaviour of the numerical total momentum.
Indeed, in its continuous version (7), the total momentum is conserved, since
all the terms besides the time derivative of %u are partial derivatives in x.
Unfortunately, the scheme does not ensure the exact conservation of the
total momentum. Nevertheless, we can write

∑

i

q′i =
∑

i

%iu
′
i + λ

∑

i

%iu
′
i(u

′
i+1 − u′i),

which implies the following inequalities

[1− λ(U − V )]
∑

i

%iu
′
i ≤

∑

i

q′i ≤
[

1 + min

(

1

n+ 1
, λ(U − V )

)]

∑

i

%iu
′
i.

Then we have to study the behaviour of the quantity
∑

i

%iu
′
i =

∑

i

qi −
λ

2

∑

i

%i(ui
2 − ui−1

2),

for which we have
∑

i

qi−U min

(

1

n
, λ(U − V )

)

∑

i

%0i ≤
∑

i

%iu
′
i ≤

∑

i

qi+λV (U−V )
∑

i

%0i .

We eventually can write

∑

i

q′i ≥ [1− λ(U − V )]

[

∑

i

qi − U min

(

1

n
, λ(U − V )

)

∑

i

%0i

]

,

∑

i

q′i ≤
[

1 + min

(

1

n+ 1
, λ(U − V )

)]

[

∑

i

qi + λV (U − V )
∑

i

%0i

]

,

which is not really satisfactory. Nevertheless, since the time and space steps
satisfy (14), we have

λ ≤ R

4ε(1 +AT )
∆x,

which ensures that λ is small when both ∆x and ∆t go to 0, and ε > 0 is
fixed. Of course, that will not prevent the numerical total momentum to
vary, but, at least, from one time step to the next one, the variations have
to remain small. It is interesting to note that, in the examples of the next
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section, the total momentum conservation almost holds, meaning that the
previous estimates may be improved in some cases.

4. Numerical examples

As we already pointed out, a significant drawback of our scheme (15)–(16)
is that it does not ensure the exact conservation of the total momentum,
since it involves a scheme on the velocity which does not conserve the mo-
mentum. Moreover, initial data with some vacuum need to be regularized
since our scheme cannot stand nil values of %. In this section, apart from
checking that the OSL condition is satisfied (or not, if studying the be-
haviour of the upwind scheme), we shall also study the behaviour of the
total momentum.

Of course, the time and space steps in the following tests are chosen such
as the CFL condition is satisfied when using the upwind scheme, and (13)–
(14) when using the diffusive scheme.

4.1. Almost nil velocity everywhere except in 0.5. This test is related
to the one described in Proposition 3 to prove that the OSL condition was
eventually not satisfied by the upwind scheme. We first choose ε = 10−6.
The space step is set to ∆x = 10−4 on [0, 1], i.e. I = 104, and the Courant
number to λ = 0.25, so that ∆t = 2.5 10−5, and perform 40 iterations in
time, i.e. T = 10−3 s. We cannot use the initial data from Proposition 3
as they are, since the assumptions of both Theorems 2 and 4 must hold.
Nevertheless, since u cannot be nil as in (11), it is important to lower the
density everywhere else from the maximal value of u.

Consequently, we set, for any i 6= I/2,

%0i =
ε1/4

2
' 0.0158, u0i =

2∆x√
ε

= 0.2,

and %0I/2 = 1, u0I/2 = 1. In that case, the interesting value of x is no longer

0 or 1, it is x = 0.5.
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Figure 1. Numerical expansion rate near 0.5 at final time T
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4.2. Piecewise linear velocity. There are other situations when the up-
wind scheme does not satisfy the OSL condition. For instance, let us consider
the following set of initial data

(22) %in(x) = 1, uin(x) = 1− x ≥ 0, ∀x ∈ [0, 1),

extended by 1-periodicity on R. In both tests, we choose T = 1.2 and
∆x = 10−4.

4.2.1. Using the upwind scheme. Using the upwind scheme implies choosing
the Courant number λ so that the CFL condition holds. We set λ = 0.1,
which ensures λmaxu < 1. Then, on Figure 2, the positive part of the
numerical expansion rate w is plotted on [0, 1].
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e

Figure 2. “Upwind” plot of w+ at t = 0.2 s with initial data (22)

It is then clear that there are some values of i such that wi > 1, and,
in anticipation of the next paragraph, we must point out that, of course,
choosing a lower Courant number does not have any effect on the behaviour
of the numerical expansion rate.

4.2.2. Using the diffusive scheme. We here choose ε = 0.001. As explained
in Section 3, the initial data must be regularized: both % and q must be
C1(R;R∗

+). The initial datum u is regularized near 0 in order to have a
reasonable periodic agreement with the value in 1, and satisfies uin ≥ ∆x/2
for any i. Since (14) must hold, it is possible to check that λ = 0.01 (and
∆t = 10−6) is a relevant choice.

This time, the OSL condition is satisfied, as one can see on Figure 3 at
x = 0.1, where the upwind scheme experiences trouble with the expansion
rate for times smaller than 0.2.

Eventually, to investigate the total numerical momentum, on Figure 4, we
show its behaviour with respect to t, till T , and the result is quite convincing.
On the same figure, we also show the total numerical mass, which is of course
exactly conserved.
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Figure 3. “Diffusive” plot of w+ at x = 0.1 with regularized
initial data (22)
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Figure 4. Numerical total mass and momentum

4.3. Continuous velocity and piecewise constant density. Of course,
the upwind scheme may often provide a numerical solution satisfying the
OSL condition. It is then interesting to check the behaviour of both upwind
and diffusive schemes, which should have similar behaviours. Let ε = 10−12.
We choose T = 2, ∆x = 0.002, and λ = 0.1 for both upwind and diffusive
cases. Then we consider the following initial data for the density

%in(x) = 1, 0 ≤ x < 0.2, %in(x) = 0.5, 0.2 ≤ x < 1,

and for the velocity

uin(x) = 0.5(1− cos(10πx)) + 16∆x, 0 ≤ x < 1,

extended by 1-periodicity on R.
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Figure 5. Numerical total mass and momentum computed
with the diffusive scheme

First, we check on Figure 5 that the numerical total momentum is still
well conserved by the diffusive scheme.
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Let us get into some more details of the behaviour of both schemes with
respect to time. For small times, one can check on Figures 6–7 that both
schemes give very similar results for %, u and w. If we accurately study
Figure 6b, we can see that the upwind scheme has very small variations
with respect to the diffusive scheme near some points, which are in fact the
jump points of the density, see Figure 8a.
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Figure 6. (a) Density at 0.04 s, (b) velocity at 0.2 s
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Figure 7. Numerical expansion rate at time 0.2 s

Hence, when time grows, the behaviours of both schemes become more
and more different, as seen on Figures 8–10, for quite small times for the
density, later for the velocity and the numerical expansion rate.
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Figure 8. Density at times (a) 0.2 s, and (b) 1 s



A NUMERICAL SCHEME FOR THE SCALAR PRESSURELESS GASES SYSTEM 15

0 0.2 0.4 0.6 0.8 1
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

x

u

diffusive scheme

upwind scheme

0 0.2 0.4 0.6 0.8 1
0.4

0.45

0.5

0.55

0.6

0.65

x

u

diffusive scheme

upwind scheme

Figure 9. Velocity at times (a) 1 s, and (b) 2 s
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Figure 10. Numerical expansion rate at time 1 s

It is important to note that the numerical expansion rates are still upper
bounded by 1, for both schemes. The differences between the numerical so-
lutions is consequently not related to the OSL condition. In fact, we believe
that the diffusive scheme is more trustworthy. Indeed, the upwind scheme
has natural numerical diffusion, which is responsible for the variations. This
numerical diffusion seems to be fully avoided by the diffusive scheme: it is
absorbed by the artificial viscosity inserted in the scheme, and its effect
cannot numerically appear.
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