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Abstract
We propose kinetic models to describe dust particles in a rarefied atmosphere in order to model the

beginning of a Loss Of Vacuum Accident (LOVA) in the framework of safety studies in the International
Thermonuclear Experimental Reactor (ITER). After having studied characteristic time and length scales
at the beginning of a LOVA in ITER and underlined that these characteristic scales justify a kinetic
approach, we firstly propose a kinetic model by supposing that the collisions between dust particles
and gas molecules are inelastic and are given by a diffuse reflexion mechanism on the surface of dust
particles. This collision mechanism allows us to take into account the macroscopic character of dust
particles compared to gas molecules. This leads to establish new Boltzmann type kinetic operators that
are non classical. Then, by noting that the mass of a dust particle is huge compared to the mass of a gas
molecule, we perform an asymptotic expansion to one of the dust-molecule kinetic operators with respect
to the ratio of mass between a gas molecule and a dust particle. This allows us to obtain a dust-molecule
kinetic operator of Vlasov type whose any numerical discretization is less expensive than any numerical
discretization of the original Boltzmann type operator. At last, we perform numerical simulations with
Monte-Carlo and Particle-In-Cell (PIC) methods which validate and justify the derivation of the Vlasov
operator. Moreover, examples of 3D numerical simulations of a LOVA in ITER using these kinetic models
are presented.

Key words: dust particle, rarefied spray, rarefied atmosphere, kinetic operator, Boltzmann operator, Vlasov
operator, asymptotic expansion.

1 Introduction
In the future International Thermonuclear Experimental Reactor (ITER), the abrasion of the facing surface
of the tokamak by the deuterium-tritium plasma will lead to a production of a large amount of dust particles,
essentially made up with the wall materials. These dust particles will lie on the inner surfaces of the tokamak
after the functionning. In the case of a Loss Of Vacuum Accident (LOVA), the vessel filling may result in
a mobilization of the dust particles, which may lead to several safety hazards, including possible release of
activated dust particles or to a classical dust explosion. For these reasons, one of the aims of safety studies
applied to the future ITER tokamak is to describe the evolution of dust particles in such a situation. In this
context, diagnostics using optical, sampling or gravimetric systems [31, 32] are performed to study the extent
of dust particle mobilization for a given set of flow conditions. At the same time, mathematical models are
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investigated in order to compare numerical simulations with experimental diagnostics, and to predict the
onset of dust particle mobilization.

Several models for the description of a spray constitued by solid or liquid particles in suspension in a
surrounding gas are used in this framework. One can distinguish different approaches, depending on the type
of the partial differential equations used to describe the gas and the (solid or liquid) particles. A first approach
consists in describing the gas-particles mixture like a multiphase fluid using hydrodynamic equations, like in
the Gidaspow model [29] or in the Baer & Nunziato model [2] (which is used for situation of detonation -
deflagration of dusty gas). These approaches have been extended in [28] for the situation of dust particles
mobilization in ITER. A major drawback of this method is that it can not deal with situations when the
particles are not enough dense to be modeled as a continuous fluid.

A second approach consists in coupling an eulerian and a lagrangian approach. More precisely, the
evolution of the gas is described by classical hydrodynamic equations, whereas the evolution of (solid or
liquid) particles is described by a kinetic equation or by a system of ordinary differential equations. The
interaction between the gas and the particles is taken into account by mean of a Stokes type drag force

F(v, r) = Dp

mp(r)
(ug − v) (1)

where Dp is an empirical coefficient depending on the surrounding gas and particles, ug(t, x) is the macro-
scopic velocity of the gas and mp(r) is the mass of a particle of radius r. We refer to [33, 24, 25] for examples
for such kinetic-fluid models in the case of thin polydispersed sprays and to [35] in the case of thick sprays
(which are used for example in the code KIVA II [36]). This approach is used in the accidental situation of
a LOVA in ITER in [43], [8] and [37], where it is shown by numerical simulations that dust particles may be
mobilized. Moreover, Takase [43] shows also that the crucial phenomenoms take place during the beginning
of the LOVA that is to say during the first milliseconds. However, the atmosphere inside the vessel is initially
rarefied, and hydrodynamic models are consequently not suitable to describe the flow of the gas just after the
air ingress in the vessel. Indeed, it is possible to compute some Knudsen numbers associated to this situation
such as 

Kn21 := λ21

δdust
,

Kn22 := λ22

d

(2)

where λ21 and λ22 are the mean free pathes of gas molecules respectively for the dust-molecule collisions and
for the molecule-molecule collisions. In (2), δdust := 1

n◦
1

1/3 may be seen as an average distance between dust
particles at the macroscopic level [6] – n◦1 being an order of magnitude of the number density of dust particles
– and d is a characteristic length scale of the emissive source that is responsible for the LOVA in ITER. Then,
by supposing for the sake of simplicity that the dust particles and the gas molecules are respectively only
tungsten and N2 (nitrogen), by taking n◦1 = 1014 m−3 (this order of magnitude will be justified in § 2.1) and
d = 10−2 m, by supposing that the initial order of magnitude of the number density in gas molecules and the
initial temperature in ITER are respectively equal to n◦2 = 1020 m−3 and to T ◦ = 300 K and by supposing
that the radius of a dust particle is smaller than 10−5 m [31], we obtain Kn21 ≥ 1 and Kn22 ≥ 1. As a
consequence, the initial atmosphere in ITER is rarefied which justifies to model the beginning of a LOVA
in ITER with a kinetic approach where, in particular, the gas molecules should not be at thermodynamical
equilibrium. In other words, we have to propose a kinetic model for a spray in a rarefied gas. In [26], a
kinetic model for the transport of solid particles in a gas is proposed. Nevertheless, in this approach, the
gas is supposed to be at thermodynamical equilibrium and is described by a maxwelian distribution. As a
consequence, the density in number of solid particles is solution of a linear kinetic equation. Another approach
to model dust particles in a rarefied atmosphere is proposed in [27] for the steady evaporation from a spherical
condensed phase contening solid particles. In this model, the evolution of the gas molecules is described by
a BGK-Boltzmann type equation and the evolution of dust particles is described by a fluid model without
pressure. A similar model has been applied later in [14] in the 3D modelling of cometary flows by Monte-
Carlo simulations. Let us note that it is shown in [14] that some physical phenomena which are characteristic
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of a dust-molecule flow in the coma of a comet can only be obtained with a kinetic description of the gas
molecules. In [45], a dust-molecule kinetic model is proposed to model the interaction between dust particles
coming from an intensive volcanic plume and a rarefied atmosphere as in the case of volcanoes on Jupiter’s
moon Io. In this kinetic model, the dust-molecule collisions are treated with classical (elastic) multispecies
Boltzmann operators for nano-sized dust particles and with a drag model of type (1) for the micron-sized
dust particles – this drag model being deduced from the classical (elastic) multispecies Boltzmann operators
–, and the feedback of dust particles on the gas molecules is not taken into account.

We propose in this work purely kinetic models of Boltzmann and/or Vlasov type to describe the dust-
molecule mixture. These models are devoted to complete previous models, especially in the context of the
beginning of a LOVA in ITER for which any fluid model cannot be valid since the atmosphere is initially
rarefied. In particular, to take into account the fact that dust particles are macroscopic compared to molecules,
we suppose that the dust-molecule collision mechanism is analogous to a diffuse reflexion boundary condition
[13] and, thus, is inelastic, which implies that we have to introduce a random process in the multispecies
kinematic relations of the dust-molecule collision. As a consequence, the proposed dust-molecule (inelastic)
kinetic operators are not classical (elastic) multispecies Boltzmann operators. Let us note that the proposed
dust-molecule kinetic model takes into account the feedback of the dust particles on the gas molecules,
which is not the case in previous works except in [27, 45]. Moreover, we derive a Vlasov-Boltzmann type
model by performing an asymptotic expansion of one of the dust-molecule kinetic operators with respect
to the ratio of mass between a gas molecule and a dust particle. This allows us to obtain a dust-molecule
kinetic operator whose any numerical discretization is less expensive than any numerical discretization of
the original Boltzmann type model. Let us note that the obtained Vlasov operator allows us to generalize
the dust-molecule drag model (1) to a rarefied atmosphere where the dust-molecule interaction is inelastic.
At last, let us underline that the proposed dust-molecule kinetic models could also describe the interaction
between dust particles coming from an intensive volcanic plume and a rarefied atmosphere as, for example,
in the case of volcanoes on Jupiter’s moon Io [44, 45].

The outline of this paper is the following: In Section 2, we introduce basic modelling hypothesis and we
estimate characteristic time and length scales in the context of a LOVA in ITER. This allows us, firstly, to
justify the fact that dust-dust collisions may not be taken into account in this context, secondly, to justify
the use of a kinetic model to describe the beginning of a LOVA in ITER, and, thirdly, to justify the fact that
the dust-molecule kinetic model cannot be a classical (elastic) multispecies Boltzmann model because of the
macroscopic character of dust particles compared to gas molecules. Then, we introduce the general formu-
lation of the proposed dust-molecule kinetic model. In Section 3, we derive the Boltzmann type operators
which model the dust-molecule collisions. In Section 4, we derive a Vlasov-Boltzmann type model by perform-
ing an asymptotic expansion. In Section 5, we study the dust-molecule kinetic model of Vlasov-Boltzmann
type at different time and length scales. This study allows us to estimate the appropriate characteristic
time and length scales of the proposed kinetic modelling in the context of a LOVA in ITER, which is in
particular important for numerical simulations. In Section 6, we propose numerical simulations with Monte-
Carlo and Particle-In-Cell (PIC) methods. These numerical results validate and justify the derivation of the
dust-molecule kinetic operator of Vlasov type. Moreover, examples of 3D numerical simulations of a LOVA
scenario using the proposed dust-molecule kinetic models are presented. At last, we conclude in Section 7.

2 Formulation of the dust-molecule kinetic model
To propose a dust-molecule kinetic model of Boltzmann and/or Vlasov type, we have to clearly introduce
modelling hypothesis and to estimate time scales, length scales and Knudsen numbers in the physical context
of a LOVA in ITER. This analysis, firstly, justifies the fact that dust-dust collisions may not be taken
into account in the model, secondly, justifies the use of a kinetic model to describe the beginning of a
LOVA in ITER, and, thirdly, justifies the fact that the dust-molecule kinetic model cannot be a classical
(elastic) multispecies Boltzmann model because of the macroscopic character of dust particles compared to
gas molecules. In particular, we briefly discuss the impact of the magnitude of the dust particle radius on
the diluted gas hypothesis and on the molecular chaos hypothesis.
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2.1 Basic modelling hypothesis
We introduce basic modelling hypothesis which will be used, in particular, to justify in § 2.2.3 the fact that
the beginning of a LOVA in ITER has to be modelled with a kinetic modelling.

2.1.1 Hypothesis on the physical properties of dust particles and gas molecules

The first hypothesis concerns the incompressibility and the shape of dust particles and gas molecules:

Hypothesis 1 Dust particles and molecules are supposed to be hard spheres of respective radius r and r2.
Moreover, we suppose that

r ∈ [rmin, rmax] with 0 < rmin < rmax < +∞.

In the context of ITER, a large size distribution range is expected for dust particles, with radius included
between 10−8 m and 10−5 m [41]. However, we focus here our attention on the biggest of those dust particles,
and we take rmin ' 10−6 m and rmax ' 10−5 m.

The tricky point of our modelling is the large difference in size between dust particles and gas molecules.
Thus, considering for the sake of simplicity that the gas is constituted of only one type of molecule, we make
this second hypothesis:

Hypothesis 2 Dust particules are supposed to be macroscopic compared to gas molecules which means that
r2

rmin
� 1. (3)

By supposing that gas molecules are nitrogen N2 in the rarefied atmosphere, we have r2 ' 2 · 10−10 m which
implies that r2/rmin ' 2 · 10−4.

A consequence of Hypothesis 2 concerns the magnitude of the mass of a dust particle compared to the
magnitude of the mass of a gas molecule:

Hypothesis 3 The mass m2 of a molecule is very low compared to the mass m1(r) of a dust particle of
radius r. In other words, we assume that

εm � 1 (4)
with 

εm := ε(rmin), (a)

ε(r) := m2

m1(r) . (b)
(5)

Of course, (4) implies that
∀r ∈ [rmin, rmax] : ε(r)� 1 (6)

since m1(r) = 4
3πρr

3 where ρ is the volumic mass of the chemical component of dust particles. Hypothesis
2 and 3 are not equivalent but are linked. Indeed, by defining the dimensionless constant

η := 3m2

4πρr3
2
, (7)

we have
ε(r) =

(r2

r

)3
η. (8)

Thus, Hypothesis 2 only implies that (
εm
η

)1/3
� 1. (9)

Relation (8) shows that Hypothesis 3 is satisfied under Hypothesis 2 when η is not too high. In the context
of ITER, by only considering dust particles of tungsten (which is the heaviest material that should be
considered) and by only considering nitrogen N2 in the rarefied atmosphere, we have ρ = 19, 3 · 103 kg·m−3,
r2 ' 2 · 10−10 m and m2 = 4, 6 · 10−26 kg. Thus, we obtain η ' 7, 2 · 10−2 which implies that Hypothesis 3 is
satisfied.
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2.1.2 Hypothesis on the initial thermodynamic state

The kinetic modelling of the dust-molecule mixture consists in introducing two density functions f1 :=
f1(t, x, v, r) and f2 := f2(t, x, v) which respectively represent the number density in dust particules and in
gas molecules at the time t ∈ [0, T ], at the position x ∈ Ω ⊂ R3 and at the velocity v ∈ R3. In our context,
the subset Ω defines the interior of the ITER tokamak, and the LOVA is produced by a small opening on the
frontier ∂Ω. We make two hypothesis on these number densities f1 and f2 which are especially adapted at
the beginning of a LOVA in ITER and which will allow us to introduce characteristic time and length scales
in § 2.2.1 and 2.2.2.

The first one of these two hypothesis is the following:

Hypothesis 4 The order of magnitude of the dust particle number density n1 is very low compared to the
order of magnitude of the gas molecule number density n2 knowing that

n1(t, x) :=
ˆ
R3

ˆ rmax

rmin

f1(t, x, v, r)dvdr,

n2(t, x) :=
ˆ
R3
f2(t, x, v)dv.

More precisely, we assume that
α◦ � 1 (10)

where
α◦ := n◦1

n◦2
(11)

with the two orders of magnitude 
n◦1 := sup

[0,T ]×Ω
n1(t, x) < +∞,

n◦2 := inf
[0,T ]×Ω

n2(t, x) > 0.

Moreover, in the context of a LOVA in ITER, we suppose that
sup

Ω
n1(t = 0, x) ' n◦1,

inf
Ω
n2(t = 0, x) ' n◦2.

(12)

Let us underline that by defining n◦1 and n◦2 respectively with the supremum of n1(·, ·) and with the infimum
of n2(·, ·) on [0, T ]×Ω, under (10), we assume that the number density of dust particles is always negligible
compared to the number density of molecules during a LOVA in ITER. Let us estimate n◦1 in the context of
ITER. We considere the situation where the abrasion of the walls leads to the formation of M = 102 kg of
tungsten mobilizable dust particles (this value corresponds to the safety limit which has been set inside the
vacuum vessel, and could be reached after approximately 500 plasma pulses [32]). Then, with the estimate
that the total surface of vessel is S = 5 · 102 m2, this quantity of dust particles corresponds to a width
h = M/(ρS) = 10−5 m of eroded tungsten. Moreover, we assume that at the initial time t = 0 (just after
the beginning of the air ingress in the vacuum vessel), dust particles are hanging uniformly in a layer of
l = 10−2 m width on the surface of the vessel. Then, the density n1 of dust particles in this layer verifies for
dust particles of radius r

4
3πr

3n1lS = Sh.

Thus, when r ∈ [rmin, rmax], we have

3h
4πr3

maxl
≤ n1 ≤

3h
4πr3

minl
, (13)
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that is to say
2, 5 · 1011 m−3 ≤ n1 ≤ 2, 5 · 1014 m−3. (14)

Consequently, we can choose in our context the order of magnitude n◦1 = 1014 m−3. Moreover, when there
will be thermonuclear reactions in ITER, the pressure and the temperature inside the ITER tokamak will be
respectively of the order of 1 atm and of 1, 5 · 108 K. As a consequence, by using the perfect gas law, we find
that the number density inside the ITER tokamak has to be of the order of 1020 m−3. As a consequence, we
choose n◦2 = 1020 m−3. Consequently, we have α◦ = 10−6.

The second one of these two hypothesis concerns the order of magnitude of the kinetic temperature of
each species:

Hypothesis 5 The kinetic temperatures involved in the mixture are of the same order of magnitude. Thus,
we assume that

Tf1(t, x, r) := m1(r)
3kBn1(t, x, r)

[ˆ
R3
f1(t, x, v, r) (v − uf1(t, x, r))2

dv

]
, (a)

Tf2(t, x) := m2

3kBn2(t, x)

[ˆ
R3
f2(t, x, v) (v − uf2(t, x))2

dv

]
(b)

(15)

where 
uf1(t, x, r) :=

ˆ
R3
f1(t, x, v, r)vdv

uf2(t, x) :=
ˆ
R3
f2(t, x, v)vdv

(16)

verify
and Tf2 ' T ◦,

and, as soon as particles are mobilized,
Tf1 ' T ◦.

In (15), kB ' 1, 38 ·10−23 m2· kg· s−2· K−1 is the Boltzmann’s constant. Hypothesis 5 means that we suppose
that there is a LOVA when the temperature in ITER is not too high that is to say when ITER is stopped.
In this context, we can choose T ◦ ' 300 K. Let us underline that when n◦2 ' 1020 m−3 and T ◦ ' 300 K, the
perfect gas law P ◦2 = n◦2kBT

◦ gives a pressure of P ◦2 ' 4 · 10−6 atm, which justifies to model, when ITER is
stopped, the beginning of a LOVA with a kinetic model: we detail this question in § 2.2.3.

2.1.3 A last basic modelling hypothesis

The last basic modelling hypothesis is essentially introduced for the sake of simplicity:

Hypothesis 6 We neglect any external force field as magnetic field.

However, although gravity field is not written in the model for a sake of simplicity, it is taken into account in
the spatially inhomogeneous 3D-simulations of § 6.2.3 and § 6.2.4. In the context of a LOVA in ITER, it is
obvious that Hypothesis 1-4 cannot be affected by any external force field. Nevertheless, we may think that
Hypothesis 5 could be affected by the high external magnetic field since, in that case, the dust particles of
tungsten are heated by the hot hydrogen plasma or directly by the magnetic field (tungsten is a metal). Of
course, when ITER is stopped, this potential problem does not exist.
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2.1.4 Summary of the order of magnitudes

We now summarize the order of magnitude introduced in the previous subsections:

r2 = 2 · 10−10 m, (a)

rmin = 10−6 m, (b)

rmax = 10−5 m, (c)

m2 = 4, 6 · 10−26 kg, (d)

ρ = 19, 3 · 103 kg ·m−3, (e)

T ◦ = 300K, (f)

α◦ = 10−6, (g)

n◦1 = 1014 m−3, (h)

n◦2 = 1020 m−3. (i)

(17)

We recall that these orders of magnitude are characteristic of those at the beginning of a LOVA in ITER.

2.2 Characteristic time and length scales, and Knudsen numbers
Let us now make a brief analysis of the orders of magnitude of time scales, length scales and Knudsen
numbers.

2.2.1 Characteristic time scales

In order to point out the various characteristic time scales involved in the system, we make a brief analysis
of the orders of magnitude of the mean collision time of each collision type in the dust-molecule mixture. We
distinguish four types of collision which, thus, define four different mean collision times tij :

• collisions between dust particles whose mean collision time is noted t11;

• collisions between molecules whose mean collision time is noted t22;

• collisions between dust particles and molecules – from the point of view of dust particles – whose mean
collision time is noted t12;

• collisions between molecules and dust particles – from the point of view of molecules – whose mean
collision time is noted t21.

These four mean collision times tij define four characteristic time scales. Under Hypothesis 1 and 5 and by
supposing that all dust particles have the same radius r ∈ [rmin, rmax], the characteristic time scales tij are
given by [6] 

t11 =
(
4πr2n1 < V rel11 >

)−1
, (a)

t22 =
(
4πr2

2n2 < V rel22 >
)−1

, (b)

t12 =
(
π(r + r2)2n2 < V rel12 >

)−1
, (c)

t21 =
(
π(r + r2)2n1 < V rel21 >

)−1 (d)

(18)

7



with, as soon as particles are mobilized,

< V rel11 >= 4
√

kBT◦

πm1(r) ,

< V rel22 >= 4
√

kBT◦

πm2
,

< V rel12 >=< V rel21 >=
√

8kBT◦

π

(
1

m1(r) + 1
m2

)
(19)

knowing that < V relij > is the thermal relative velocity between particles of type i and particles of type j
supposed to be hard spheres [6]. Then, under Hypothesis 2-4, we have

t21

t11
' 4
√

2ε(r)� 1, (a)

t12

t22
' 4
√

2
(r2

r

)2
� 1 (b)

t12

t21
= n1

n2
≤ α◦ � 1. (c)

(20)

Moreover, we have also under Hypothesis 2 and 3

t22

t21
' 1

4
√

2
n1

n2

(
r

r2

)2
(21)

and consequently

∀(t, r) ∈ 0× [rmin, rmax] 1
4
√

2
α◦
(
rmin
r2

)2
≤ t22

t21
≤ 1

4
√

2
α◦
(
rmax
r2

)2
. (22)

In the same way, we have under Hypothesis 4

∀(t, r) ∈ R+ × [rmin, rmax] : t22

t11
= n1

n2

(
r

r2

)2√
ε(r) = n1

n2

√
η
r

r2
≤ α◦

√
η
rmax
r2

(23)

where η is defined by (7). By using (7) and (17), we obtain

1
4
√

2
α◦
(
rmin
r2

)2
' 4, 4, (a)

1
4
√

2
α◦
(
rmax
r2

)2
' 4, 4 · 102, (b)

α◦
√
η
rmax
r2
' 6 · 10−5. (c)

(24)

Thus, we deduce from (22), (23) and (24) that
∀(t, r) ∈ 0× [rmin, rmax] : t22

t21
≥ 1.

∀(t, r) ∈ R+ × [rmin, rmax] : t22

t11
� 1.

Finally, in our context, the characteristic time scales tij are such that

∀(t, r) ∈ 0× [rmin, rmax] : t12 � t21 ≤ t22 � t11. (25)
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We deduce from (25) that the dust-dust mean collision time t11 is the largest characteristic time scale involved
in the collisionsat the beginning of the LOVA. More precisely, hypothesis (17) implies that r = rmin : < V rel11 >' 5, 1 · 10−4 m · s−1,

r = rmax : < V rel11 >' 1, 6 · 10−5 m · s−1.

Then, we deduce that at the beginning of the LOVA, we have

0, 5 s ≤ t11 ≤ 1, 5 s.

On the other hand, the time scale tLOV A in the context of the beginning of a LOVA in ITER is lower than
10−3 s [43]. Thus, we have

tLOV A � t11.

Therefore, we can neglect dust-dust collisions in any modelling of the beginning of a LOVA in ITER. Let us
note that we have

< V rel22 >' 673 m · s−1

which implies that at t = 0

t22 ' 3 · 10−5 s that is to say t22 . tLOV A.

As a consequence, t22 seems to be a good time scale to study the beginning of a LOVA in ITER: we study
in detail this question in Section 5 when t22 ' t21 (see Hypothesis 8 and 9).

2.2.2 Characteristic length scales

The mean free path λij of the collision of a particle of type i with a particle of type j from the point of view
of the particle of type i is given by λij =< Vi > tij where < Vi >=< V relii > /

√
2 is the thermal velocity of

the particle of type i. By using (18) and (19) (once again, we suppose that all dust particles have the same
radius r ∈ [rmin, rmax]), we obtain

λ11 = 1
4
√

2πr2n1
, (a)

λ22 = 1
4
√

2πr2
2n2

, (b)

λ12 =
√

m2

m1(r) +m2
· 1
π(r + r2)2n2

, (c)

λ21 =

√
m1(r)

m1(r) +m2
· 1
π(r + r2)2n1

. (d)

(26)

Then, under Hypothesis 2-4, we obtain

λ21

λ11
' 4
√

2, (a)

λ12

λ22
' 4
√

2ε(r) ·
(r2

r

)2
� 1, (b)

λ12

λ21
'
√
ε(r) · n1

n2
≤
√
ε(r) α◦ � 1, (c)

(27)

which implies

∀(t, r) ∈ R+ × [rmin, rmax] :

 λ12 � λ11 . λ21,

λ12 � λ22.
(28)
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Moreover, we have also under Hypothesis 2 and 3

λ22

λ21
' 1

4
√

2
· n1

n2
·
(
r

r2

)2
(29)

which is exactly estimate (21). Thus, in our context, by using (24)(a,b) we have (t, r) = (0, rmin) : λ21 . λ22,

(t, r) = (0, rmax) : λ21 � λ22.

Moreover, at t = 0 and by using (17) and (27), we have λ22 ' 1, 4 · 10−2 m and
5, 6 · 10−6 m ≤ λ11 ≤ 5, 6 · 10−4 m, (a)

7, 6 · 10−19 m ≤ λ12 ≤ 2, 4 · 10−15 m. (b)

3, 2 · 10−5 m ≤ λ21 ≤ 3, 2 · 10−3 m. (c)

(30)

Estimate (30)-(b) shows that λ12 is not an appropriate characteristic length scale from a physical point of
view. At the opposite, λ11 and λ21 – which is of the same order as λ21 because of (27)(a) – and λ22 seem to
be appropriate length scales from a physical point of view in our context. In Section 5, we justify the fact
that λ12 is not an appropriate length scale for the proposed dust-particle kinetic model. As a consequence, we
only use the characteristic length scales λ11, λ21 and λ22 in the sequel of this Section 2.

2.2.3 Knudsen numbers

By defining the dust-molecule and molecule-molecule Knudsen numbers with Kn21 := λ21 · n1/3
1 ,

Kn22 := λ22/d

where n−1/3
1 ' 2, 15 ·10−5 m and d ' 10−2 m are macroscopic characteristic length scales respectively related

to the dust particles and to the emissive source that is responsible for the LOVA in ITER [43], we deduce
from (26) that at t = 0

Kn21 ≥ 1, 4 (31)
for r ≤ rmax and

Kn22 ' 1, 4. (32)

Let us note that Kn11 ' Kn21/(4
√

2) where Kn11 := λ11 · n1/3
1 since λ11 ' λ21/(4

√
2) (see (27)(a)).

Estimates (31) and (32) justify the modelling of the beginning of a LOVA in ITER with dust-molecule and
molecule-molecule kinetic models.

2.3 Diluted gas hypothesis and molecular chaos hypothesis
In a binary gas mixture constituted of hard spheres, the classical multispiecies Boltzmann operators are valid
when the mixture is diluted – which means that the dilution parameter ηij := 4

3πr
3
i nj has to verify ηij � 1

– and when the molecular chaos hypothesis is satisfied – which means that ζij := λ3
ijnj has to verify ζij � 1

– knowing that (i, j) ∈ {1, 2}2. In our context, we have the following estimates:

• Diluted gas hypothesis: We have

∀t ∈ R+ :


r = rmin : η11 � 1, (a)

r = rmax : η11 ' 4 · 10−1, (b)

η21 � 1 (c)

(33)
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and

t = 0 :


r = rmin : η12 ' 4 · 102, (a)

r = rmax : η12 � 1, (b)

η22 � 1. (c)

(34)

• Molecular chaos hypothesis: We have

∀t ∈ R+ :

 r = rmin : ζ11 � 1 and ζ21 � 1 (a),

r = rmax : ζ11 ' 10−2 and ζ21 ' 3, 2 (b)
(35)

and
t = 0 : ζ22 � 1 (36)

(we do not estimate ζ12 since λ12 is not an appropriate characteristic length scale from a physical point
of view: see § 2.2.2).

Estimates (33)(b), (34)(b) and (35)(b) show that the dust-molecule mixture may not be a diluted gas
and/or may not satisfied the molecular chaos hypothesis at least for dust particles whose radius is of the
order of rmax = 10−5 m: this is a direct consequence of the macroscopic character of dust particles compared
to molecules (cf. Hypothesis 2). As a consequence, the dust-molecule kinetic operators cannot be classical
(elastic) multispecies Boltzmann operators at least for dust particles whose radius is of the order of rmax =
10−5 m: we propose to take into account this important characteristic in our modelling through Hypothesis 7
(see below) that introduces a random process in the dust-molecule binary collision.

2.4 Kinetic modelling of dust-molecule collisions
Under Hypothesis 1-5 and in the context of the beginning of a LOVA in ITER, we can neglect the dust-dust
collisions (see § 2.2.1). As a consequence, under Hypothesis 6, the dust-molecule kinetic model is given by

∂f1

∂t
+ v · ∇xf1 = R1(f1, f2), (a)

∂f2

∂t
+ v · ∇xf2 = R2(f1, f2) +Q(f2, f2), (b)

(t, x, v, r) ∈ R+ × Ω× R3 × [rmin, rmax] (c)

(37)

where Ω is an open subset of R3 (which defines the interior of the ITER tokamak) and where 0 < rmin < rmax.
The kinetic operator Q(f2, f2) models collisions between gas molecules and is a classical Boltzmann operator.
As these collisions are not the important point of our modelling, we consider a hard sphere model. Then,
Q(f2, f2) is given by

Q(f2, f2)(t, x, v) =
ˆ
§2

ˆ
R3

[f2(t, x, v′)f2(t, x, v′?)− f2(t, x, v)f2(t, x, v?)] r2
2|v − v?|dσdv? (38)

with 
v′ = v + v∗

2 − |v − v∗|2 σ,

v′∗ = v + v∗
2 + |v − v∗|2 σ

(39)

and σ ∈ S2. The main point of our modelling is the derivation of the kinetic operators R1(f1, f2) and
R2(f1, f2) which model collisions between dust particles and gas molecules under Hypothesis 1 and 2, and
which cannot be classical (elastic) multispecies Boltzmann operators at least when the radius of a dust particle
is of the order of rmax = 10−5 m (see § 2.3).
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2.5 Discussion about the basic modelling hypothesis
We make the following coments to summarize the physical justification of kinetic model (37) in our context:

• Hypothesis 1-5 are used in § 2.2 to estimate in our context the characteristic time and length scales
and the Knudsen numbers involved in the dust-molecule mixture. In particular, we show that we have
to model the beginning of a LOVA in ITER with a kinetic model and that we can neglect dust-dust
collisions. In other words, under Hypothesis 6, the beginning of a LOVA has to be modelled with a
kinetic model whose general formulation is given by (37).

• Hypothesis 2 is central to justify the derivation in Section 3 of the dust-molecule operators R1(f1, f2)
and R2(f1, f2) in a non-classical way (see also § 2.3).

• Hypothesis 3 is central to perform in Section 4 an asymptotic analysis to approach R1(f1, f2) with a
Vlasov type operator and, then, to simplify kinetic model (37) in Section 5.

• Hypothesis 6 allows us to neglect any external force field in (37). Of course, it would be simple to add
a posteriori any external force field in (37) (as soon as Hypothesis 5 remains valid when Hypothesis 6
is not satisfied).

3 Derivation of dust-molecule kinetic operators of Boltzmann type
We now propose to derive the dust-molecule operators R1(f1, f2) and R2(f1, f2) used in the kinetic model
(37) in the spirit of the derivation of the classical Boltzmann operator (38) [7]. The new point is the way we
take into account in our modelling Hypothesis 1 and 2.

3.1 Random kinematic relations for the dust-molecule collision
Dust particles and gas molecules are supposed to be hard spheres: see Hypothesis 1. Moreover, dust particles
are also supposed to be macroscopic compared to molecules: see Hypothesis 2. From a physical point of view,
we have to take into account this important modelling hypothesis, which means in particular that kinetic
operators R1(f1, f2) and R2(f1, f2) cannot be the multispecies versions of classical Boltzmann operator (38)
(see section 2.3). In the case of the classical multispecies Boltzmann operator, kinematic relations (39) are
given by [6] 

v1 = vB −
ε(r)

1 + ε(r) |v
◦
2 − v◦1 |σ, (a)

v2 = vB + 1
1 + ε(r) |v

◦
2 − v◦1 |σ (b)

(40)

with σ ∈ §2 where ε(r) is the ratio of masses defined by (5)(b) and where

vB := 1
1 + ε(r)v

◦
1 + ε(r)

1 + ε(r)v
◦
2 (41)

is the barycentric velocity of the dust-molecule binary system. In (40), v◦1 and v◦2 are the pre-collisional
velocities, v1 and v2 are the post-collisional velocities. In our modelling, we take into account Hypothesis 1
and 2 in the derivation of R1(f1, f2) and R2(f1, f2) by supposing that a molecule arriving on a dust particle
thermalizes with molecules constituting the surface of the dust particle within a negligible time with respect
to the other characteristic time scales, and leaves the dust particle following a half maxwellian at its surface
temperature Tsurf . In other words, we take into account Hypothesis 1 and 2 by supposing that the dust-
molecule collision mechanism is analogous to a diffuse reflexion boundary condition (see [13] p. 104) and,
thus, by introducing a random process in the multispecies kinematic relations (40):
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Hypothesis 7 The kinematic relations of the dust-molecule binary collision – which transform the pre-
collisional velocities v◦1 and v◦2 into the post-collisional velocities v1 and v2 – are given by

v1 = vB −
ε(r)

1 + ε(r)vr, (a)

v2 = vB + 1
1 + ε(r)vr (b)

(42)

where
vr := v2 − v1 (43)

is the post-relative velocity whose probability density hn is given by

hn(s) = 1
2π

(
m2

kBTsurf

)2
(n · s) exp

(
− m2|s|2

2kBTsurf

)
1{n·s≥0}, (44)

n being the normal vector at the tangent plan of the dust particle, oriented to the exterior of the dust particle,
and Tsurf ∈ R+

∗ being the surface temperature of dust particles.

We roughly represent in Figure 1 the collision between a dust particle and a molecule. In this figure,
n =

−−−→
C1C2

|
−−−→
C1C2|

where C1 and C2 are respectively the centers of the dust particule and of the molecule. In (44),

Figure 1: Diffuse reflexion of a molecule on a dust particle

the surface temperature of dust particles Tsurf is not necessarily equal to the kinetic temperature Tf1 defined
with (15)(a). For the sake of simplicity, we assume in the sequel that all dust particles have the same surface
temperature Tsurf and that Tsurf does not depend on the time. Let us note that we can rewrite (44) with

hn(s) = 2β4

π
(n · s) exp

(
−β2|s|2

)
1{n·s≥0} (45)

where
β :=

√
m2

2kBTsurf
(46)

(1/β is a thermal velocity related to the surface temperature Tsurf of dust particles). Of course, we can
verify that

∀n ∈ S2 :
ˆ
R3
hn(s)ds = 1. (47)

Let us underline that kinematic relations (42) are such that the momentum of the dust-molecule binary system
is conserved. Nevertheless, since |vr| is not equal to the pre-relative velocity |v◦r | with v◦r := v◦2 − v◦1 (see
Figure 1) because of the random process, collision mechanism (42) is not planar and is not micro-reversible,
and the kinetic energy is not conserved, which is not the case for the classical collision mechanism (40). This
implies that the kinetic operators R1(f1, f2) and R2(f1, f2) proposed in the sequel will not verify all the
properties verified by a classical (elastic) multispecies Boltzmann operator based on kinematic relations (40).
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3.2 Derivation of dust-molecule operator R1(f1, f2)
Under Hypothesis 7, R1(f1, f2) cannot be a classical (elastic) multispecies Boltzmann operator. To derive
R1(f1, f2), we have to apply the heuristic Boltzmann’s construction [7, 13] in the particular context of
Hypothesis 7. This leads to the following proposition:

Proposition 1 Under Hypothesis 7, the dust-molecule operator R1(f1, f2) obtained with the heuristic Boltz-
mann’s construction is given by

R1(f1, f2)(t, x, v1, r) =(r + r2)2
ˆ
R3

ˆ
R3
f1(t, x, v◦1 , r)f2(t, x, v◦2)Bp(v◦1 , v◦2 , v1)dv◦1dv◦2

− π (r + r2)2
ˆ
R3
f1(t, x, v1, r)f2(t, x, v2)|v1 − v2|dv2 (48)

with

Bp(v◦1 , v◦2 , v1) = 2
π
β4
(

1 + ε(r)
ε(r)

)4
exp

[
−β2

(
1 + ε(r)
ε(r)

)2
(vB − v1)2

]

×
ˆ
S2

[n · (vB − v1)][n · (v◦1 − v◦2)]1{n·(vB−v1)≥0}1{n·(v◦
1−v◦

2 )≥0}dn (49)

where ε(r) is the ratio of masses defined by (5)(b), where vB is the barycentric velocity given by (41) and
where 1/β is a thermal velocity given by (46).

Proof of Proposition 1. In the elementary volume dxdv1, the variation of the number of dust particles
during the time dt is

df1

dt
dtdxdv1 =

(
∂f1

∂t
+ v1 · ∇xf1

)
dtdxdv1.

Let us introduce the number of dust particles R+
1 (f1, f2)dtdxdv1 whose position and velocity enter respec-

tively into the classes bx, x+ dxc and bv1, v1 + dv1c, and let us also introduce the number of particles
R−1 (f1, f2)dtdxdv1 whose position and velocity leave those classes. Then, the collisional balance writes

df1

dt
dtdxdv1 =

[
R+

1 (f1, f2)−R−1 (f1, f2)
]
dtdxdv1. (50)

Thus, the operator R1(f1, f2) can be expressed by

R1(f1, f2) = R+
1 (f1, f2)−R−1 (f1, f2). (51)

Due to Hypothesis 1, the loss part R−1 (f1, f2) is a classical multispiecies Boltzmann loss operator for a hard
sphere cross-section. Its expression is given by (see [13] or [11] for details)

R−1 (f1, f2)(t, x, v1, r) =
ˆ
R3
f1(t, x, v1, r)f2(t, x, v2)π (r + r2)2 |v1 − v2|dv2. (52)

We now establish the expression of R+
1 (f1, f2) by noting that R+

1 (f1, f2)dt dx dv1 is the number of collisions
in the elementary volum dx during the time dt whose post-collisional velocity of dust particles is in the class
bv1, v1 + dv1c. This number can be expressed by

R+
1 (f1, f2)dtdxdv1 =

ˆ
n∈S2

ˆ
v◦

2∈R3

ˆ
v◦

1∈R3
l1(v1)dN0

1 dv1 (53)

where dN0
1 is the elementary number of collisions during the time dt in the elementary volum dx between

dust particles and molecules whose pre-collisional velocities are respectively in the classes bv◦1 , v◦1 + dv◦1c
and bv◦2 , v◦2 + dv◦2c, and where l1(v1)dv1 is the elementary probability that, after such a collision, the post-
collisional velocity of these dust particles is in the class bv1, v1 + dv1c. At time t and at position x, the dust
particles flux whose velocity is in the class bv◦1 , v◦1 + dv◦1c and relative to a molecule whose velocity is equal
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to v◦2 is given by f1(t, x, v◦1)|v◦1 − v◦2 |dv◦1 . Thus, the number of these dust particles that collide this molecule
during a time dt with an impact parameter p and an azimuthal angle ε ∈ [0, 2π] (angle between a reference
plan and the pre-collision plan) is equal to

f1(t, x, v◦1 , r)|v◦1 − v◦2 | pdp dεdv◦1 dt.

Then, dN◦1 is given by

dN◦1 = f1(t, x, v◦1 , r)f2(t, x, v◦2)|v◦1 − v◦2 | pdpdε dv◦1 dv◦2 dt dx

since the number of molecules in the elementary volume dx whose velocity is in the class bv◦2 , v◦2 + dv◦2c is
equal to f2(t, x, v◦2)dv◦2 dx. Under the assumption that dust particles and molecules are hard spheres, the
impact parameter p between molecules and dust particles is given by p = (r + r2) sin(θ) with θ ∈ [0, π/2].
Moreover, denoting n the vector n =

−−−→
C1C2

|
−−−→
C1C2|

, where C1 and C2 are respectively the centers of the particule
and of the molecule (see figure 1), we have

|v◦1 − v◦2 |pdpdε = |v◦1 − v◦2 |(r + r2)2 sin θ cos θdθdε
= (r + r2)2 [n · (v◦1 − v◦2)] dn

with n ∈ S2 ∩ {n · (v◦1 − v◦2) ≥ 0}. Then, we can express dN◦1 by

dN◦1 = f1(t, x, v◦1 , r)f2(t, x, v◦2) (r + r2)2 [n · (v◦1 − v◦2)] 1{n·(v◦
1−v◦

2)≥0}dndv
◦
1dv
◦
2dtdx.

Moreover, we can express the density of probability l1 according to the density of probability hn of the
post-collisional relative velocity vr := v2 − v1, hn being defined with (45). Indeed, by using (42)(a) – which
implies in particular that vB given by (41) is not changed by the collision –, we have

l1(s) =
(

1 + ε(r)
ε(r)

)3
hn

[
−1 + ε(r)

ε(r) (s− vB)
]
.

And, by using (45), we finally get

R+
1 (f1, f2) =

ˆ
R3

ˆ
R3
f1(t, x, v◦1 , r)f2(t, x, v◦2)(r + r2)2Bp(v◦1 , v◦2 , v1)dv◦1dv◦2 (54)

where Bp(v◦1 , v◦2 , v1) is given by (49). ♦

3.3 Derivation of dust-molecule operator R2(f1, f2)
Following the same approach as in section 3.2, we obtain for the operator R2(f1, f2):

Proposition 2 Under Hypothesis 7, the dust-molecule operator R2(f1, f2) obtained with the heuristic Boltz-
mann’s construction is given by

R2(f1, f2)(t, x, v2) =
ˆ rmax

rmin

ˆ
R3

ˆ
R3

(r + r2)2
f1(t, x, v◦1 , r)f2(t, x, v◦2)Bm(v◦1 , v◦2 , v2)drdv◦1dv◦2

−
ˆ rmax

rmin

ˆ
R3
π (r + r2)2

f1(t, x, v1, r)f2(t, x, v2)|v2 − v1|drdv1 (55)

with

Bm(v◦1 , v◦2 , v2) = 2
π
β4 (1 + ε(r))4 exp

[
−β2 (1 + ε(r))2 (vB − v2)2

]
(56)

×
ˆ
S2

[n · (vB − v2)] [n · (v◦2 − v◦1)] 1{n·(vB−v2)≥0}1{n·(v◦
2−v◦

1 )≥0}dn

where ε(r), vB and β are respectively given by (5)(b), (41) and (46).
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Proof of Proposition 2. To obtain operator (55)(56), we just have to permute the subscripts 1 and 2 in
operator (48)(49) (which means in particular that we replace ε(r) by 1/ε(r)) and to take into account an
integration in r.♦

3.4 Other formulations of dust-molecule operators R1(f1, f2) and R2(f1, f2)
We now propose other formulations of the operators R1(f1, f2) and R2(f1, f2) respectively given by (48) and
(55). The first ones are weak formulations of (48) and (55) ; the second ones are deduced from these weak
formulations, and will be adapted for the derivation of the Vlasov-Boltzmann model in section 4. In this
section, we omit the variables t and x for the sake of simplicity.

3.4.1 Weak formulation of R1(f1, f2) and R2(f1, f2)

The weak formulations of R1(f1, f2) and R2(f1, f2) are given in the following proposition:

Proposition 3 Let ϕ be a test function (ϕ ∈ C0
c (R3) for example), let R1(f1, f2) and R2(f1, f2) be the

Boltzmann operators (48) and (55). Then, we have formally
ˆ
R3
ϕ(v)R1(f1, f2)(v, r)dv = (r + r2)2

ˆ
S2

ˆ
R3

ˆ
R3

ˆ
R3

[ϕ(v′1)− ϕ(v1)] f1(v1, r)f2(v2)

×hn(w) [n · (v1 − v2)] 1{n·(v1−v2)≥0}dndwdv1dv2
(57)

with
v′1 = 1

1 + ε(r) [v1 + ε(r)v2 − ε(r)w] , (58)

and
ˆ
R3
ϕ(v)R2(f1, f2)(v)dv =

ˆ rmax

rmin

ˆ
S2

ˆ
R3

ˆ
R3

ˆ
R3

(r + r2)2 [ϕ(v′2)− ϕ(v2)] f1(v1, r)f2(v2)

×hn(w) [n · (v1 − v2)] 1{n·(v1−v2)≥0}drdndwdv1dv2
(59)

with
v′2 = 1

1 + ε(r) [v1 + ε(r)v2 + w] (60)

where hn is given by (44).

Let us underline that under Hypothesis 3, the velocities v1 and v′1 of a dust particle before and after a collision
with a molecule are such that

v′1 − v1 = O(ε(r)) (61)

(see (58)). In other words, since the mass of a dust particle is huge compared to the mass of a molecule
(see Hypothesis 3), the velocity of a dust particle is few modified after a collision with a molecule. As
a consequence, the collisions of dust particles on molecules are grazing collisions. This will allow us to
approximate in section 4 the Boltzmann type operator R1(f1, f2) with a Vlasov type operator. Of course,
the collisions of gas molecules on dust particles are not grazing collisions since

v′2 − v′1 = w (62)

is not a O(ε(r)) term (see (58) and (60)). Thus, this will not be possible to approximate the Boltzmann type
operator R2(f1, f2) with a Vlasov type operator.
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Proof of Proposition 3. Let ϕ be a test function and let R+
1 (f1, f2) be the gain term (54) of the operator

R1(f1, f2). We haveˆ
R3
ϕ(v)R+

1 (f1, f2)(v, r)dv = (r + r2)2
ˆ
R3

ˆ
R3

ˆ
R3
ϕ(v1)f1(v◦1 , r)f2(v◦2)Bp(v◦1 , v◦2 , v1)dv◦1dv◦2dv1 (63)

where Bp is expressed according to hn by

Bp(v◦1 , v◦2 , v1) =
(

1 + ε(r)
ε(r)

)3 ˆ
S2
hn

(
(vB − v1)

(
1 + ε(r)
ε(r)

))
[n · (v◦1 − v◦2)] 1{n·(v◦

1−v◦
2 )≥0}dn. (64)

We set
w := (vB − v1)

(
1 + ε(r)
ε(r)

)
=
(

ε(r)
1 + ε(r)v

◦
2 + 1

1 + ε(r)v
◦
1 − v1

)(
1 + ε(r)
ε(r)

)
,

and we consider in the integral (63) the following change of variable

(v1, v
◦
1 , v
◦
2)→ (w, v◦1 , v◦2)

for which the jacobian is given by

|J | =
(

1 + ε(r)
ε(r)

)3
.

Therefore, we getˆ
R3
ϕ(v)R+

1 (f1, f2)(v, r)dv = (r + r2)2
ˆ
S2

ˆ
R3

ˆ
R3

ˆ
R3
ϕ(v′1)f1(v1, r)f2(v2)

× hn(w) [n · (v1 − v2)] 1{n·(v1−v2)≥0}dndwdv1dv2 (65)

with v′1 given by (58). Moreover, thanks to (47) and by noting that [11]

∀k ∈ R3 :
ˆ
S2

(n · k) 1{n·k≥0}dn = π|k|, (66)

we get the weak formulationˆ
R3
ϕ(v)R−1 (f1, f2)(v, r)dv = (r + r2)2

ˆ
R3

ˆ
R3
ϕ(v1)f1(v1, r)f2(v2)π|v1 − v2|dv1dv2

= (r + r2)2
ˆ
S2

ˆ
R3

ˆ
R3

ˆ
R3
ϕ(v1)f1(v1, r)f2(v2)

× hn(w) [n · (v1 − v2)] 1{n·(v1−v2)≥0}dndwdv1dv2. (67)

for the loss term R−1 (f1, f2). Expression (57) is a direct consequence of (65) and (67). We obtain expression
(59) with similar computations (see [11] for details).♦

3.4.2 A second formulation of R1(f1, f2) and R2(f1, f2)

We deduce from Proposition 3 another expression of collisional operators R1(f1, f2) and R2(f1, f2):

Proposition 4 The Boltzmann operators R1(f1, f2) and R2(f1, f2) given by (48) and (55) are respectively
equivalent to the operators

R1(f1, f2)(v1, r) = 2β4

π
(r + r2)2

ˆ
S2

ˆ
R3

ˆ
R3

[
f1(v′1, r)f2(v′2) exp

(
−β2(v1 − v2)2)

−f1(v1, r)f2(v2) exp
(
−β2(v′1 − v′2)2)]

× (n · w) [n · (v1 − v2)] 1{n·w≥0}1{n·(v1−v2)≥0}dndwdv2

(68)
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with
v′1 = 1

1 + ε(r) [v1 + ε(r)v2 − ε(r)w], (69)

and

R2(f1, f2)(v2) = 2β4

π

ˆ rmax

rmin

ˆ
S2

ˆ
R3

ˆ
R3

(r + r2)2

[
f1(v′1, r)f2(v′2) exp

(
−β2(v1 − v2)2)

−f1(v1, r)f2(v2) exp
(
−β2(v′1 − v′2)2)]

× (n · w) [n · (v1 − v2)] 1{n·w≥0}1{n·(v1−v2)≥0}drdndwdv1

(70)

with
v′2 = 1

1 + ε(r) [v1 + ε(r)v2 + w] (71)

where β is given by (46).

Compared to (48) and (55), formulations (68) and (70) are closer to the classical (elastic) multispecies
Boltzmann operator obtained by supposing that the kinematic relations of the binary collision are given by
(40) instead of (42)(43)(44). The function exp(−β2|s|2) in (68) and (70) is a direct consequence of Hypothese
7.

Proof of Proposition 4. Let us start from the expression (65) in which we make the change of variables

(v1, v2, w)→ (v′1, v′2, vr)

with v′1 and v′2 given by (69)(71) and with vr := v2 − v1 (see also (43)). This transformation is involutive,
and the inverse transformation is expressed by

v1 = 1
1 + ε(r) [v′1 + ε(r)v′2 − ε(r)vr],

v2 = 1
1 + ε(r) [v′1 + ε(r)v′2 + vr],

w = v′2 − v′1.

(72)

Then, according to (65), we get
ˆ
R3
ϕ(v)R+

1 (f1, f2)(v, r)dv = (r + r2)2
ˆ
S2

ˆ
R3

ˆ
R3

ˆ
R3

ϕ(v′1)f1

(
v′1 + εv′2 − εvr

1 + ε(r) , r

)
f2

(
v′1 + εv′2 + vr

1 + ε(r)

)
×hn(v′2 − v′1) [−n · vr] 1{−n·vr≥0}dndudv

′
1dv
′
2.

(73)
And, by using the involutive character of the transformation (v1, v2, w) → (v′1, v′2, vr) and by renaming
(v′1, v′2, vr) with (v1, v2, w), we deduce from (73) thatˆ

R3
ϕ(v)R+

1 (f1, f2)(v, r)dv = (r + r2)2
ˆ
S2

ˆ
R3

ˆ
R3

ˆ
R3

ϕ(v1)f1 (v′1, r) f2 (v′2)

×hn(v2 − v1) (−n · w) 1{−n·w≥0}dndwdv1dv2.

Using the change of variable n→ −n and the fact that h−n(s) = hn(−s), we finally obtain thatˆ
R3
ϕ(v)R+

1 (f1, f2)(v, r)dv = (r + r2)2
ˆ
S2

ˆ
R3

ˆ
R3

ˆ
R3

ϕ(v1)f1 (v′1, r) f2 (v′2)

×hn(v1 − v2) (n · w) 1{n·w≥0}dndwdv1dv2.

(74)
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Thus, by using (67) and (74), we obtain

R1(f1, f2)(v, r) = (r + r2)2
ˆ
S2

ˆ
R3

ˆ
R3

[
f1 (v′1, r) f2 (v′2)hn(v1 − v2) (n · w) 1{n·w≥0}

−f1 (v1, r) f2 (v2)hn(w) [n · (v1 − v2)] 1{n·(v1−v2)≥0}
]

×dndwdv2.

(75)

We finally deduce (68) by using (45). By permuting the subscripts 1 and 2 in (75) and by taking into account
an integration in r, we obtain

R2(f1, f2)(v) =
ˆ rmax

rmin

ˆ
S2

ˆ
R3

ˆ
R3

(r + r2)2[f1 (v′1, r) f2 (v′2)hn(v2 − v1) (−n · w) 1{−n·w≥0}

−f1 (v1, r) f2 (v2)hn(−w) [n · (v2 − v1)] 1{n·(v2−v1)≥0}
]

×drdndwdv1.

(76)

Using again the change of variable n→ −n and the fact that h−n(s) = hn(−s), we deduce from (76) that

R2(f1, f2)(v) =
ˆ rmax

rmin

ˆ
S2

ˆ
R3

ˆ
R3

(r + r2)2[f1 (v′1, r) f2 (v′2)hn(v1 − v2) (n · w) 1{n·w≥0}

−f1 (v1, r) f2 (v2)hn(w) [n · (v1 − v2)] 1{n·(v1−v2)≥0}
]

×drdndwdv1.

(77)

Expression (70) is deduced from (77) by using (45).♦

4 Derivation of a Vlasov-Boltzmann model
We now introduce another kinetic model which is devoted to approach Boltzmann type model (37) under
Hypothesis 3 that is to say when the ratio of mass between a molecule and a dust particle is close to zero.
The idea is to use the fact that the velocity of a dust particle after a collision with a molecule is very close
to its precollisional velocity (see (61)), like in grazing collisions [21]. In the context of grazing collisions, a
Fokker-Plank operator is derived from the classical Boltzmann operator, thanks to an asymptotic expansion
with respect to a small parameter (related to the angle of collisions) [21, 1, 19]. Similarly, we propose to
perform an asymptotic expansion of the operator R1(f1, f2) with respect to the mass ratio ε defined by
(5)(a). This asymptotic analysis will allow us to simplify (in a sense which will be precised) the Boltzmann
type operator R1(f1, f2) with a Vlasov type operator. In order to do so, we perform a dimensional analysis
of Boltzmann type model (37) which leads to a dimensionless formulation of (37). Let us underline that
Hypothesis 4 and 5 allow us to easily introduce this dimensionless formulation of (37).

4.1 Dimensionless formulation of the dust-molecule kinetic model
We now define the dimensionless variables which will be used to derive the dimensionless formulation of the
dust-molecule kinetic model (37).

4.1.1 Dimensionless variables

Let us introduce the dimensionless variables t̄ and x̄
t̄ = t

t◦
, (a)

x̄ = x

L◦
(b)

(78)
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where t◦ and L◦ are characteristic time and length scales which will be chosen in section 5. In order to
introduce a unique order of magnitude for the radius r of dust particles, we make this hypothesis:

Hypothesis 8 We assume that the size of dust particles are of the same order of magnitude. In other words,
we have

rmin ' rmax.

In the sequel, we denote r◦ the order of magnitude for the radius of dust particles. We define the dimensionless
dust particle radius r̄ with

r̄ = r

r◦
. (79)

Hypothesis 8 allows us to also introduce a unique order of magnitude of the mass of a dust particle – chosen
equal to m1(r◦) – and a unique order of magnitude of the dust-molecule collision frequencies ν12 and ν21
defined by (18)(c,d).

Moreover, we introduce the dimensionless velocities v̂1 and v̌2 with
v̂1 = v1

V ◦1
,

v̌2 = v2

V ◦2

(80)

where V ◦1 and V ◦2 are velocity scales. For the sake of simplicity, we use the notation

δ := V ◦1
V ◦2

.

We propose two different velocity scalings:

• In the first scaling, we choose 
V ◦1 =< V1 >:=

√
8kT ◦

πm1(r◦) ,

V ◦2 =< V2 >:=
√

8kT ◦
πm2

(81)

where T ◦ has been introduced in Hypothesis 5. Thus, we have

V ◦1 =
√
ε V ◦2 � V ◦2 , (82)

where
ε := ε(r◦), (83)

that is to say
δ =
√
ε� 1

because of Hypothesis 3 for this first scaling. Thanks to Hypothesis 5 and 8, < V1 > and < V2 >
given by (81) are respectively characteristic thermal velocities of dust particles and of gas molecules.
Such velocity scales have been already used for a disparate mass binary gas in [16, 17, 18] to study the
epochal relaxation phenomenon [30]. However, on the contrary to [16, 17, 18], neither cross sections
(because of Hypothesis 2) nor densities (because of Hypothesis 4) are in our context of the same order
of magnitude.

• In the second scaling, we introduce a unique order of magnitude V ◦ for the velocity scales V ◦1 and V ◦2
that is to say  V ◦1 := V ◦,

V ◦2 := V ◦.
(84)
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Thus, we have
δ = 1.

We can choose for example V ◦ =< V2 >. In fact, the exact choice of V ◦ is not really important to
formally derive the Vlasov operator. Nevertheless, the fact that δ = 1 instead of δ =

√
ε is important

to estimate the error introduced by the Vlasov operator.

At last, we introduce the dimensionless densities f̂1 and f̌2 in the phase space
f̂1(t̄, x̄, v̂1, r̄) = (V ◦1 )3

r◦

n◦1
f1(t, x, v, r),

f̌2(t̄, x̄, v̌2) = (V ◦2 )3

n◦2
f2(t, x, v2).

(85)

By using (79) and (80), we deduce from (85) that

n◦1f̂1dv̂1dr̄ = f1dv1dr and n◦2f̌2dv̌2 = f2dv2.

As a consequence, we have

sup
Ω̄

ˆ
R3

ˆ r̄max

r̄min

f̂1dv̂1dr̄ = O(1) and inf
Ω̄

ˆ
R3
f̌2dv̌2 = O(1)

at the beginning of a LOVA in ITER by using Hypothesis 4 (see (12)), where r̄min = rmin/r
◦, r̄max = rmax/r

◦

and Ω̄ being deduced from Ω through scaling (78)(b).

4.1.2 Dimensionless kinetic model

By using the dimensionless variables (t̄, x̄, r̄, v̂1, v̌2) defined with (78), (79) and (80), and the dimensionless
densities f̂1 and f̌2 defined with (85), the dimensionless formulation of system (37) is given by

∂f̂1

∂t̄
+ V ◦1 t

◦

L◦
v̂1 · ∇x̄f̂1 = t◦n◦2(r◦)2V ◦2 R̄1(f̂1, f̌2)(t̄, x̄, v̂1, r̄),

∂f̌2

∂t̄
+ V ◦2 t

◦

L◦
v̌2 · ∇x̄f̌2 = t◦n◦1(r◦)2V ◦2 R̄2(f̂1, f̌2) + t◦n◦2V

◦
2 r

2
2 Q̄(f̌2, f̌2).

(86)

Here, Q̄(f̌2, f̌2) is defined by

Q̄(f̌2, f̌2)(t̄, x̄, v̌) =
ˆ
S2

ˆ
R3

[
f̌2(t̄, x̄, v̌′∗)f̌2(t̄, x̄, v̌′∗)− f̌2(t̄, x̄, v̌)f̌2(t̄, x̄, v̌∗)

]
|v̌ − v̌∗|dσdv̌∗ (87)

where 
v̌′ = v̌ + v̌∗

2 + |v̌ − v̌∗|2 σ,

v̌′∗ = v̌ + v̌∗
2 − |v̌ − v̌∗|2 σ.

The dimensionless operator R̄1(f̂1, f̌2) deduced from (68) is defined by

R̄1(f̂1, f̌2)(t̄, x̄, v̂1, r̄) = 2β̄4

π

[
r̄ +

(
ε

η

)1/3
]2 ˆ

S2

ˆ
R3

ˆ
R3

[
f̂1(t̄, x̄, v̂′1, r̄)f̌2(t̄, x̄, v̌′2) exp

(
−β̄2(δv̂1 − v̌2)2)

−f̂1(t̄, x̄, v̂1, r̄)f̌2(t̄, x̄, v̌2) exp
(
−β̄2w̌

)]
× (n · w̌) [n · (δv̂1 − v̌2)] 1{n·w̌≥0}1{n·(δv̂1−v̌2)≥0}

×dndw̌dv̌2
(88)
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where
v̂′1 = 1

1 + εr̄−3

(
v̂1 + ε

δ
r̄−3 v̌2 −

ε

δ
r̄−3 w̌

)
(89)

is the dimensionless formulation of (69), w̌ being the dimensionless velocity

w̌ = w

V ◦2

and β̄ being the dimensionless constant

β̄ := V ◦2 β =

√
4T ◦
πTsurf

· V ◦2
< V2 >

where the thermal velocity 1/β is given by (46). In the same way, the dimensionless operator R̄2(f̂1, f̌2)
deduced from (70) and (71) is defined by

R̄2(f̂1, f̌2)(t̄, x̄, v̌2) = 2β̄4

π

ˆ r̄max

r̄min

ˆ
S2

ˆ
R3

ˆ
R3

[
r̄ +

(
ε

η

)1/3
]2 [

f̂1(t̄, x̄, v̂′1, r̄)f̌2(t̄, x̄, v̌′2) exp
(
−β̄2(δv̂1 − v̌2)2)

−f̂1(t̄, x̄, v̂1, r̄)f̌2(t̄, x̄, v̌2) exp
(
−β̄2w̌2)]

× (n · w̌) [n · (δv̂1 − v̌2)] 1{n·w̌≥0}1{n·(δv̂1−v̌2)≥0}

×dr̄dndw̌dv̂1
(90)

with
v̌′2 = 1

1 + εr̄−3

(
δ v̂1 + εr̄−3 v̌2 + w̌

)
. (91)

Let us note that we have replaced r2
r◦ by

(
ε
η

)1/3
in (88) and (90) by using relation (8), and that, under

Hypothesis 8, we have r̄min = O(1) and r̄max = O(1) in (90).

4.2 Asymptotic expansion of dust-molecule kinetic operator R1(f1, f2)
To approximate R1(f1, f2) with a Vlasov type operator, we perform an asymptotic expansion to the dimen-
sionless weak operator R̄1(f̂1, f̌2) defined by (86) with respect to the ratio of mass between a gas molecule
and a dust particle:

Proposition 5 Let ϕ be a test function (ϕ ∈ C0
c (R3) for example), let R1(f1, f2) be the dimensionless

Boltzmann type operator (88). Then, we have formally
ˆ
R3
ϕ(v̂1)R̄1(f̂1, f̌2)(t̄, x̄, v̂1, r̄)dv̂1 = ε

δ

ˆ
R3

Ῡ(f̌2)(t̄, x̄, v̂1, r̄) · ∇ϕ(v̂1)f̂1(t̄, x̄, v̂1, r̄)dv̂1 + o
(ε
δ

)
(92)

where Ῡ(f̌2)(t̄, x̄, r̄) is given by

Ῡa(f̌2)(t̄, x̄, r̄) = π

r̄

ˆ
R3
f̌2(t̄, x̄, v̌2)

[
|v̌2|+

√
π

3β̄

]
v̌2dv̌2 (93)

in the case of first scaling (81) (i.e. δ =
√
ε), and by

Ῡb(f̌2)(t̄, x̄, v̂1, r̄) = π

r̄

ˆ
R3
f̌2(t̄, x̄, v̌2)

[
|v̌2 − v̂1|+

√
π

3β̄

]
(v̌2 − v̂1)dv̌2 (94)

in the case of second scaling (84) (i.e. δ = 1).
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We deduce from Proposition 5:

Proposition 6 Let R1(f1, f2) be the dimensionless Boltzmann type operator (88). Then, we have formally

R̄1(f̂1, f̌2)(t̄, x̄, v̂1, r̄) = −
√
ε Ῡa(f̌2)(t̄, x̄, r̄) · ∇v̂1 [f̂1(t̄, x̄, v̂1, r̄)] + o

(√
ε
)

(95)

in the case of first scaling (81), and

R̄1(f̂1, f̌2)(t̄, x̄, v̂1, r̄) = −ε ∇v̂1 · [Ῡb(f̌2)(t̄, x̄, v̂1, r̄)f̂1(t̄, x̄, v̂1, r̄)] + o (ε) (96)

in the case of second scaling (84), Ῡa(f̌2) and Ῡb(f̌2) being respectively given by (93) and by (94).

Proof of Proposition 5. We easily deduce from the weak formulation (57) of R1(f1, f2) and from the
dimensionless formulation (88) of R1(f1, f2) that the dimensionless weak formulation of R̄1(f̂1, f̌2) is given
by

ˆ
R3
R̄1(f̂1, f̌2)(t̄, x̄, v̂1, r̄)ϕ(v̂1)dv̂1

= 2β̄4

π

(
r̄ +

(
ε

η

)1/3
)2 ˆ

S2

ˆ
R3

ˆ
R3

ˆ
R3

[ϕ(v̂′1)− ϕ(v̂1)] f̂1(t̄, x̄, v̂1, r̄)f̌2(t̄, x̄, v̌2)

× exp
(
−β̄2w̌2) (n · w̌) [n · (δv̂1 − v̌2)] 1{n·w̌≥0}1{n·(δv̂1−v̌2)≥0}dndw̌dv̂1dv̌2

where v̂′1 given by (89) is the dimensionless formulation of (69). Since

v̂′1 − v̂1 = 1
1 + εr̄−3

(
−εr̄−3 v̂1 + ε

δ
r̄−3 v̌2 −

ε

δ
r̄−3 w̌

)

= O(
√
ε) if δ =

√
ε,

= O(ε) if δ = 1,

we can make an asymptotic expansion of ϕ(v̂′1)− ϕ(v̂1) at the first order of εδ , that is to say

ϕ(v̂′1)− ϕ(v̂1) = (v̂′1 − v̂1) · ∇ϕ (v̂1) +O
(
|v̂′1 − v̂1|

2
)

= ε

δ
r̄−3 (v̌2 − w − δv̂1) · ∇ϕ (v̂1) +O

(
ε2

δ2

)
. (97)

Thus, we obtain at least formally
ˆ
R3
R̄1(f̂1, f̌2)(t̄, x̄, v̂1, r̄)ϕ(v̂1)dv̂1

= ε

δ
· 2β̄4

πr̄

ˆ
R3

ˆ
R3
f̂1(t̄, x̄, v̂1, r̄)f̌2(t̄, x̄, v̌2)∇ϕ (v̂1) · [I(v̂1, v̌2)− J(v̂1, v̌2)] dv̂1dv̌2 + o

(ε
δ

)
where

I(v̂1, v̌2) = (v̌2 − δv̂1)
ˆ
S2

[n · (δv̂1 − v̌2)] 1{n·(δv̂1−v̌2)≥0}

[ˆ
R3

exp
(
−β̄2w̌2) (n · w̌) 1{n·w̌≥0}dw̌

]
dn,

and
J(v̂1, v̌2) =

ˆ
S2

[n · (δv̂1 − v̌2)] 1{n·(δv̂1−v̌2)≥0}

[ˆ
R3

exp
(
−β̄2w̌2) (n · w̌) w̌1{n·w̌≥0}dw̌

]
dn.

Moreover, by using (47), we obtain

∀n ∈ S2 :
ˆ
R3

exp
(
−β̄2w̌2) (n · w̌) 1{n·w̌≥0}dw̌ = π

2β̄4
. (98)
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We have also [11]

∀n ∈ S2 :
ˆ
R3

exp
(
−β̄2w̌2) (n · w̌) w̌1{n·w̌≥0}dw̌ = π3/2

4β̄5
n (99)

and
∀k ∈ R3 :

ˆ
S2
n(n · k)1{n·k≥0}dn = 2π

3 k. (100)

Then, thanks to (66), (98), (99) and (100), we obtain

I(v̂1, v̌2) = π2

2β̄4
|v̌2 − δv̂1| (v̌2 − δv̂1)

and
J(v̂1, v̌2) = π5/2

6β̄5
(δv̂1 − v̌2) .

Finally, we obtain for δ =
√
ε

ˆ
R3
R̄1(f̂1, f̌2)(t̄, x̄, v̂1, r̄)ϕ(v̂1)dv̂1

= π

r̄

√
ε

¨
R3×R3

f̂1(t̄, x̄, v̂1, r̄)f̌2(t̄, x̄, v̌2)∇ϕ (v̂1) · v̌2

[
|v̌2|+

√
π

3β̄

]
dv̌2dv̂1 + o(

√
ε),

and for δ = 1ˆ
R3
R̄1(f̂1, f̌2)(t̄, x̄, v̂1, r̄)ϕ(v̂1)dv̂1

= π

r̄
ε

¨
R3×R3

f̂1(t̄, x̄, v̂1, r̄)f̌2(t̄, x̄, v̌2)∇ϕ (v̂1) · (v̌2 − v̂1)
[
|v̌2 − v̂1|+

√
π

3β̄

]
dv̌2dv̂1 + o(ε),

which gives (92) , (93) and (94).♦

4.3 The Vlasov-Boltzmann model
By using Proposition 6, we are able to approximate Boltzmann type system (37) with a Vlasov-Boltzmann
type system.

4.3.1 The dimensionless Vlasov-Boltzmann model

We deduce from Proposition 6 that dimensionless Boltzmann type model (86) is such that
∂f̂1

∂t̄
+ V ◦1 t

◦

L◦
v̂1 · ∇x̄f̂1 + ε

δ
t◦n◦2(r◦)2V ◦2 ∇v̂1 · [Ῡ(f̌2)(t̄, x̄, v̂1, r̄)f̂1(t̄, x̄, v̂1, r̄)] = o

(ε
δ

)
,

∂f̌2

∂t̄
+ V ◦2 t

◦

L◦
v̌2 · ∇x̄f̌2 = t◦n◦1(r◦)2V ◦2 R̄2(f̂1, f̌2) + t◦n◦2V

◦
2 r

2
2 Q̄(f̌2, f̌2)

(101)

where R̄2(f̂1, f̌2) and Q̄(f̌2, f̌2) are respectively given by (87) and (90), where δ ∈ {1,
√
ε}, and where Ῡ(f̌2)

is given by (93) for the first scaling (81) (i.e. δ =
√
ε) and by (94) for the second scaling (84) (i.e. δ = 1).

4.3.2 The Vlasov-Boltzmann model

We deduce from Proposition 6 that:

Corollary 1 Let R1(f1, f2) be the Boltzmann type operator (68). Then, we have formally

R1(f1, f2)(t, x, v1, r) = −Υa(f2)(t, x, r) · ∇v1 [f1(t, x, v1, r)] + o
(√
ε
)

(102)
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in the case of first scaling (81), and

R1(f1, f2)(t, x, v1, r) = −∇v1 · [Υb(f2)(t, x, v1, r)f1(t, x, v1, r)] + o (ε) (103)

in the case of second scaling (84), Υa(f2) and Υb(f2) being given by
Υa(f2)(t, x, r) = πε

(r◦)3

r

ˆ
R3
f2(t, x, v2)

[
|v2|+

√
π

3β

]
v2dv2, (a)

Υb(f2)(t, x, v1, r) = πε
(r◦)3

r

ˆ
R3
f2(t, x, v2)

[
|v2 − v1|+

√
π

3β

]
(v2 − v1)dv2. (b)

(104)

Operators (102) and (103) are Vlasov type operators.

As a consequence, the Vlasov-Boltzmann model

∂f1

∂t
+ v · ∇xf1 + Υa(f2)(t, x, r) · ∇vf1(t, x, v, r) = 0, (a)

∂f2

∂t
+ v · ∇xf2 = R2(f1, f2) +Q(f2, f2), (b)

(t, x, v, r) ∈ R+ × Ω× R3 × [rmin, rmax]

(105)

where Υa(f2) is given by (104)(a) equals Boltzmann type model (37) to error o (
√
ε). And, the Vlasov-

Boltzmann model 

∂f1

∂t
+ v · ∇xf1 +∇v · [Υb(f2)(t, x, v, r)f1(t, x, v, r)] = 0, (a)

∂f2

∂t
+ v · ∇xf2 = R2(f1, f2) +Q(f2, f2), (b)

(t, x, v, r) ∈ R+ × Ω× R3 × [rmin, rmax]

(106)

where Υb(f2) is given by (104)(b) equals Boltzmann type model (37) to error o (ε). System (106) is certainly
a best approximation of (37) than system (105). Nevertheless, it is more expensive to solve system (106)
than system (105) because Υb(f2) is a function of v1 which is not the case of Υa(f2). We will justify these
assertions in Section 6.

At last, let us underline that m1Υa(f2) and m1Υb(f2) define two drag force models for the dust particles
which are also valid when the gas molecules are not at thermodynamical equilibrium in the sense that
they depend on f2 through (104)(a) and (104)(b). Moreover, these drag forces do not depend on empirical
coefficients thanks to (104), which is not the case for other drag forces especially adapted in a rarefied
atmosphere as in [3].

5 Study of the Vlasov-Boltzmann model at different time and
length scales

To estimate the appropriate characteristic time scale t◦ and the appropriate characteristic length scale L◦
in the case of the beginning of a LOVA in ITER, we propose in this section a brief qualitative analysis of
system (105) obtained, under Hypothesis 8, with first velocity scaling (81). The dimensionless formulation
of this Vlasov-Boltzmann system is given by (see (101) with δ =

√
ε)

∂f̂1

∂t̄
+ < V1 > t◦

L◦
v̂1 · ∇x̄f̂1 +

√
ε t◦n◦2(r◦)2 < V2 > Ῡa(f̌2)(t̄, x̄, r̄) · ∇v̂1 f̂1 = 0,

∂f̌2

∂t̄
+ < V2 > t◦

L◦
v̌2 · ∇x̄f̌2 = t◦n◦1(r◦)2 < V2 > R̄2(f̂1, f̌2) + t◦n◦2 < V2 > r2

2 Q̄(f̌2, f̌2)

(107)

25



where Ῡa(f̌2)(t̄, x̄, r̄) is given by (93). Let us underline that we could also lead this qualitative analysis with
the second velocity scaling (84) which gives in particular, instead of Ῡa(f̌2)(t̄, x̄, r̄), the more precise Vlasov
operator Ῡb(f̌2)(t̄, x̄, v̂1, r̄) defined by (94). Nevertheless, this would not give more qualitative informations
about t◦ and L◦. To simplify the qualitative analysis, we suppose:

Hypothesis 9 We assume that the parameters α◦, r◦ and r2 are such that

1
4
√

2
α◦
(
r◦

r2

)2
' 1. (108)

Hypothesis 10 We assume that the parameters ε, r◦ and r2 are such that
√
ε

4
√

2

(
r◦

r2

)2
' 1, (109)

that is to say
1

4
√

2

(
η
r◦

r2

)1/2
' 1, (110)

where η is given by (7).

Relations (108) and (109) are verified for the orders of magnitude introduced in (17).

5.1 Definition of the characteristic time scale t◦

Under Hypothesis 1-8 (see also section 2.2.1), we can introduce the following three characteristic time scales
t22 =

(
4
√

2π r2
2 n
◦
2 < V2 >

)−1
, (a)

t12 =
(
π (r◦)2 n◦2 < V2 >

)−1
, (b)

t21 =
(
π (r◦)2 n◦1 < V2 >

)−1 (c)

(111)

relative to the dust-molecule mixture. By using (19) and by noting that < V2 >=< V rel22 > /
√

2 and that
< V2 >'< V rel12 >=< V rel21 >, we obtain that these three characteristic time scales are approximately equal
to the mean collision times introduced in (18)(b,c,d) for the radius r = r◦. We can notice that we have

t12 = α◦ t21 � t21 (112)

(see also (20)(c) and (25)(a)). Moreover, under Hypothesis 8 and 9, we get t21 ' t22, which implies that

t12 � t21 ' t22 (113)

by also using (112). This allows us to considere only two characteristic time scales in our qualitative analysis:
the characteristic time scale t22 relative to collisions between molecules, and the characteristic time scale t12
relative to collisions between dust particles and gas molecules (from the point of view of dust particles) which
is the smaller of these two time scales.

5.2 Definition of the characteristic length scale L◦

We define the characteristic length scale L◦ from the time scale t◦ ∈ {t12, t22} as the mean distance covered
by one of the two species during the time t◦. Then, for each time scale t◦, we can considere two different
length scales L1 and L2, which correspond to the mean distance covered by dust particles and molecules
respectively :

when we choose t◦ = t12 :


L1 := t12 < V1 > =⇒ L1 = λ12, (a)

L2 := t12 < V2 > =⇒ L2 = λ12√
ε

(b)
(114)
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and

when we choose t◦ = t22 :

 L1 := t22 < V1 > =⇒ L1 =
√
ε λ22, (a)

L2 := t22 < V2 > =⇒ L2 = λ22 (b)
(115)

where λij =< Vi > tij is the mean free path of the collision of a particle of type i with a particle of type j
from the point of view of the particle of type i (see also section 2.2.2). We recall that under Hypothesis 8 and
9, we have (see (29))

λ22 ' λ21 (116)

which allows us to only consider the two characteristic length scales λ12 and λ22. Nevertheless, for the sake of
completness, we also study the two characteristic length scales λ12/

√
ε and

√
ε λ22 since these length scales

are deduced from the choice of the velocity scale V ◦ ∈ {< V1 >,< V2 >} in (114)(b) and (115)(a). Moreover,
under Hypothesis 8–10, we deduce from (27)(b) that

λ12

λ22
'
√
ε α◦,

λ12/
√
ε

λ22
√
ε
' 4
√

2√
ε

( r2

r◦

)2
' 1.

As a consequence, the four characteristic length scales defined in (114) and (115) are such that

λ12 �
λ12√
ε
'
√
ε λ22 � λ22 (117)

under Hypothesis 8–10.

5.3 The Vlasov-Boltzmann model when t◦ = t12 and L◦ = λ12

We considere the time and space scales defined by (111)(b) and (114)(a). These scales are the smallest ones
that we can define in the dust-molecule mixture (see (113) and (117)). In that case, system (107) is given by

∂f̂1

∂t̄
+ v̂1 · ∇x̄f̂1 +

√
ε

π
Ῡa(f̌2)(t̄, x̄, v̂1, r̄) · ∇v̂1 f̂1 = 0, (a)

∂f̌2

∂t̄
+ 1√

ε
v̌2 · ∇x̄f̌2 = α◦

π
R̄2(f̂1, f̌2) + 1

π

( r2

r◦

)2
Q̄(f̌2, f̌2). (b)

(118)

Thanks to Hypothesis 2-4, we notice that system (118) is close to
∂f̂1

∂t̄
+ v̂1 · ∇x̄f̂1 = 0, (a)

∂f̌2

∂t̄
+ 1√

ε
v̌2 · ∇x̄f̌2 = 0. (b)

(119)

As a consequence, the choice (t◦, L◦) = (t12, λ12) is unsuitable for the study of the dust-molecule mixture.

5.4 The Vlasov-Boltzmann model when t◦ = t12 and L◦ = λ12/
√
ε

We considere the time and space scales defined by (111)(b) and (114)(b). In that case, system (107) is given
by 

∂f̂1

∂t̄
+
√
ε v̂1 · ∇x̄f̂1 +

√
ε

π
Ῡa(f̌2)(t̄, x̄, v̂1, r̄) · ∇v̂1 f̂1 = 0, (a)

∂f̌2

∂t̄
+ v̌2 · ∇x̄f̌2 = α◦

π
R̄2(f̂1, f̌2) + 1

π

( r2

r◦

)2
Q̄(f̌2, f̌2). (b)

(120)
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Thanks to Hypothesis 2-4, we notice that system (120) is close to
∂f̂1

∂t̄
= 0, (a)

∂f̌2

∂t̄
+ v̌2 · ∇x̄f̌2 = 0. (b)

(121)

Thus, the choice (t◦, L◦) = (t12, λ12/
√
ε) is also unsuitable for the study of the dust-molecule mixture.

5.5 The Vlasov-Boltzmann model when t◦ = t22 and L◦ =
√
ε λ22

We considere the time and space scales defined by (111)(a) and (115)(a). In that case, system (107) is given
by 

∂f̂1

∂t̄
+ v̂1 · ∇x̄f̂1 +

√
ε

4π
√

2

(
r◦

r2

)2
Ῡa(f̌2)(t̄, x̄, v̂1, r̄) · ∇v̂1 f̂1 = 0, (a)

√
ε
∂f̌2

∂t̄
+ v̌2 · ∇x̄f̌2 =

√
ε

4π
√

2
α◦
(
r◦

r2

)2
R̄2(f̂1, f̌2) +

√
ε

4π
√

2
Q̄(f̌2, f̌2). (b)

(122)

Moreover, we have √
ε

4
√

2

(
r◦

r2

)2
' 1

under Hypothesis 10 (cf. (109)). Thus, we obtain that system (122) is close to
∂f̂1

∂t̄
+ v̂1 · ∇x̄f̂1 + c1

π
Ῡa(f̌2)(t̄, x̄, v̂1, r̄) · ∇v̂1 f̂1 = 0, (a)

√
ε
∂f̌2

∂t̄
+ v̌2 · ∇x̄f̌2 = 0 (b)

(123)

where c1 is a constant of order one. Thus, the choice (t◦, L◦) = (t22,
√
ε λ22) is also unsuitable for the study

of the dust-molecule mixture.

5.6 The Vlasov-Boltzmann model when t◦ = t22 and L◦ = λ22

We considere the time and space scales defined by (111)(a) and (115)(b). In that case, system (107) is given
by 

∂f̂1

∂t̄
+
√
ε v̂1 · ∇x̄f̂1 +

√
ε

4π
√

2

(
r◦

r2

)2
Ῡa(f̌2)(t̄, x̄, v̂1, r̄) · ∇v̂1 f̂1 = 0, (a)

∂f̌2

∂t̄
+ v̌2 · ∇x̄f̌2 = 1

4π
√

2
α◦
(
r◦

r2

)2
R̄2(f̂1, f̌2) + 1

4π
√

2
Q̄(f̌2, f̌2). (b)

(124)

Thus, by taking into account (108) and (109), we can rewrite (124) with
∂f̂1

∂t̄
+
√
ε v̂1 · ∇x̄f̂1 + c1

π
Ῡa(f̌2)(t̄, x̄, v̂1, r̄) · ∇v̂1 f̂1 = 0, (a)

∂f̌2

∂t̄
+ v̌2 · ∇x̄f̌2 = c2

π
R̄2(f̂1, f̌2) + 1

4π
√

2
Q̄(f̌2, f̌2) (b)

(125)

where, under Hypothesis 9 and 10, c1 and c2 are two constants of order one (cf. (108) and (109)). Thus,
the choice (t◦, L◦) = (t22, λ22) seems to be appropriate for the theoritical and numerical study of the dust-
molecule mixture. Moreover, the factor

√
ε in front of the term v̂ · ∇x̄f̂1, related to the spatial variation
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of the transport of dust particles, suggests that the displacement of dust particles is weak compared to the
displacement of gas molecules. At last, we refer to [12] for a theorical study of the convergence of the solution
of the spatially homogeneous system (124) when ε → 0 for a fixed ratio

√
ε

4π
√

2

(
r◦

r2

)2
, but with operators

R1(f1, f2) and R2(f1, f2) for which collisions between dust particles and gas molecules are described by (40)
(and, thus, are elastic) rather than by Hypothesis 7.

Remark 1 The constant c2 can be linked to λ22 and λ21 defined by (26)(b) and (26)(d) respectively and
under Hypothesis 8 :

c2 = λ22

λ21
. (126)

Thus, we recover the fact that C2 = O(1) under hypothesis 8-9 by using (116)

6 Numerical results
We now present homogeneous and 3D inhomogeneous numerical simulations of Boltzmann-Boltzmann system
(37), of Vlasov-Boltzmann system (105) and of the more accurate Vlasov-Boltzmann system (106). These
numerical results validate and justify (from a computational cost point of view) the derivation of asymptotic
models (105) and (106). For the sake of simplicity, we considere in this section the situation of dust particles
with an unique radius:
Hypothesis 11 All particules have the same radius r1.
We still denote ε the ratio of mass ε(r1) given by (5)(b).

Let us note that in order to assess the efficiency of the numerical models from a computational cost point
of view, or in order to simplify the visualization of the numerical results, we do not always use exactly the
orders of magnitude of n◦1, n◦2 and rmin given by (17) (more precisely, there is sometimes a factor 10 between
the order of magnitudes used in section 2 and those used in this section). Nevertheless, Hypothesis 2-4 are
always satisfied.

6.1 The Boltzmann-Boltzmann model
We now describe the numerical method used to discretize Boltzmann-Boltzmann system (37), and we propose
a 3D numerical simulation of a LOVA scenario in a cubic box. Then, we underline the limitation of Boltzmann-
Bolzmann system (37) because of the computational cost of simulations.

Under Hypothesis 11, we can remove the dependency in r of f1. Then, weak formulations (57) and (59)
of respective operators R1(f1, f2) and R2(f1, f2) are now given by

ˆ
R3
ϕ(v)R1(f1, f2)(t, x, v)dv =

ˆ
S2

ˆ
R3

ˆ
R3

ˆ
R3

[ϕ(v′1)− ϕ(v1)] f1(t, x, v1)f2(t, x, v2)

×ς(v1 − v2, n)hn(w)dndwdv1dv2

(127)

and ˆ
R3
ϕ(v)R2(f1, f2)(t, x, v)dv =

ˆ
S2

ˆ
R3

ˆ
R3

ˆ
R3

[ϕ(v′2)− ϕ(v2)] f1(t, x, v1)f2(t, x, v2)

×ς(v1 − v2, n)hn(w)dndwdv1dv2

(128)

where
ς(v, n) = (r1 + r2)2 [n · v] 1{n·v≥0}. (129)

Several numerical methods are used for the simulation of the Boltzmann equation (we refer to [38] for a review
of these methods). One of these methods is the probabilistic Monte-Carlo method [39] whose advantage is
the lower cost of computation compared to the cost of computation of a deterministic method. In the sequel,
we adapt a classical Monte-Carlo method – namely, the Direct Simulation Monte-Carlo method i.e. DSMC
method which is also known as the Bird’s method – for the simulation of Boltzmann-Boltzmann system (37).
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6.1.1 Monte-Carlo method

The Monte-Carlo method that we will present is a particle method. Thus, this numerical method is based
on the principle which consists in approaching the distribution fi(t, x, v) with

fi(t, x, v) '
Ni∑
k=1

ωki δ(x− xki (t))δ(v − vki (t)) (130)

for i ∈ {1, 2}. From an heuristic point of view, (130) means that distribution f1 (respectively f2) in dust
particles (respectively gas molecules) is approached by a number N1 (respectively N2) of macro-dust (re-
spectively macro-molecule) characterized by positions (xk1)k∈{1,...,N1}, velocities (vk1 )k∈{1,...,N1} and weight
factors (ωk1 )k∈{1,...,N1} (respectively (xk2)k∈{1,...,N2}, (vk2 )k∈{1,...,N2} and (ωk2 )k∈{1,...,N2}). We take the same
weight factor ωi (i ∈ {1, 2}) for every macro-dust (i = 1) and for every macro-molecule (i = 2), that is to
say ωki = ωi for every (i, k) ∈ {1, 2} × {1 . . . Ni}. We solve (37) with a splitting technique adapted to a
Boltzmann type equation [22, 23]. This technique consists, firstly, in solving the transport equation

∂f1

∂t
+ v · ∇xf1 = 0, (a)

∂f2

∂t
+ v · ∇xf2 = 0, (b)

(131)

secondly, in solving the spacially homogeneous equation

∂f2

∂t
= Q(f1, f2) (132)

and, thirdly, in solving the spacially homogeneous equations
∂f1

∂t
= R1(f1, f2), (a)

∂f2

∂t
= R2(f1, f2). (b)

(133)

Equations (131) are solved like in deterministic particle methods, that is to say particles are transported
along characteristic lines and positions xki are modified. Equations (132) and (133) are solved locally in each
spacial mesh since collision operators have an effect only on velocities of particles and not on their positions.
In each mesh c of volume Vc, f1 and f2 are approched by

fi(t, v) ' ωi
Vc

Nic∑
k=1

δ(v − vki (t)) (134)

where N1c (respectively N2c) is the number of macro-dust (respectively macro-molecule) in the mesh c.
Moreover, we can define the local density of each specie in the mesh c of volum Vc by

nic = Nic ωi
Vc

(135)

for i ∈ {1, 2}. The resolution of equations (132) and (133) during a time step ∆t consists in determining the
new velocities (vk1 (t+∆t))k∈{1,··· ,N1} and (vk2 (t+∆t))k∈{1,··· ,N2}. The numerical resolution of equation (132)
is made with the Bird’s method with no time-counter [5, 4] ((132) is a classical homogeneous Boltzmann
equation). Nevertheless, we cannot use the Bird’s method to solve equations (133) because α◦ := n◦1/n

◦
2 � 1

(see Hypothesis 4). Indeed, if we considere a macro-dust of velocity v1 and a macro-molecule of velocity v2,
the probability that the first one collides the second one during the time ∆t is given by

p12(v1, v2) = ω2

Vc
∆t π(r1 + r2)2|v1 − v2|
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whereas the probability that the second one collides the first one during the time ∆t is given by

p21(v1, v2) = ω1

Vc
∆t π(r1 + r2)2|v1 − v2|.

Then, the use of the Bird’s method – which is characterized by the fact that p12(v1, v2) = p21(v1, v2) (the
Bird’s method is a symetrical method [34]) – imposes to take the same weight factor ω1 and ω2 which implies
that

N1c

N2c
= n1c

n2c

by using (135). As a consequence, the estimate α◦ � 1 implies that N1c � N2c and then we can either choose
a reasonable number N2c of macro-molecules with respect to the CPU time which implies a low number of
macro-dust N1c and then a poor accuracy, or choose a reasonable number of macro-dust N1c with respect to
accuracy and end up to a large number of macro-molecules N2c which implies a huge CPU time.

Thus, if we want to have O(N1c) = O(N2c), we have to use a non-symetrical method. Here, we adapt the
Nanbu’s method for which equations (133)(a) and (133)(b) are solved separatly.

The Nanbu’s algorithm for the simulation of R1(f1, f2) consists in two steps:

• First step: Selection of pairs of collision. Instead of computing the probability of collision
p12(v1, v2) for every N1cN2c possible pairs composed of a macro-dust of velocity v1 and of a macro-
molecule of velocity v2, we use the fictive particle method. It consists in selecting

N1cN2c
ω2

Vc
∆t π(r1 + r2)2 |vrel|max (136)

pairs composed of a macro-dust and of a macro-molecule with a uniform law on {1, . . . , N1c} ×
{1, . . . , N2c}. In (136), |vrel|max is an upper bound of the modulus of the relative velocity between
macro-dusts and macro-molecules. For each selected pair, we determine if the collision occurs with the
probability

pf (v1, v2) = |v1 − v2|
|vrel|max

where v1 and v2 are respectively the velocity of the macro-dust and of the macro-molecule. We select
for that a real p ∈ [0, 1] with a uniform law ; if p ≤ pf then the velocity v1 of the macro-dust is modified
but the velocity v2 of the macro-molecule remains the same ; if p > pf the velocities v1 and v2 remain
the same.

• Second step: Determination of the post-collisional velocity. The post-collisional velocity v′1
of macro-dust is determined following the diffuse reflexion mechanism described in section 3.1: see
Hypothesis 7. More precisely, for each collision between a macro-dust of velocity v1 and a macro-
molecule of velocity v2, firstly, we have to compute n randomly in the half sphere delimited by n · (v1−
v2) ≥ 0. Secondly, a vector w is selected with the law hn given by (45). Finally, the post-collisional
velocity v′1 is given by

v′1 = 1
1 + ε

(v1 + εv2 − εw). (137)

We refere to [11] for further details.

The algorithm for the simulation of the operator R2(f1, f2) is identical (we just have to permut the subscripts 1
and 2, and to replace ε with 1/ε in (137)). The rigourous justification of this Nanbu’s method for the resolution
of system (133) with operators (127) and (128) should be possible like in [40]; this could be the subject of
a forthcoming work. Moreover, the validity of this method has been studied in [10] for function ς(v, n) in
operators (127) and (128) given by ς(v, n) = C (where C is a positive constant) instead of (129), knowing that
in this particular case, it is possible to establish explicit formulae for the evolution of macroscopic velocities.
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6.1.2 A 3D simulation in a cubic box

We present in this subsection an example of simulation of system (37) in a cubic geometry in a situation of a
LOVA during a time T . Initially, dust particles are lying on a thin layer of width a in the bottom of the box
with the uniform density n1 and there are no gas molecules inside the box. Then, a flow of molecules enters
into the box through a square hole following a maxwellian distribution with a density n2, a temperature
T ◦ and a macroscopic velocity Vm in the normal direction of the hole. The boundary conditions are diffuse
reflexion except on the hole (for which the boundary condition is an emissive condition) and on the upper
side of the box (where the boundary condition is an absorption condition).

Remark 2 This last boundary condition enables to model a larger vacuum vessel than the box itself but to
focus on the specific part of it where occurs a breach in the wall.

We refere to [42] for the management of the boundary conditions. Dust particles are tungsten and the gas
is composed of nitrogen molecules. The width of the box is noted L and the one of the hole is noted l.
Geometrical parameters are given by 

L = 10−2 m,

l = 5 · 10−4 m,

a = 5 · 10−4 m.

(138)

Remark 3 These rather small dimensions compared to the real ITER dimensions or to some representative
work-up have been willfully chosen as so in order to test the initial Boltzmann-Boltzmann model which is
much more expensive than the approximate Vlasov-Boltzmann model.

Physical parameters are given by 

r1 = 5 · 10−8 m,

r2 = 10−10 m,

n1 = 1015 m−3,

n2 = 1021 m−3,

T ◦ = 300 K,

Tsurf = 300 K,

Vm = 300 m · s−1

(139)

and computation parameters are given by
number of meshes = 8000,

number of processors = 64,

final time of simulation = 45 · 10−3 s.

(140)

The final time T of the simulation has been obtained after a CPU time of simulation of 24 × 3600 s. One
can observe on figure 2 that macro-dusts (represented by green spheres) are moved by the air ingress (some
of the macro-molecules are represented by red spheres).

6.1.3 Limitation of the Boltzmann-Boltzmann model

The time of computation of Boltzmann-Boltzmann system (37) depends mainly on the number of collisions
computed for the simulation of collision operators R1(f1, f2), R2(f1, f2) and Q(f2, f2) at each time step. The
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t=1 ms t=24 ms

t=27 ms t=36 ms

t=45 ms

Figure 2: LOVA type scenario in an open cubic box modeled with Boltzmann-Boltzmann system (37)
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average number of collisions computed for the simulation of R1(f1, f2), R2(f1, f2) and Q(f2, f2) during a time
τ in a mesh c is given by 

NR1(τ) = N1cN2c
ω2

Vc
πr2

1 < V rel12 > τ, (a)

NR2(τ) = N1cN2c
ω1

Vc
πr2

1 < V rel21 > τ, (b)

NQ(τ) = 1
2N

2
2c
ω2

Vc
4πr2

2 < V rel22 > τ. (c)

(141)

Since we have ωi = nicVc/Nic (see (135)), < V2 >=< V rel22 > /
√

2 and < V2 >'< V rel12 >=< V rel21 > (see
section 5.1), we get

NR1(τ)
NR2(τ)

= N1c

N2c
· n2c

n1c

and
NR1(τ)
NQ(τ)

' 1
2
√

2
· N1c

N2c
·
(
r1

r2

)2
.

If we choose N1c and N2c such that N1c ' N2c, thanks to Hypothesis 2 and 4, we obtain

NR1(τ)� NR2(τ)

and
NR1(τ)� NQ(τ).

This brings into light that the simulation of the operator R1(f1, f2) is much costly than the other ones. Let
us consider for example the simulation of equations (132) and (133) in an unique cell c with the following
physical parameters 

r1 = 10−6 m,

r2 = 2 · 10−10 m,

n1c = 1014 m−3,

n2c = 1021 m−3,

T ◦ = 300K.

(142)

Under these conditions and if we choose N1c ' N2c ' 103, the average numbers of collision during, for
example, the time τ = 10−3 s are 

NR1(τ) ' 3 · 1012,

NR2(τ) ' 3 · 105,

NQ(τ) ' 4 · 105.

We estimate that the time of computation of this example on a single-chip computer is of about 4, 5·106 s that
is to say 52 days. We conclude that the CPU time of the simulation of operator R1(f1, f2) could be extremely
costly when the radius r1 of dust particles becomes too large, even with massively parallel computation.

The limitation of Boltzmann-Boltzmann system (37) can also be seen from the point of view of the time
step ∆t. Indeed, it is possible to establish (see [11] for further details) that the Nanbu’s method requires the
condition on the time step

∆t ≤ min (t22, t12, t21) (143)
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where t22, t12 and t21 are defined by (111). Morever, the resolution of transport equations (131) requires the
accuracy condition on the time step

∆t . min
(

∆x
< V1 >

,
∆x

< V2 >

)
(144)

where ∆x is the length of meshes and where < V1 > and < V2 > are defined by (81). Finally, the condition
on the time step is given by

∆t ≤ min
(
t22, t12, t21,

∆x
< V1 >

,
∆x

< V2 >

)
. (145)

Under physical conditions (142), we get 
t22 ' 2 · 10−6 s,

t12 ' 6 · 10−13 s,

t21 ' 6 · 10−6 s.

And, with the choice ∆x = 10−3 m which is, for physical parameters (142), the order of magnitude of the
mean free path λ22 given by (26)(b) (since Hypothesis 9 is satisfied with the choice (142), λ22 is an appropriate
characteristic length scale: see section 5.6), we get

∆x
< V1 >

' 30 s,

∆x
< V2 >

' 2 · 10−5 s.

Then, conditions (143) and (144) imply that

∆t ≤ t12 where t12 ' 6 · 10−13 s (146)

which is clearly too restrictive.

6.2 The Vlasov-Boltzmann model
We are now interested in the numerical method used to discretize the Vlasov-Boltzmann model (105) and
the more accurate Vlasov-Boltzmann model (106) which, under Hypothesis 11, are respectively given by

∂f1

∂t
+ v · ∇xf1 + Υa(f2) · ∇v (f1) = 0, (a)

∂f2

∂t
+ v · ∇xf2 = R2(f1, f2) +Q(f2, f2) (b)

(147)

with
Υa(f2)(t, x) = π ε r2

1

ˆ
R3
f2(t, x, v2)

[
|v2|+

√
π

3β

]
v2dv2 (148)

and by 
∂f1

∂t
+ v · ∇xf1 +∇v · [Υb(f2)f1] = 0, (a)

∂f2

∂t
+ v · ∇xf2 = R2(f1, f2) +Q(f2, f2) (b)

(149)

with
Υb(f2)(t, x, v1) = π ε r2

1

ˆ
R3
f2(t, x, v2)

[
|v2 − v1|+

√
π

3β

]
(v2 − v1)dv2 (150)
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(we recall that β :=
√

m2
2kBTsurf

, see (46), Tsurf being the surface temperature of dust particles supposed to be
constant for the sake of simplicity). We propose in section 6.2.2 spatially homogeneous simulations to validate
Vlasov-Boltzmann models (147) and (149). And, we describe in section 6.2.3 a 3D numerical simulation
obtained with Vlasov-Boltzmann system (149). This 3D simulation describes a LOVA type accident in a
torus domain whose atmosphere is initially rarefied. We underline that this 3D test-case would be very
expensive from a computational cost point of view if it was studied with the Boltzmann-Boltzmann system
(37) instead of Vlasov-Boltzmann system (147) or (149).

6.2.1 PIC method coupled to Monte-Carlo method

Vlasov-Boltzmann system (147) (or (149)) is solved thanks to the coupling of a Particle-In-Cell (PIC) method
for (147)(a) (or (149)(a)) and the Monte-Carlo method presented in section 6.1.1 for (147)(b) (or (149)(b)).
Thus, the distribution in dust particles f1 is still approached with

f1(t, x, v) ' ω1

N1∑
k=1

δ(x− xk1(t))δ(v − vk1 (t)).

Here, position xk1 and velocity vk1 of the macro-dusts are solutions of
dxk1
dt

= vk1 , (a)

dvk1
dt

= Υ(f2)(t, xk1 , vk1 ) (b)

(151)

where Υ(f2) is given by (148) or (150). The term m1Υ(f2) models a drag force applied to a dust particle
induced by collisions with gas molecules. This drag force – which is not deduced from experimental laws
but from the asymptotic expansion proposed in section 4 – is also valid when the gas molecules are not at
thermodynamical equilibrium. The term Υ(f2)(t, xk1 , vk1 ) is approched at each time tn thanks to the local
approximation of the density f2 in each mesh c

f2(t, x, v) ' ω2

Vc

N2c∑
j=1

δ(v − vj2(t))1{x∈c}. (152)

Then, system (151) is solved at each time step thanks to the following numerical scheme:

For all k ∈ {1, . . . , N1c}: 
Xk,n+1

1 −Xk,n
1

∆t = V k,n1 ,

V k,n+1
1 − V k,n1

∆t = Υc,n(V k,n1 )

(153)

where Υc,n(V k,n1 ) is a local approximation of Υ(f2)(tn, xk1 , vk1 ) given by

Υc,n
a = π ε r2

1
ω2

Vc

N2c∑
j=1

[∣∣∣V j,n2

∣∣∣+
√
π

3β

]
V j,n2 (154)

when Υ(f2) is defined with (148), and by

Υc,n
b (V k,n1 ) = π ε r2

1
ω2

Vc

N2c∑
j=1

[∣∣∣V j,n2 − V k,n1

∣∣∣+
√
π

3β

](
V j,n2 − V k,n1

)
(155)

when Υ(f2) is defined with (150). Let us remark that in the case of Υ = Υb, the numerical resolution of
(149)(a) requires the computation of the acceleration term Υc,n

b (V k,n1 ) given by (155) for each macro-dust at
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each time step, whereas in the case of Υ = Υa, the acceleration term Υc,n
a given by (154) is the same for all

macro-dust in a given mesh c. Then, in each mesh c, the computational cost is in O(N2c) in the case of (154)
and in O(N1cN2c) in the case of (155).

The validity of this PIC method has been studied in [10] for the Vlasov-Boltzmann model obtained with
the function ς(v, n) = C instead of (129) in operators (127) and (128).

Since we do not have to simulate the operator R1(f1, f2) any more, the condition on the time step is here
given by

∆t . min
(
t22, t21,

∆x
< V1 >

,
∆x

< V2 >

)
(156)

which is much more easier to achieve than condition (146). Let us note that under Hypothesis 8 and 9, we
have t22 ' t21 and λ22 ' λ21 (see (113) and (116)), and we can choose ∆x = O(λ22) (see section 5.6). As a
consequence, we obtain O

(
∆x
<V1>

)
= t22/

√
ε and O

(
∆x
<V2>

)
= t22 (by also using the fact that λij =< Vi > tij

and that < V1 > / < V2 >'
√
ε). Thus, in our context, (156) is equivalent to

∆t . t22. (157)

6.2.2 Comparison with the Boltzmann-Boltzmann model in an homogeneous context

We compare numerical simulations of Boltzmann-Boltzmann system (37) and of Vlasov-Boltzmann system
(147) or (149) through the time evolution of macroscopic velocities and kinetic temperatures. We also compare
Vlasov-Boltzmann systems obtained with Υ = Υa (see (148)) and with Υ = Υb (see (150)). At last, CPU
times are compared. Let us note that these numerical simulations are obtained in an homogeneous context
in order to get rid of the influence of boundary conditions.

Macroscopic velocities:

Figure 3 presents the evolution of macroscopic velocities defined by (16) obtained, firstly, with the nu-
merical resolution of the spatially homogeneous system

∂f1

∂t
= R1(f1, f2), (a)

∂f2

∂t
= R2(f1, f2) +Q(f2, f2) (b)

(158)

and, secondly, with the numerical resolution of the spatially homogeneous system
∂f1

∂t
+∇v · [Υ(f2)f1] = 0, (a)

∂f2

∂t
= R2(f1, f2) +Q(f2, f2) (b)

(159)

where Υ(f2) = Υb(f2) is given by (150), the initial distributions being given by
f1,in(v) = n1

(
2πkBT1,in

m1(r1)

)− 3
2

exp
(
−m1(r1) |v − u1,in|2

2kBT1,in

)
,

f2,in(v) = n2

(
2πkBT2,in

m2

)− 3
2

exp
(
−m2 |v − u2,in|2

2kBT2,in

) (160)
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where 

u1,in = (0, 0, 0) m · s−1,

u2,in = (300, 300, 300) m · s−1,

T1,in = 100K,

T2,in = 400K

(161)

and 
r1 = 5 · 10−9 m,

n1 = 1015 m−3,

n2 = 1020 m−3.

(162)

Moreover, we take Tsurf = 300 K for the surface temperature of dust particles. Physical parameters (162)
are chosen in order to allow to take a reasonable time step ∆t for the resolution of system (158) with the
numerical method presented in section 6.1.1: indeed, condition (143) gives ∆t . 2 · 10−7 s. Moreover,
condition (157) gives ∆t . 2 · 10−5 s for the resolution of system (159) with the numerical method presented
in section 6.2.1. Then, we chose respectively ∆t = 10−7 s for the resolution of system (158) and ∆t = 10−5 s
for the resolution of system (159). Moreover, we chose (N1, N2) = (5 · 102, 5 · 103) for the resolution of both
systems (Nk is the number of macro-particles which approaches fk through (134)).

Figure 3: Evolution of the component on Ox of macroscopic velocities obtained from the numerical resolution
of systems (158) and (159) with Υ = Υb

One can observe on figure 3 a similar evolution of components on Ox of macroscopic velocities – noted ux1 and
ux2 – for the two systems. Moreover, it is quite obvious that these velocities converge to the value 94, 5 m·s−1

which corresponds to

ux∞ =
n1u

x
1,in + εn2u

x
2,in

n1 + εn2
.

This behaviour of macroscopic velocities corresponds to what could be expected for Boltzmann-Boltzmann
system (37). Indeed, the following conservation of global momentum

n1u1(t) + n2εu2(t) = n1u1,in + n2εu2,in
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can be obtained formally from equations (42) by using weak formulations (127) and (128) [11].

We now compare the evolution between macroscopic velocities obtained from the numerical resolution of
system (159) with Υ = Υa on one side and with Υ = Υb on the other side, with initial conditions (160)(161)
but with the physical parameters 

r1 = 5 · 10−8 m,

n1 = 1014 m−3,

n2 = 1021 m−3

instead of (162). We choose again Tsurf = 300 K. Moreover, the numerical parameters are given by
∆t = 10−6 s,

N1 = 5 · 102,

N2 = 5 · 103.

One can observe on figure 4 that the evolutions of these macroscopic velocities remain similar during a short

Figure 4: Evolution of the component on Ox of macroscopic velocities obtained from the numerical resolution
of system (159) with Υ = Υb and with Υ = Υa

time of about 5 ms but are different for long times. This can be interpreted in the following way: Whereas
the global momentum n1u1 + n2εu2 is conserved for Boltzmann-Boltzmann system (37) and approximately
conserved for Vlasov-Boltzmann system (159) with Υ = Υb given by (150), it is not the case for system (159)
with Υ = Υa given by (148). Since the expression of Υa(f2) is obtained according to the hypothesis that the
velocities of dust particles are of the order of magnitude of V ◦1 and that the velocities of gas molecules are of
the order of magnitude of V ◦2 with V ◦1 /V ◦2 =

√
ε (see (81) and (82)), we can consequently deduce that this

velocity scaling hypothesis is only true during a short time (more precisely during a time of some ms in the
present case).

Kinetic temperatures:
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We present the comparison between the kinetic temperatures defined by (15) obtained from the numerical
resolution of systems (158) and (159) (with Υ = Υb) with inital conditions (160)(161)(162). We choose again

Figure 5: Evolution of the kinetic temperatures obtained from numerical resolution of systems (158) and (159)
with Υ = Υb

Tsurf = 300 K. One can observe on figure 5 that the kinetic temperatures Tf1 and Tf2 obtained from the
numerical resolution of Boltzmann-Boltzmann system (158) converge to the surface temperature Tsurf of dust
particles. Moreover, the kinetic temperature Tf2 obtained from the numerical resolution of Vlasov-Boltzmann
system (159) with Υ = Υb has the same behaviour as the one of the kinetic temperature Tf2 obtained from
the numerical resolution of Boltzmann-Boltzmann system (158). However, one can observe that Tf1 obtained
from the numerical resolution of Vlasov-Boltzmann system (159) with Υ = Υb converges to 0 and, thus, is
wrong (we can make the same observation with Υ = Υa). We discuss this important point in section 6.2.5.

CPU times:

We now consider the initial distributions f1,in and f2,in given by (160)(161) but with the physical param-
eters 

r1 = 2 · 10−8 m,

n1 = 5 · 1013 m−3,

n2 = 1020 m−3

(163)

instead of (162). We choose again Tsurf = 300 K and we take (N1, N2) = (102, 104). Because of conditions
(143) and (157), the time step ∆t is taken equal to ∆t = 10−8 s in the case of Boltzmann-Boltzmann
system (158) and equal to ∆t = 2 · 10−5 s in the case of Vlasov-Boltzmann system (159). During the time
τ = 10−1 s (which corresponds to the characteristic time of relaxation of velocities), the average numbers
(141) of collisions simulated for the resolution of the kinetic operators are of the order of

NR1(τ) = 1, 4 · 109,

NR2(τ) = 7 · 104,

NQ(τ) = 4, 2 · 107.
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We see on Table 1 that the CPU time on a single-chip computer of the simulation of Boltzmann-Boltzmann
system (158) during the time τ is of about 104 s, the one of system (159) with Υ = Υb during the time τ is
of about 500 s and the one of Vlasov-Boltzmann system (159) with Υ = Υa during the time τ is of about
50 s.

Model CPU time
Boltzmann-Boltzmann model (158) 11410

Vlasov-Boltzmann model (159) with Υ = Υb 589
Vlasov-Boltzmann model (159) with Υ = Υa 45

Table 1: CPU time of simulations of systems (158) and (159) with parameters (163)

6.2.3 A 3D simulation in a cubic box

We present on figure 6 the LOVA type scenario already studied in section 6.1.2 with Boltzmann-Boltzmann
system (37) (see figure 2) but, now, obtained with Vlasov-Boltzmann system (149) (Υ = Υb is given by (150)).
The final time of the simulation is equal to 247 ms. On figure 6, the macro-molecules are not represented
and the number of macro-dusts represented is more important than on figure 2. Let us underline that we
are able to simulate this LOVA type scenario with a final time greater than the one of 45 ms simulated in
section 6.1.2 with Boltzmann-Boltzmann system (37) because Vlasov-Boltzmann system (149) needs far less
CPU time.

6.2.4 A 3D simulation in a torus domain

We present on figure 7 a LOVA type scenario for which the domain is a cylindrical torus whose geometry
is similar to the one used in [43]. There is no absorption condition on any side which means that dust
particles and gas molecules (which are not represented in this visualization) cannot leave the domain. As a
consequence, the density of gas molecules inside the torus increases very quickly. The cylindrical torus has
the dimensions 

height = 10−1 m,

interior radius = 2, 5 · 10−2 m,

outer radius = 5 · 10−2 m,

volume = 5, 89 · 10−4 m3.

(164)

Numerical parameters are given by
number of meshes = 14400,

number of processors = 480,

length of simulation = 1, 1 ms

(165)

and physical parameters are given by (139). Because of the dimensions of the cylinder and the increasing
density in gas molecules, the cost of computation is higher in this example, and the length of simulation is
lower than in the example of paragraph 6.2.3 for the same CPU time (24× 3600 s).

6.2.5 Justification of the Vlasov-Boltzmann model

The previous studies lead to the following conclusions:

• The CPU cost of the numerical resolution of Vlasov-Boltzmann system (147) or (149) is, in the context
we consider, lower than the one of Boltzmann-Boltzmann system (37). For example, on a spatially
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t=1 ms t=27 ms

t=45 ms t=100 ms

t=150 ms t=247 ms

Figure 6: LOVA type scenario in an open cubic box modeled with Vlasov-Boltzmann system (149) (Υ = Υb)
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t= 0 ms t= 0, 2 ms

t= 0, 4 ms t= 0, 6 ms

t= 0, 8 ms t= 1, 1 ms

Figure 7: LOVA type scenario in a torus modeled with Vlasov-Boltzmann system (149) (Υ = Υb)
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homogeneous context, the examples presented on Table 1 show that the numerical resolution of Vlasov-
Boltzmann system with Υ = Υa and Υ = Υb are respectively about 200 and 20 time less costly (with the
numerical methods presented in sections 6.1.1 and 6.2.1). This comes from the fact that the resolution
of the Vlasov equations (105)(a) or (106)(a) is in this situation lower than the resolution of the equation
(37)(a). Moreover, the cost of the resolution of systems (105) and (106) does not depend very much of
the radius of particles, whereas the cost the resolution of equation (37)(a) increases quadratically with
the radius of particles.

• The numerical resolution of Vlasov-Boltzmann system (147) is about 10 time less costly than the one
of Vlasov-Boltzmann system (149) (at least for the homogeneous test-case studied in section 6.2.2: see
Table 1).

• The macroscopic velocities u1 and u2 obtained with spatially homogeneous Vlasov-Boltzmann system
(159) with Υ = Υb given by (150) are close to those obtained with spatially homogeneous Boltzmann-
Boltzmann system (158) and, thus, are correct. Nevertheless, these macroscopic velocities obtained
with spatially homogeneous Vlasov-Boltzmann system (159) with Υ = Υa given by (148) instead of
Υ = Υb are correct only for short times. Moreover, the kinetic temperature Tf1 obtained with spatially
homogeneous Vlasov-Boltzmann system (159) with Υ = Υa or Υ = Υb is not equal to the one obtained
with spatially homogeneous Boltzmann-Boltzmann system (158) and, thus, is not correct. This may be
explained by the fact that the asymptotic expansion made in the section 4 is only at the first order in
ε. Thus, we may think that Vlasov-Boltzmann system (147) (Υ = Υa) or (149) (Υ = Υb) is not a good
approximation of Boltzmann-Boltzmann system (37), and that a asymptotic expansion of R1(f1, f2) at
the second order in ε could be necessary. Nevertheless, since we are only interested in the mobilization of
dust particles at the beginning of a LOVA type scenario and since this mobilization is a direct function
of the macroscopic velocity u1 of dust particles, it is legitimate to think that Vlasov-Boltzmann system
(149) (Υ = Υb) and even Vlasov-Boltzmann system (149) (Υ = Υa) are enough accurate (at least for
a first study) to evaluate if dust particles are or are not mobilized for a given LOVA type scenario.

All these remarks justify the derivation of the Vlasov-Boltzmann system to model the beginning of a
LOVA type scenario.

7 Conclusion
A discussion about characteristic time and length scales shows that the interaction between dust particles and
gas molecules at the beginning of a Loss Of Vacuum Accident (LOVA) in the thermonuclear reactor ITER has
to be modeled with a kinetic model. Thus, we have proposed a new Boltzmann type model to describe the
evolution of macroscopic particles, as dust particles, in a rarefied atmosphere. This Boltzmann type model
consists in a coupling of a Boltzmann type operator R1(f1, f2) – which describes the dust-molecule collisions
from the point of view of dust particles – with another Boltzmann type operator R2(f1, f2) – which describes
the dust-molecule collisions from the point of view of gas molecules –. This Boltzmann-Boltzmann model
takes into account the macroscopic character of dust particles compared to gas molecules through a diffuse
reflexion mechanism on the surface of dust particles in the kinematic relations of dust-molecule collisions. As
a consequence, the Boltzmann type operators R1(f1, f2) and R2(f1, f2) are not classical Boltzmann operators.

However, the numerical simulation with a Monte-Carlo method of the operator R1(f1, f2) is too expensive
from a computational cost point of view in the context of a LOVA when the typical size of dust particles
is too large. Thus, we have proposed to replace R1(f1, f2) with a Vlasov operator obtained from R1(f1, f2)
through a formal asymptotic expansion according to the ratio of mass between a gas molecule and a dust
particle. As a consequence, the Boltzmann-Boltzmann model is replaced by a Vlasov-Boltzmann model.
Let us underline that the Vlasov operator allows to define a drag force model applied to dust particles and
induced by collisions with gas molecules. This drag force model – which is not deduced from experimental
laws – is also valid when the gas molecules are not at thermodynamical equilibrium.

Numerical methods are proposed for the resolution of the Boltzmann-Boltzmann and Vlasov-Boltzmann
models, and are applied for 3D numerical simulations of LOVA type scenarii for which the domain is a cubic
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box or a cylindrical torus: these 3D numerical simulations show the mobilization of dust particles induced by
the gas molecules ingress. Moreover, spatially homogeneous numerical results are compared from the point
of view of macroscopic velocities, kinetic temperatures and CPU time. These numerical studies validate
and justify (from a computational cost point of view) the use of the Vlasov-Boltzmann model instead of the
Boltzmann-Boltzmann model.

A validation of the Boltzmann-Boltzmann and Vlasov-Boltzmann models for a LOVA type scenario could
be obtained from an experimental point of view thanks to experimental visualizations which should be lead.
However, even if a fluid-fluid or a fluid-kinetic modelling like in [43] seems to be inadapted at the beginning
of a LOVA, it should be necessary to use this type of modelling after some times (depending of the size of
the vessel). Indeed, the density of the gas increases rapidly in a closed geometry. Then, the computational
cost of the simulation of the Vlasov-Boltzmann model becomes too important because of the large amount
of collisions between gas molecules. Thus, an interesting prospect could be to couple the Vlasov-Boltzmann
model with its fluid limit by using an approach similar to those proposed, for example, in [20] or [15].
Moreover, another interesting prospect is to model the interaction between the dust particles and the wall of
the vessel. We propose in [11] a model of mobilization of dust particles which takes into account a dust-wall
interaction. This model could be investigated from a numerical point of view in a forthcoming work.

At last, we underline that the Boltzmann-Boltzmann and Vlasov-Boltzmann models proposed in this
work could also be used to model, as in [45], the interaction between dust particles coming from an intensive
volcanic plume and a rarefied atmosphere as in the case of volcanoes on Jupiter’s moon Io. The Boltzmann-
Boltzmann and Vlasov-Boltzmann models could be more accurate since, in [45], the macroscopic character of
dust particles is not taken into account in the kinematic relations of the kinetic model and since the feedback
of dust particles on the gas molecules is not taken into account.
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