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C.P. 6128, Succ. Centre-ville, Montréal, (QC) H3C 3J7, Canada,
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Abstract

A new version of the conditional symmetry method is used to obtain rank-k solutions
expressed in terms of Riemann invariants of the isentropic compressible ideal fluid flow in
(3+1) dimensions. A detailed description of the procedure for constructing bounded solutions
in terms of elliptic Weierstrass ℘-function is presented.

1 Conditional symmetry method for the isentropic fluid flow

In this section we present a brief description of a procedure detailed in [4] for constructing rank-k
solutions in terms of Riemann invariants of a compressible ideal fluid in (3 + 1) dimensions

uα
t +

4∑

β=1

3∑

i=1

Aiα

β(u)uβ
i = 0, α = 1, 2, 3, 4, (1.1)

where A1,A2 and A3 are 4× 4 real-valued matrix functions of the form

Ai =




ui δi1κ
−1a δi2κ

−1a δi3κ
−1a

δi1κa ui 0 0
δi2κa 0 ui 0
δi3κa 0 0 ui


 , i = 1, 2, 3.

The independent and dependent variables are denoted by x = (t, x1, x2, x3) ∈ X ⊂ R4 and u =
(a, ~u) ∈ U ⊂ R4, respectively, and ui stands for the first order partial derivatives of u, i.e. uα

i ≡
∂uα/∂xi. Here a stands for the velocity of sound in the medium and ~u is the velocity vector field
of the flow. Throughout this paper, we adopt the summation convention over repeated lower and
upper indices, except in the case in which one index is taken in brackets. The purpose of this
article is to obtain rank-k solutions of system (1.1) expressible in terms of Riemann invariants. To
this end, we seek solutions u(x) of (1.1) defined implicitly by the following set of relations between
the variables uα, rA and xi

u = f(r1(x, u), . . . , rk(x, u)), rA(x, u) = λA
i (u)xi, ker (λA

0 I4 +Ai(u)λA
i ) 6= 0, (1.2)
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for some function f : Rk → R4 and A = 1, . . . , k ≤ 3. Such a solution is called a rank-k solution if
rank(uα

i ) = k. The functions rA(x, u) are called the Riemann invariants associated with the wave
vectors λA = (λA

0 , ~λA) ∈ R4 of the system (1.1). Here, ~λA = (λA
1 , λA

2 , λA
3 ) denotes a direction of

wave propagation and the eigenvalue λA
0 is a phase velocity of the considered wave. Two types of

admissible wave vectors for the isentropic equations (1.1) are obtained by solving the dispersion
relation

det (λ0(u)I4 + λi(u)Ai(u)) = [(λ0 + ~u · ~λ)2 − a2~λ2](λ0 + ~u · ~λ)2 = 0. (1.3)

They are called the entropic (E) and acoustic (S) wave vectors and are defined by

i) λE = (εa + ~u · ~e,−~e), ε = ±1, ii) λS = (det (~u,~e, ~m),−~e× ~m), |~e| 2 = 1, (1.4)

where ~e and ~m are unit and arbitrary vectors, respectively.
The construction of rank-k solutions through the conditional symmetry method is achieved by

considering an overdetermined system, consisting of the original system (1.1) in p independent
variables together with a set of compatible first order differential constraints (DCs),

ξi
a(u)uα

i = 0, λA
i ξi

a = 0, a = 1, . . . , p− k, (1.5)

for which a symmetry criterion is automatically satisfied. Under the above circumstances, the
following result holds.

Proposition 1. A nondegenerate quasilinear hyperbolic system of first order PDEs (1.1) in p
independent and q dependent variables admits a (p− k)-dimensional conditional symmetry algebra
L if and only if there exists a set of (p− k) linearly independent vector fields

Xa = ξi
a(u)

∂

∂xi
, a = 1, . . . , p− k, ker

(Ai(u)λA
i

) 6= 0, λA
i ξi

a = 0, A = 1, . . . , k,

which satisfy on some neighborhood of (x0, u0) ∈ X × U the trace conditions

i) tr
(
Aµ ∂f

∂r
λ

)
= 0, ii) tr

(
Aµ ∂f

∂r
η(a1

∂f

∂r
. . . ηas)

∂f

∂r
λ

)
= 0, µ = 1, . . . , l, (1.6)

where

λ = (λA
i ) ∈ Rk×p, r = (r1, . . . , rk) ∈ Rk,

∂f

∂r
=

(
∂fα

∂rA

)
∈ Rq×k,

ηas =
(

∂λA
as

∂uα

)
∈ Rk×q, s = 1, . . . , k − 1,

Iq is the q by q identity matrix and (a1, . . . , as) denotes the symmetrization over all indices in the
bracket. Solutions of the system which are invariant under the Lie algebra L are precisely rank-k
solutions of the form (1.2).

The proof of this proposition has been explained in detail in [4]. Note that these symmetries
are not symmetries of the original system, but they can be used to construct solutions of the
overdetermined system composed of (1.1) and (1.5).

In general, the overdetermined system composed of (1.6 i) and (1.6 ii) is nonlinear and cannot
always be solved in a closed form. Nevertheless, particular rank-k solutions for many physically
interesting systems of PDEs are well worth pursuing. These particular solutions of (1.6 i) and (1.6
ii) can be obtained by assuming that the function f is in the form of a rational function, which
may also be interpreted as a truncated Laurent series in the variables rA. This method can work
only for equations having the Painlevé property [2]. Consequently, these equations can be very
often integrated in terms of known functions.
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2 Invariant rank-k solutions with time-dependent sound ve-
locity

Let us now consider the isentropic flow of an ideal and compressible fluid in the case when the
sound velocity depends on the time t only. The system (1.1) in (k + 1) dimensions becomes

~ut + (~u · ∇)~u = 0,

at + κ−1a div~u = 0, axj = 0, a > 0, κ = 2(γ − 1)−1, j = 1, . . . , k.
(2.1)

It was shown [4] that our approach enables us to construct general rank-k solutions of (2.1). The
change of coordinates on Rk+1 × Rk+1

t̄ = t, x̄1 = x1 − u1t, . . . x̄k = xk − ukt, ā = a, ū = u ∈ Rk.

transforms (2.1) into the system

∂ū

∂t̄
= 0,

∂

∂t̄
ln ā + κ−1tr

(
(Ik + t̄Dū(x̄))−1Dū(x̄)

)
= 0,

∂ā

∂x̄
= 0,

where Dū(x̄) ∈ Rk×k is the Jacobian matrix and x̄ = (x̄1, . . . , x̄k) ∈ Rk.
It is easy to demonstrate that, in the original coordinates (x, u) ∈ Rp ×Rq, the general rank-k

solution of (2.1) takes the form

u = f(x1 − u1t, . . . , xk − ukt), a(t) = A1(1 + p1t + . . . + pktk)−1/κ,

where it is required that the coefficients pn, n = 1, . . . , k, of the characteristic polynomial

Df(x̄)k −
k∑

n=1

pn(Df(x̄))(Df(x̄))k−n = 0

of the Jacobian matrix Df(x̄) be constant.
For the particular case when k = 2, the general rank-2 solution of (2.1) invariant under the

vector field

X =
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

is implicitly defined by

u(t, x, y) = C1(x− ut) +
∂h

∂r2
(x− ut, y − vt), v(t, x, y) = C1(y − vt)− ∂h

∂r1
(x− ut, y − vt),

a(t) = A1((1 + C1t)2 + B1t
2)−1/κ, A1 ∈ R+.

Here the function h depends on two variables, r1 = x − ut and r2 = y − vt, and satisfies the
inhomogeneous Monge-Ampère (MA) equation

hr1r1hr2r2 − h2
r1r2 = b. (2.2)

where b = B1 −C2
1 can be normalized to 0,±1. Note that the Monge-Ampère (MA) equation has

a geometrical meaning in projective geometry in R3. Namely, if r3 = h(r1, r2) is the equation of
an improper affine sphere with affine normals parallel to the r3-axis, then h has to satisfy the MA
equation (2.2).

According to E. Goursat [3], the MA equation (2.2) can be transformed into the linear Laplace-
Beltrami equation

h̃r2r2 + bh̃zz = 0, b = 0,±1, (2.3)

by using the half-Legendre transformation (r1, r2, h) → (s, r2, h̃) given by

h̃(z, r2) = h(s, r2)− shs(s, r2), z = hs(s, r2), hss 6= 0.
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Using an explicit form of solution of the linear equation (2.3), it is possible to find the general
solution of the MA equation (2.2). In general, for the elliptic (b > 0), hyperbolic (b < 0) and
parabolic (b = 0) cases all global real solutions of the MA equation (2.2) are known. Using this
Goursat approach, for each solution h̃(z, r2) of the equation (2.3) we can associate a solution
h(r1, r2) of the Monge-Ampère equation (2.2). Depending on the selection of particular solutions
of the MA equation (2.2) we obtain Riemann double waves or other types of rank-2 solutions of
(2.1). Invariant solutions of system (2.1) associated with particular solutions of MA equation (2.2)
are summarized in Table I.

3 Rank-2 and rank-3 solutions

The construction approach outlined in Section 1 has been applied to the isentropic flow equations
(1.1) in order to obtain rank-2 and rank-3 solutions. The results of our analysis are summarized
in Tables II and III. Several of them possess a certain amount of freedom. They depend on one
or two arbitrary functions of one or two Riemann invariants, depending on the case. The range
of the types of solutions obtained depends on different combinations of the vector fields Xa. For
convenience, we denote by EiEj ,EiSj ,SiSj ,EiEjEk, etc, i, j, k = 1, 2, 3, the solutions which are
the result of nonlinear superpositions of rank-1 solutions associated with different types of wave
vectors (1.4 i) and (1.4 ii). By r1, r2 and r3 we denote the Riemann invariants which coincide with
the group invariants of the differential operators Xa of the solution under consideration.

The arbitrary functions appearing in the solutions listed in Tables II and III allow us to change
the geometrical properties of the governed fluid flow in such a way as to exclude the presence of
singularities. This fact is of special significance here since, as is well known, in most cases, even for
arbitrary smooth and sufficiently small initial data at t = t0, the magnitude of the first derivatives
of Riemann invariants becomes unbounded in some finite time T . Thus, solutions expressible in
terms of Riemann invariants usually admit a gradient catastrophe. Nevertheless, we have been
able to show that it is still possible in these cases to construct bounded solutions of soliton-type
expressed in terms of elliptic functions, through the proper selection of the arbitrary functions
appearing in the general solution. For this purpose it is useful to select DCs corresponding to
a certain class of the nonlinear Klein-Gordon equation which is known to possess rich families
of soliton-like solutions [1]. Thus, we submit the arbitrary function(s) appearing in the general
solutions listed in Tables II and III, say v, to the differential constraint in the form of the Klein-
Gordon v6-field equation in three independent variables r1, r2 and r3

¤(r1,r2,r3)v = cv5, c ∈ R. (3.1)

It is well known that equation (3.1) is invariant with respect to the similitude Lie algebra involving
translations, rotations, Lorentz boosts and a dilation. A systematic use of the subgroup structure
[7] of the invariance group of (3.1) allows us to generate all symmetry variables ξ in terms of
Riemann invariants r1, r2, r3. We concentrate here only on the case when symmetry variables are
invariants of the assumed subgroups Gi ⊂ G having generic orbits of codimension one. The set
of symmetry variables ξ enables us to reduce, after some transformation, equation (3.1) to many
possible ODEs. The application of the symmetry reduction to equation (3.1) leads to solutions of
the form

v(r) = α(r)F (ξ), r = (r1, r2, r3), (3.2)

where the multiplier α(r) and the symmetry variables ξ(r) are given explicitly by group theoretical
considerations and F (ξ) satisfies an ODE obtained by substituting (3.2) into equation (3.1). The
results are presented in Table IV which includes the reduction obtained by subgroups Gi ⊂ G.
The detailed procedure for obtaining such ODEs can be found in [7].

Under a transformation (F, ξ) → (U, ζ) of the equations listed in the Table IV which preserves
the Painlevé property,

F (ξ) =
(

U(ζ)
g(ξ)

)1/2

,

(
dζ

dξ

)2

=
1

Gg2
,
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in which the four sets of functions G, g and constants e0, c4 obey the respective conditions

1. G = −3c4

4
, g2 =

4e0

c4
,

2. G = −3c4

4
ξ(ξ + 1), g2 = −64e0

c4
ξ,

3. G = −3c4

4
, (a, e0, g

2) = (0, 0, k1), (4/3, 0, k1ξ
4/3), (2, e0,−16e0

c4
ξ2),

4. G = −3c4

4
(ξ2 + 1), g = k1(1 + ξ2)1/3, e0 = 0, k1 6= 0,

we obtain the first integral

U ′2 − c4U
4 − 12e0U

2 − 4K ′U = 0, c4 6= 0.

When K ′ = 0, U−1 is either a sin, cos, sinh or a cosh function, depending on the signs of the
constants, then bounded solutions are easily characterized. When K ′ 6= 0, it is convenient to first
integrate this elliptic equation in terms of the Weierstrass ℘ function,

U(ζ) =
K ′

℘(ζ)− e0
, g2 = 12e2

0, g3 = −8e3
0 − c4K

′2, ℘′2 = 4℘3 − g2℘− g3,

then to use the classical relations between ℘ and the various bounded Jacobi functions [5]. We
give here the explicit solutions of the equations listed in Table IV in terms of the Weierstrass
℘-function, leaving the conversion to Jacobi’s notation to the reader. These solutions are obtained
by convenient choices of the normalization constants e0, c4,K

′, k1.
With the normalization e0 = −1/3, c4 = −4/3, K ′ = C, the general solution of equation no 1

is
F 2(ξ) =

C

℘(ξ) + 1/3
, ζ = ξ, g2 =

4
3
, g3 =

8
27

+
4
3
C2, C ∈ R. (3.3)

With the normalization e0 = k−2
0 /48, c4 = −(4/3)k−2

0 , K ′ = C, the solution of equation no 2 is

F 2(ξ) =
Cξ−1/2

℘(ζ)− 1
48k2

0

, ζ = −2k0 Argth
√

ξ + 1, g2 =
1

192k4
0

, g3 = − 1
13824k6

0

+
4C2

3k2
0

, (3.4)

with k0, C ∈ R.
The three cases for equation no 3 yield the respective solutions

q = −k/3 : F 2(ξ) =
C

℘(ξ)
, ζ = ξ, g2 = 0, g3 =

4C2

3
,

q = 4− 3k : F 2(ξ) =
Cξ−2/3

℘(ζ)
, ζ = 3k0ξ

1/3, g2 = 0, g3 =
4C2

3k2
0

,

q = k − 2 : F 2(ξ) =
Cξ−1

℘(ζ)− 1
12k2

0

, ζ = k0 log ξ, g2 =
1

12k4
0

, g3 = − 1
216k6

0

+
4C2

3k2
0

.

(3.5)

Finally, equation no 4 integrates as (equation no 4 in Table IV)

F 2(ξ) =
C(ξ2 + 1)−1/3

℘(ζ)
, ζ = ξ 2F1

(
1
2
,
5
6
;
3
2
;−ξ2

)
, g2 = 0, g3 =

4C2

3k2
0

, (3.6)

where 2F1 denotes the hypergeometric function.
Using these results, we construct bounded rank-3 solutions of the equations (1.1). For this

purpose, for each general solution appearing in Tables II and III, we introduce the arbitrary
functions into the Klein-Gordon equation (3.1) and select only the solutions expressed in terms of
the Weierstrass ℘-function.

As an illustration, let us consider the rank-3 solution for the case E1E2E3. This solution exists
if the angles φij between the entropic wave vectors λ1, λ2, λ3 satisfy the following condition [6]

cos φij = − 1
κ

, i 6= j = 1, 2, 3.
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Requiring that each of the functions ai(ri), i = 1, 2, 3, obeys the equation no 1 listed in Table IV,
the rank-3 solution of the type E1E2E3 becomes, according to equation (3.3),

a =
3∑

i=1

Ci(
℘(ri, 4

3 , 8
27 + 4

3C4
i ) + 1

3

)1/2
, ~u = κ

3∑

i=1

Ci
~λi

(
℘(ri, 4

3 , 8
27 + 4

3C4
i ) + 1

3

)1/2
,

ri = −(1 + κ)
Ci(

℘(ri, 4
3 , 8

27 + 4
3C4

i ) + 1
3

)1/2
t + ~λi · ~x, i = 1, 2, 3.

This solution is physically interesting since it remains bounded for every value of the Riemann
invariants ri. Thus, it represents a bounded solution with periodic flow velocities. Similarly, it is
possible to substitute the arbitrary functions into the differential equations no 2, 3, 4 listed in Table
IV to obtain other types of bounded solutions. In Table V, we present resulting types of solutions
with their corresponding Riemann invariants. They are all bounded solutions of periodic, bump
or kink type. Note that these solutions admit the gradient catastrophe at some finite time. Hence,
some discontinuities can occur like shock waves. Note also that the solutions remain bounded even
when the first derivatives of ri tend to infinity after some finite time T . However, after time T , the
solution cannot be represented in parametric form by the Riemann invariants and ceases to exist.

4 Concluding remarks

In this paper we have shown how to construct rank-2 and 3 periodic solutions expressed in terms
of the Weierstrass ℘-function. They represent bumps, kinks and multiple wave solutions which are
parametrized by Riemann invariants. These solutions remain bounded even when the invariants
admit the gradient catastrophe. We have also found rank-2 solutions of the ideal isentropic fluid
flow when the sound velocity depends on the time only. These solutions were obtained through the
use of the conditional symmetry method and the Legendre transformation applied to the Monge-
Ampère equations. We are currently looking at the stability property of the obtained solutions.
Solutions which possess the property of stability should be observable physically and such analysis
could be the starting point for perturbative computations. This task will be undertaken in a future
work.
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deux variables indépendantes, Gauthier-Villars, Paris, 1890.
4 Grundland, A. M., Huard, B., Conditional symmetries and Riemann invariants for hyperbolic

systems of PDEs. J. Phys. A 40 (2007), no. 15, 4093–4123.
5 W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and theorems for the special functions

of mathematical physics, third enlarged ed., Springer, Berlin, 1966, Orme ZK111
6 Peradzynski Z., On certain classes of exact solutions for gasdynamics equations, Archives of

Mechanics, 9, 2 (1972), 287–303.
7 Winternitz P., Grundland A.M. and Tuszynski J.A., Exact solutions of the multidimensional

classical φ6 field equations obtained by symmetry reduction, J. Math. Phys. 28, 9, 2194–2212
(1987)

6



Table I. Isentropic solutions of the system (1.1) associated with MA equation (2.2). The Riemann
invariants r1, r2 are obtained by introducing the expressions for u and v into r1 = x−ut, r2 = y−vt.
No b Solutions Comments

1.i −1 u = −−C1 r1
√
−6 r1−36 (r2)2+12 r2 r1+72 (r2)

3√
−6 r1−36 (r2)2

C1 ∈ R

v = C1 r2
√
−6 r1−36 (r2)2+r1+6 (r2)

2√
−6 r1−36 (r2)2

a = A1(1 + 2C1t + (2C1
2 − 1)t2)−1/k

1.ii −1 u = r1

(
C1 − (A2e2r2

+B2)
2+2A2r1e2r2

(A2e2r2+B2)(r1+(r2−1)(A2e2r2+B2))

)
A1, A2, B2, C1 ∈ R

v = C1r
2 + r1

r1+(r2−1)(A2e2r2+B2)

a = A1(1 + 2C1t + (2C1
2 − 1)t2)−1/k

2.i 1 u = C1x+(C1
2+1)tx−4y

(C1+1)t2+2C1t+1 C1 ∈ R
v = 1

4
4(C1

2+1)ty+4C1y+x
(C1+1)t2+2C1t+1

a = A1(1 + 2C1t + (2C1
2 + 1)t2)−1/k

2.ii 1 u = C1r
1 + 12r2(r1−6(r2)2)√

36(r2)2−6r1
A1, C1 ∈ R

v = C1r
2 + r1−6(r2)2√

36(r2)2−6r1

a = A1(1 + 2C1t + (2C1
2 + 1)t2)−1/k

2.iii 1 u = (C1 + 2α12)r1 + 2α22r
2 + β2 αij , βi ∈ R, i, j = 1, 2

v = (C1 − 2α12)r2 − 2α11r
1 − b1

a = A1(1 + 2C1t + (2C1
2 + 1)t2)−1/k

3.i 0 u = C1r
1 + 1

2 (r1 + r2) A1, C1 ∈ R
v = C1r

2 − 1
2 (r1 + r2)

a = A1(1 + 2C1t(1 + C1t))−1/k

3.ii 0 u = C1r
1 +

√
1−

(
r1

1+r2

)2

A1, C1 ∈ R
v = C1r

2 − arcsin
(

r1

1+r2

)

a = A1(1 + 2C1t(1 + C1t))−1/k

3.iii 0 u = C1r
1 + α2ϕ

′ + β2 C1, αi,∈ R, i = 1, 2
v = C1r

2 − α1ϕ
′ − β1

a = A1(1 + 2C1t(1 + C1t))−1/k
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1

E
1
S

1
X

1
=

∂
∂

x
2
−

σ
2

β
1

∂ ∂
t
−

β
2

β
1

∂
∂

x
1

r1
=

((
1

+
k
)ā

1
(r

1
)
+

C
2
)t
−

~e
1
·~x

ā
=

ā
1
(r

1
)
+

a
0
,

[~u
2
,~e

2
,
~m

2
]=

C

X
2

=
∂

∂
x
3
−

σ
3

β
1

∂ ∂
t
−

β
3

β
1

∂
∂

x
1

r2
=

C
t
−

[~x
,~e

2
,
~m

2
],

[~e
1
,~e

2
,
~m

2
]=

0
~u

=
k
ā
1
(r

1
)
+

~u
2
(r

2
),

ū
3 2
(r

2
)
=

C
1
ū

1 2
(r

2
)

β
i
=
−(

~e
2
×

~m
2
) i

(a
+

~e
1
·~u
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ū
2

=
−

co
sg

(r
2
,r

3
),

ū
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ū
3

=
A

r1
+

B
+

u
3 0
,

a
0
,u

3 0
∈
R

2c
E

1
S

1
S

2
X

=
∂

∂
x
3

r1
=

(k
−

1
f
(r

1
)
+

a
0
)t
−

x
1
co

sf
(r

1
)
−

x
2
si

n
f
(r

1
)

ā
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