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Abstract

In the system made of Korteweg-de Vries with one source, we first show by
applying the Painlevé test that the two components of the source must have the
same potential. We then explain the natural introduction of an additional term in
the potential of the source equations while preserving the existence of a Lax pair.
This allows us to prove the identity between the travelling wave reduction and one
of the three integrable cases of the cubic Hénon-Heiles Hamiltonian system.
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1 Introduction

In several soliton equations, it is possible to add a so-called “source term” without de-
stroying the soliton property. For instance, the Korteweg-de Vries (KdV) equation

but +
(
uxx − 3

a
u2

)

x
= 0, a, b = constants, (1)

∗Journal of mathematical physics 51 (2010) 033511 (6 p).
Corresponding author Zhao, fax +86-10-88256100.

1



retains its solitonic property when extended to [21, 26]





E1 ≡ but +
(
uxx − 3

a
u2 − dvw

)

x
= 0, a, b, d = constants,

E2 ≡ vxx +
(
−u

a
+ µ1

)
v = 0,

E3 ≡ wxx +
(
−u

a
+ µ2

)
w = 0,

(2)

provided µ1 = µ2 = µ. The parameter µ is then inessential and it could be removed by
the Galilean transformation

(u, x, t) →
(
u + aµ, x + 6

µ

b
t, t

)
. (3)

If one denotes W = vw, Z = v/w, the transformed system for (u,W,Z),





but +
(
uxx − 3

a
u2 − dW

)

x
= 0,

(
∂3

x − 4
(

u

a
− µ

)
∂x − 2

ux

a

)
W = 0,

(W (log Z)x)x = 0,

(4)

allows the easy elimination of W and Z, resulting in the KdV6 equation [17, 18],

(
∂3

x −
4

a
Ux∂x − 2

a
Uxx

) (
bUt + Uxxx − 3

a
U2

x

)
= 0, Ux = u− αµ. (5)

Solutions of system (2) with µ1 = µ2 have been investigated by means of the inverse
scattering method [22] and the Darboux transformation [27, 19]. In the more general
situation µ1 6= µ2, it has been noticed [20] that one can also build a variety of solutions.

The purpose of this paper is to present some new results concerning the KdV with
one source system (2). In section 2, we first examine the system (2) and prove that a
necessary condition to pass the Painlevé test is µ1 = µ2. In section 3, we introduce an
extension of this system admitting a Lax pair, and we show that this generalized KdV
with one source admits a reduction which can be identified to one of the three integrable
sets of equations of motion of the cubic Hénon-Heiles Hamiltonian system.

2 The Painlevé test

Among the possible leading behaviours

u ∼ u0χ
p1 , v ∼ v0χ

p2 , w ∼ w0χ
p3 , u0v0w0 6= 0, (6)

in which χ denotes the expansion variable near a movable singularity ϕ = ϕ(x, t) [6]

χ =

(
ϕx

ϕ
− ϕxx

2ϕx

)−1

, (7)

there exist at least two families in which all pi are negative integers, these are





F1 : p = (−2,−1,−1), u0 = 2a, (v0, w0) = arbitrary,

F2 : p = (−2,−2,−2), u0 = 6a, v0w0 = −72a

d
,

(8)
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with p = (p1, p2, p3), and their respective Fuchs indices are

{
F1 : −1, 0, 0, 3, 3, 4, 6,
F2 : −3,−1, 0, 4, 5, 6, 8.

(9)

When one checks the existence of the Laurent series, one finds the following conditions
for the absence of movable logarithms,

F1 : Q6 ≡ (µ1 − µ2)
2v0w0 = 0, (10)

and

F2 :

{
Q6 ≡ (µ1 − µ2)(bC + 3(µ1 + µ2)) = 0,
Q8 ≡ 2SQ6 + (µ1 − µ2)(20Sxx − 20S2 − 4bCxx + 200u4 + 5(µ1 − µ2)

2) = 0,
(11)

where C = C(x, t), S = S(x, t) are functions given by the singular manifold [6]

S =

(
ϕxx

ϕx

)

x

− 1

2

(
ϕxx

ϕx

)2

, C = −ϕt

ϕx

, (12)

and u4 is the arbitrary coefficient introduced at Fuchs index i = 4. Therefore a necessary
condition for the system (2) to pass the Painlevé test is that µ1 = µ2.

3 Link with the cubic Hénon-Heiles

The last two equations of system (4) each admit a first integral related to the Wronskian
of v and w,

2G(t) = WWxx − 1

2
Wx

2 − 2
(

u

a
− µ

)
W 2, (13)

W (log Z)x = g(t), (14)

g(t) = vxw − vwx, G(t) = −1

2
g2(t). (15)

The conservation of the Wronskian is of course intrinsic to the original system (2) (with
µ1 = µ2), and it manifests itself by the natural introduction in the transformed system
for (u,W,Z) of one arbitrary function of time, thus ensuring the conservation of the total
differential order (seven) between the original and the transformed systems.

One deduces that the field

Q = W 1/2 (16)

obeys a nonlinear ODE of the Ermakov-Pinney type [13, 25]

(
∂2

∂2
x

− u

a
+ µ− G(t)

Q4

)
Q = 0, (17)

i.e. an equation which only differs from the linear ODE for v or w in system (2) by the
contribution of G(t).

The main point is that the KdV with one source system (2) is incomplete, in the sense
that the term G(t)/W 2 can be added to the potential of the linear equation for v and
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w while retaining the Painlevé property. Indeed, the extrapolation of (2) to an arbitrary
value of G(t)





F1 ≡ but +
(
uxx − 3

a
u2 − dvw

)

x
= 0,

F2 ≡ vxx +

(
−u

a
+ µ− G(t)

v2w2

)
v = 0,

F3 ≡ wxx +

(
−u

a
+ µ− G(t)

v2w2

)
w = 0,

(18)

admits the second order matrix Lax pair

Ψx = LΨ, Ψt = MΨ, Ψ =
(

ψ1

ψ2

)
, (19)

L =

(
0 1

u

a
− µ + λ 0

)
, bM =

(
−ux

a
− d(vw)x

4aλ

) (
1 0
0 −1

)
+

(
0 a12

a21 0

)
,

a12 =
2u

a
− 4(λ− µ) +

dvw

2aλ
,

a21 =
(

u

a
+ λ− µ

) (
2
u

a
− 4(λ− µ)

)
− uxx

a
− dG(t)

2aλvw
+

dvw

2a
− dvxwx

2aλ
= 0,

in which λ is the spectral parameter. The zero-curvature vanishing condition

b(Lt −Mx + [L,M ]) ≡ d(wF2 + vF3)

4aλ

(
1 0
0 −1

)
+


 0 0

F1

a
+

d(wxF2 + vxF3)

2aλ
0


 , (20)

is indeed equivalent to the condition that the lhs F1, F2, F3 of the system (18) simultane-
ously vanish.

Let us now prove that the system (18) admits for G(t) arbitrary a noncharacteristic
reduction to an ODE system which is complete in the Painlevé sense. The transformed
system of (18) for (u, W = vw, Z = v/w) reads





but +
(
uxx − 3

a
u2 − dW

)

x
= 0,

(
∂3

x − 4

(
u

a
− µ− G(t)

W 2

)
∂x − 2

(
u

a
− G(t)

W 2

)

x

)
W = 0,

W (log Z)x = g(t),

(21)

the second equation is independent of G(t) and therefore admits the first integral G(t)
defined in (13), and the first two equations define a closed susbsystem for u,W . The
resulting system for (u,Q = W 1/2) is





but +
(
uxx − 3

a
u2 − dQ2

)

x
= 0,

(
∂2

∂2
x

− u

a
+ µ− G(t)

Q4

)
Q = 0.

(22)

As to the cubic Hénon-Heiles Hamiltonian, it is defined as [16, 14]

H =
1

2
(p2

1 + p2
2 + c1q

2
1 + c2q

2
2) + αq1q

2
2 −

1

3
βq3

1 +
c3

2q2
2

, α 6= 0, (23)
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in which pi = pi(ξ), qi = qi(ξ) (i = 1, 2) and α, β, c1, c2, c3 are constants. The correspond-
ing equations of motion,





d2q1

dξ2
+ c1q1 − βq2

1 + αq2
2 = 0,

d2q2

dξ2
+ c2q2 + 2αq1q2 − c3

q3
2

= 0,

(24)

pass the Painlevé test (in the dependent variables q1, q
2
2) for only three sets of values

of (β/α, c1, c2) [4, 5, 15]: (β/α = −1, c1 = c2), (β/α = −6), (β/α = −16, c1 = 16c2).
These three cases are equivalent to the stationary reduction of three fifth order soliton
equations, respectively known as the Sawada-Kotera (SK), fifth order Korteweg-de-Vries
(KdV5) and Kaup-Kupershmidt (KK) equations, which belong respectively to the BKP,
KP and CKP hierarchies.

The link between the extended KdV with one source system (18) now becomes obvious.
Under the traveling wave reduction

G(t) = constant, ξ = x− ct, (25)

the two-component system is readily identified to the Hamilton equations (24), with

u = q1, Q = W 1/2 = (vw)1/2 = q2,

c1 = −bc, β =
3

a
, α = −d, c2 = µ, α = − 1

2a
, c3 = G(t), (26)

which imply

β

α
= −6. (27)

Therefore the traveling-wave reduction of the extended KdV with one source system (18)
is the cubic HH system corresponding to KdV5.

Since one cannot include additional terms in the system (24) without destroying its
Painlevé property [11, 14, 10] (completeness property), this proves that the initial system
(2) (with µ1 = µ2) was incomplete. This is why the extended KdV with one source system
(18) deserves to be qualified as “complete”.

Remark. As proven in Ref. [12], the number of degrees of freedom in (23) can be
extended arbitrarily.

4 Conclusion

It is known that the cubic and quartic Hénon-Heiles Hamiltonians pass the Painlevé test
only for seven sets of coefficients. The seven Hénon-Heiles Hamiltonians all have the
Painlevé property and have been extensively studied [3, 8, 9, 2]. However, the explicit
integration of three of the quartic cases, namely 1:6:1, 1:6:8, 1:12:16, is not yet optimal,
in the sense that the expressions are quite intricate. The reason is that one could not yet
associate each of these three cases to an optimal PDE system [1]. The link established
in this paper between a PDE with source system and one of the cubic Hénon-Heiles
Hamiltonians strongly suggests that there could exist three privileged systems of the type
PDE+source, whose reduction x− ct would be identical to the Hamilton equations of the
quartic cases 1:6:1, 1:6:8, 1:12:16. A preliminary step in this direction has been made in
[7, Eq. (A.24)] for the 1:6:1 and 1:6:8 cases, whose integration with the autonomous F-VI
equation [10] needs to be improved.
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