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Abstract

Several transportation networks in living systems are pulsatile branching trees. Due to the alternating character of the flow, these
trees have to simultaneously satisfy two constraints: theyhave to deliver the carried products in a limited time and they must exhibit
a satisfactory aerodynamic performance in both directionsof the flow. We report here that introducing a systematic branching
asymmetry into a distribution tree improves performance and robustness, both at inhalation and exhalation. Moreover,optimizing
the asymmetry level for both phases leads to a value very close to the one measured in the human lung.
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1. Introduction

Numerous biological transportation networks are branching
trees. One can distinguish several types of trees dependingon
the nature of the flow that crosses them: it can be a unidirec-
tional stationary flow, as in the case of the vascular venous sys-
tem in mammals, or a unidirectional pulsatile flow, as in the
vascular arterial system, or a bidirectional flow. A striking ex-
ample of the last case is provided by the mammalian pulmonary
airway system in which the air flow undergoes periodic oscil-
lations: in humans, during each breathing cycle, air entersthe
system during 2 seconds at rest in order to deliver oxygen to
the gas exchange units located in the distal regions (theacini).
During expiration (3 seconds at rest), air flows out to clear the
carbon dioxide brought by the venous system. Due to the alter-
nate character of the flow, such a system has to simultaneously
be able to deliver the carried products in a limited time, andto
present a limited aerodynamic resistance in both directions of
the flow.

The geometrical structure of the human pulmonary airway
system is that of a dichotomous branching tree. At each bifur-
cation, the parent branch gives rise to two daughter branches
which belong to a new generation [1, 2]. The total number of
generations depends on the pathway in the tree and is about 23
on average in the human lung. From the physiological point
of view, the airway system can be schematically subdivided
into two subsystems: first, thetracheobronchial treewhich is
a purely conducting tree. It starts at the trachea (generation 0)
whose average diameter and length are respectivelyD=1.8 cm
andL=12 cm in the healthy human adult. It ends in the termi-
nal bronchioles whose average diameter is about 0.5 mm. These
terminal bronchioles are located on average around generation
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15 [3]. Second, from the terminal bronchioles start theacini
which are the gas exchange units between air and blood. We
will from now focus only on the first subsystem, the tracheo-
bronchial tree.

One very interesting geometrical feature of this tree is its
branching asymmetry. This means that, at every generation,
each parent airway gives rise to a larger daughter airway (the
major airway) and a smaller daughter airway (the minor air-
way). This asymmetry has been extensively measured [3] and
analyzed [4]. The goal of this article is to study in a realistic
model of the human airway system the influence of this branch-
ing asymmetry on the ventilation performance of the human
lung, both at inhalation and exhalation.

2. The geometrical model of the tracheobronchial tree

Regarding gas transport, the tracheobronchial tree can essen-
tially be modeled as an arrangement of cylindrical pipes defined
by their diameter and length. A fundamental step in describing
its morphology has been the introduction of the now classical
symmetric Weibel’s A model [1]. In the simplest version of
this model, the tree is likened to a hierarchical network of pipes
with symmetrical dichotomous branching and a uniform scal-
ing ratio, h0 = 2−1/3

≈ 0.79 between the airway diameters of
consecutive generations. However, in order to account for the
distribution of the airway sizes at any given generation, one has
to introduce a systematic branching asymmetry at every bifur-
cation [2, 4]. This branching asymmetry can be characterized
by two different scaling ratios,h0 max=0.88 andh0 min=0.68. For
proximal airways (generations 1 to 4), morphometric measure-
ments show that their sizes significantly deviate from a general
scaling [1, 5, 6, 4] and require specific parameters.

The geometrical model of the tracheobronchial tree used in
this study therefore consists in a set of specific parameters
for the first generations, and relies on systematic scaling and
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branching asymmetry in the intermediate bronchial tree. This
model, characterized by the parameters in Tab. 1, allows to re-
produce the airway size distributions as measured in the litera-
ture. Since all terminal bronchioles have essentially compara-
ble diameters (about 0.5 mm) [7, 8], the branching asymmetry
implies that different pathways starting at the trachea and fin-
ishing in a terminal bronchiole may have different number of
generations. The generation number of the terminal airways
range from 8 to 22 in the human lung [5, 3].

Generation Scaling ratio forD RatioL/D
h0 max h0 min

1 0.88 0.68 3.07
2 0.88 0.68 1.75
3 0.88 0.68 1.43
4 0.88 0.68 1.85
≥ 5 0.88 0.68 3.00

Table 1: Parameters of the geometrical tracheobronchial tree
model.D andL represent airway diameter and length.

3. Inhalation

We first study the ventilation performance of the bronchial
tree. The criterion used to characterize this performance is the
distribution of the oxygenation times of the acini. For eachac-
inus, the oxygenation time is defined as the duration during
which fresh air is delivered to it at inhalation. It is computed
by subtracting from the total duration of the inspiratory phase,
tins (2 s), the time spent in the extrathoracic airways,text (ap-
proximately constant and equal to 0.47 s at rest [9]), and the
transit time from the trachea to the acinus,ttr :

tox = tins − text− ttr

Each acinus is assumed to act as an hydrodynamic pump drain-
ing the same flow. As a consequence, starting from the bottom
of the tree, the flow can be computed in each airway. The time
spent in an airway is directly obtained from the flow rate and
airway sizes. The total flow rate is considered approximately
constant during the entire inspiratory phase, with a velocity in
the trachea of about 1 m/s [7]. The total transit time from the
trachea to a terminal bronchiole is thus determined by the sum
of the times to cross each branch of the pathway leading to this
terminal bronchiole. This transit time has to be as small as pos-
sible to provide an efficient ventilation of the acinus.

Using our asymmetric model, we compute the distribution of
oxygenation times in all acini. They are spread around an aver-
age valuetox = 0.67 s with a standard deviation of about 0.13 s.
All acini are thus found to receive fresh air during inspiration
since all transit times are smaller thantins − text = 1.53 s.

We now address the question of the robustness of this ven-
tilation performance against anatomical variability. To account
for this variability, the scaling ratios are randomized: ateach bi-
furcation, the major and minor scaling ratios,hmax andhmin, are

now anticorrelated random variables, so that the Hess-Murray
law still holds:

h3
max+ h3

min = 1,

Their average value is determined by the parameters in Tab. 1
and their standard deviation is taken equal to 0.10 [4]. As a con-
sequence, all diameters and lengths are also random variables.
Computing the distribution of oxygenation times in this ran-
domized tree, one obtains almost exactly the same result as for
the deterministic model. The asymmetric bronchial tree thus
appears to have an efficient ventilation performance which is
also robust against morphological variability.

Branching asymmetry tends to spread the distribution of oxy-
genation times. Wider pathways in the tree are associated to
larger transit times due to flow conservation. If the asymme-
try is too large, the transit time in some pathways will increase
to a value close to the duration of inhalation. One can there-
fore ask the following question: is there a threshold asymmetry
level above which some acini do not receive fresh air at all? To
answer this question, we introduce a parameterα which char-
acterizes the asymmetry level. This parameter is defined as fol-
lowed:

h3
0 max= h3

0 (1+ α)

h3
0 min = h3

0 (1− α)

The asymmetry level measured in the human lung corresponds
to a value of about 36% (h0 max = 0.88 andh0 min = 0.68).
Thanks to the definition ofα, all bronchial trees built using such
rules have the same thoracic volume. Moreover, they have the
same specific values of the ratioL/D for the first generations
(Tab. 1), and the threshold diameter that determines the terminal
bronchiole is identical.

Numerical computations of the oxygen transport, achieved
by solving time dependent equations of diffusion and convec-
tion in the acinus geometry, have shown that fresh air has to
remain at least 0.3 s in the acinus in order to achieve the gas
exchange process [10]. We have therefore computed for each
asymmetry level the number of acini which have an oxygena-
tion time smaller than 0.3 s. In other words, these acini do not
permit the oxygen transfer between air and blood (Fig. 1). They
are calledunactiveacini.

It is found that all acini are supplied with fresh air (which
means 0% of unactive acini) when the asymmetry level is
smaller than a critical threshold value which is about 35%.
Above this value, the number of acini unable to transfer oxygen
to the blood during inspiration significantly rises. Interestingly,
this threshold value almost exactly corresponds to the branch-
ing asymmetry level measured in the human lung (α=36%). It
has already been reported in a previous article that branching
asymmetry contributes to reduce the aerodynamic resistance of
the tree in the Poiseuille flow approximation [11]. This first
study at inhalation seems to indicate that evolution has adjusted
the asymmetry level at its maximum value allowing to feed all
terminal units with fresh air.
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Figure 1: Proportion of unactive acini (with oxygenation time
smaller than 0.3 s) as a function of the asymmetry levelα.

4. Forced Expiration

At expiration, the total quantity of the air previously inhaled
has to be exhaled in a limited time in order to renew it with
fresh air. However, exhalation is not the symmetric counterpart
of inhalation: due to the pressure exerted by the diaphragm and
the elastic energy stored in the respiratory muscles, the com-
pliant properties of the airways now play a major role. The
flow pattern in the tree is then the result of a complex interplay
between the flexible airway structure and the applied pressure
distribution. In extreme conditions, as in forced expiration, the
system exhibits non linearities that may lead to important inho-
mogeneities in the flow distribution.

In particular, forced expiration maneuvers can be seen as a
signature of the behavior of the compliant bronchial geometry.
This explains why they have been used for many years to test
lung function [12]. During these maneuvers, the most common
procedure consists in recording the maximal expiratory flow-
volume (MEFV) curves. To assess the role of branching asym-
metry at exhalation, we have simulated these curves using a 1D
model in each branch of the bronchial tree.

Two fundamental equations are used to describe the mechan-
ical behavior of an individual airway at expiration.

First, the airway compliance is modeled using Lambert’s
equations [13] which relate the local airway diameterD to
the local transmural pressureP, the latter being the difference
between the internal airway pressure and the external pleural
pressure assumed uniform. We also assume that all airways
are intrapleural excepted the trachea that is treated as semi-
intrathoracic. In Lambert’s model, the parameters are defined
for each generation. In the asymmetric tree, this cannot be done
as such since airways of very different diameters and compli-
ances can be found at the same generation. We therefore intro-
duce a generalized version of this model in which Lambert’s pa-
rameters do not depend on airway generation but on airway di-
ameter. The pleural pressure is taken equal to the difference be-
tween the alveolar pressure and the static recoil pressure.Both
pressures are modeled according Polak’s model [14]. The alve-
olar pressure depends on patient’s effort through the maximal
expiratory pressurePm and the time constant of the expiratory
musclesτ.

Second, the gradient of transmural pressuredP/dx along the
airway is computed using the 1D model introduced by Lambert
et al. for a steady and incompressible flow [13]:

dP
dx
=
− f

1−
v2

c2

=
− f

1−
2v2ρ

D

(

dD
dP

) , (1)

Here, f is the dissipative pressure loss per unit distance,D is
the local airway diameter,v is the local flow velocity,c is the
local wave speed, andρ is the air density. It has to be noted that
f , D, v, andc all vary along the airway. The local dissipative
pressure lossf (x) is linked to the diameterD by:

f (x) =
128ηΦ
πD4

(1.5+ 0.0035Re) (2)

whereη is the air viscosity,Φ the flow in the airway, andReis
the Reynolds number [15].

One of the important features appearing in these MEFV
curves isexpiratory flow limitation(EFL) [16]. Several mech-
anisms are responsible for EFL: first, the wave-speed mecha-
nism introduced by Dawson and Elliot in 1977 [17]. The fluid
velocity cannot be larger than the propagation speedc of pres-
sure waves along the airway wall. Indeed, one can see in equa-
tion (1) that the pressure gradientdP/dxdramatically increases
when the fluid velocity is close to the wave speed. The second
mechanism responsible for EFL is a combination of the viscous
loss of pressure and of the pressure loss due to convective ac-
celeration [18].

Modeling forced expiration in the entire tree is computation-
ally complex: it requires to numerically solve ineach airway
the differential equation (1) using expression (2) forf . This
is usually achieved by numerical integration [13, 14, 19]. All
these equations are coupled by flow continuity equations at
each bifurcation of the tree, the pressure drops at the bifurca-
tion being assumed here to be negligible [19]. On total, this
means solving about 60,000 coupled highly non linear differen-
tial equations, at each time step of the expiration [13, 14].For
that reason, previous studies have simplified the tree geometry
in order to reduce the number of differential equations, the sym-
metric Weibel’s A model being there the most popular model
used [13, 20]. All airways are thus assumed to be identical at
each generation. Computing the flow in the entire tree at forced
expiration comes down to numerically integrate 15 equations,
one for each generation.

We show here that in fact, equation (1) can be exactly in-
tegrated assuming that the average Reynolds number along an
airway can be estimated from its values at both ends of the air-
way:

< Re>=
4ρΦ

ηπ

(Din + Dout

2

)
(3)

Din andDout are the inlet and outlet airway diameters. Equa-
tion (1) therefore rewrites:

dP
dx
= − (1.5+ 0.0035< Re>)

8πηΦ

π2

16
D4
− Φ2 2ρ

D
dD
dP

(4)
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Since< Re > andΦ are constant along the airway, the only
varying quantities areP andD. This differential equation can
then be exactly integrated along the airway:

π2

16

∫ out

in
D4(P) dP− 2ρ Φ2

∫ out

in

dD
D
=

−(1.5+ 0.0035< Re>) × 8πη
∫ out

in
Φ dx (5)

which also writes:

π2

16
(g(Pout) − g(Pin)) − 2ρ Φ2 ln

(

Dout

Din

)

=

− (1.5+ 0.0035 < Re>) 8πη Φ L (6)

wherePin and Pout are the transmural pressures at the airway
inlet and outlet andL is the airway length. The functiong(P)
is determined by the relation between the airway diameter and
the transmural pressure [13] and is defined as follows:

g(P) =
∫ P

0
D4(P′) dP′ (7)

Moreover, it has to be underlined that in the case of the Lam-
bert’s model of collapsible airways [13], this functiong(P) can
also be integrated analytically. For a different model, it might
be necessary to tabulate it. In all cases, thanks to the expression
obtained in equation (6), computing the pressures and diame-
ters in the entire tree now only requires to solve about 60,000
coupled non linearscalarequations, which is a feasible goal.

To compute forced expiration, one imposes the atmospheric
pressure at the top of the tree and an identical pressure, the
alveolar pressure at all outlets of the tree. In the computations
shown here, we restrain ourselves to trees of 13 generations
on average. This is equivalent to assume that the pressure at
the outlet of airways of generation 13 is about the same as the
alveolar pressure, the airflow resistance of peripheral airways
being small compared to that of the central airways [12]. This
assumption can be generalized to an asymmetric tree: the pres-
sure at the outlet of airways with a diameter equal to the average
diameter of airways of generation 13 is the alveolar pressure.
For the extrathoracic airways, the pressure drop is calculated
using [14].

We use a quasi-static approach which means that a steady-
state flow is computed in the entire tree at each time step of
the exhalation. The entire non linear system, whose unknowns
are the pressuresPin andPout, and the flowΦ in each airway,
is solved using Newton-Raphson technique. Once the system is
solved for a given time step, new conditions (lung volume, alve-
olar pressure, elastic lung recoil, pleural pressure) are applied
and new flows are calculated in the entire bronchial tree. Time
steps are by default 0.01 s and are adapted in order to obtain a
stable solution.

We have studied here two different geometrical models of the
bronchial tree, one symmetric and one asymmetric. The asym-
metric bronchial tree model is obtained using Tab. 1; the sym-
metric model is obtained from the exact symmetrization of the
asymmetric one using at each bifurcation a single scaling ratio

h0 defined by:h3
0 = (h3

0 max + h3
0 min)/2. Such a symmetriza-

tion allows to keep the same dead space volume (i.e. the inner
tracheobronchial volume) for both geometrical models. In both
cases, the fixed airway diameters thus obtained are used as max-
imal airway diameters that enter the relationsD(P) from Lam-
bert’s model. The airway lengths are assumed to be constant
during forced expiration and equal to the lengths computed by
the geometrical model.

Fig. 2 (left) presents the simulated flow-volume curves for
various patients’ efforts in the asymmetric tree. In our model,
the effort intensity modifies the maximal expiratory pressure
Pm and the time constant of the expiratory musclesτ which
determine the alveolar pressure:Pm andτ decrease when the
patient’s effort decreases. As we can see on Fig. 2, the first
parts in all curves are effort dependent: the peak flow increases
for larger effort. On the other hand, the second parts are effort
independent: above a given expired volume, air flow does not
increase when increasing the driving pressure. Our model re-
produces both characteristic parts of the MEFV curves, in good
agreement with classical measurements [16, 12]. Fig. 2 (right)
is a comparison of MEFV curves for both symmetric and asym-
metric tree structures. One can observe that branching asymme-
try does not seem to have any influence on the MEFV curves in
a healthy bronchial tree.
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Figure 2:Left: Asymmetric tree: influence of patient’s effort on
flow-volume curves. A:Pm=24 kPa andτ=0.2 s; B:Pm=18 kPa
andτ=0.25 s; C:Pm=12 kPa andτ=0.3 s.Right: MEFV curves
for the asymmetric (solid line) and symmetric (dashed line)
trees.

We now investigate the behavior of altered bronchial trees
under forced expiration. The chosen alteration is aging: itis
modeled here by introducing a local modification of the me-
chanical properties of the small airways. A senile lung presents
an increase of compliance that affects the smallest airways
much more than the largest ones. The elastic recoil forces also
decrease so that the smallest airways (which are the more com-
pliant) are not completely open and tend to have a smaller max-
imal diameter [21]. Moreover, aging has also global effects on
the lung behavior during forced expiration. Residual volume
is increased [22] as well as tissue resistance [23]. The static
recoil pressure depends also on age since the pulmonary com-
pliance is increasing with age [24, 25]. Fig. 3 shows the MEFV
curves computed for both symmetric and asymmetric senile
lungs. Both structures present a reduced peak flow and a flow
collapse after the peak flow as reported by Gibson et al. [26]

4



and Babb et al. [27]. However, the observed flow collapse is
much larger in the symmetric case than in the asymmetric one.
From a detailed examination of the flow distribution in the en-
tire tree, it appears that the asymmetry creates airways of very
different sizes at every generation which prevents the uniform
collapse that occurs in the symmetric tree. Asymmetry there-
fore allows to better preserve the ventilation performances of
the tracheobronchial tree even when the mechanical properties
of the structure are altered.
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Figure 3: MEFV curves for asymmetric (solid line) and sym-
metric (dashed line) senile bronchial trees.

It has to be noted here that obstructive pathologies such as
Chronic Obstructive Pulmonary Disease (COPD) or emphy-
sema have very similar mechanical effects to those of aging.
Therefore, it is very likely that the protective role of the branch-
ing asymmetry observed in the senile lung would also exist in
these diseases.

5. Conclusion

In conclusion, the branching asymmetry measured in the hu-
man airway system appears to provide improved performance
and robustness, both at inhalation and exhalation. At inhalation,
the asymmetry provides robustness against anatomical variabil-
ity. Moreover, using a simple ventilation model, we show that,
in order to supply all acini with fresh air, the asymmetry level
has to be smaller than 35%. Surprisingly, this happens to al-
most exactly correspond to the branching asymmetry measured
in the human lung. At forced expiration, we developed a 1-D
non linear compliant model that permits to compute the flow
and pressure distributions in any bronchial tree, symmetric or
asymmetric. By comparing MEFV curves, we show in this case
that branching asymmetry improves the performance in senile
or pathological lungs. From the point of view of evolution, one
can therefore consider the asymmetry measured in the human
airway system as optimal: it is large enough to provide a pro-
tection against obstructive pathologies at expiration, but not too
large in order to preserve the oxygen supply at inhalation.
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