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Abstract

A modified version of the conditional symmetry method, together with the
classical method, is used to obtain new classes of elliptic solutions of the
isentropic ideal compressible fluid flow in (3 + 1) dimensions. We focus
on those types of solutions which are expressed in terms of the Weierstrass
℘-functions of Riemann invariants. These solutions are of special interest
since we show that they remain bounded even when these invariants admit the
gradient catastrophe. We describe in detail a procedure for constructing such
classes of solutions. Finally, we present several examples of an application of
our approach which includes bumps, kinks and multi-wave solutions.

PACS numbers: 03.40.Kf, 02.20.Sv, 02.30.Jr

1. Introduction

The purpose of this paper is to construct bounded elliptic solutions of a compressible isentropic
ideal flow in (3 + 1) dimensions. Such solutions exist even in the case where the Riemann
invariants admit the gradient catastrophe.

Let us first present a brief description of a procedure detailed in [10] for constructing
rank-k solutions in terms of Riemann invariants for the case of an isentropic compressible
ideal fluid in (3 + 1) dimensions. Such a model is governed by the equations

uα
t +

4∑
β=1

3∑
j=1

Aj α

β(u)u
β

j = 0, α = 1, 2, 3, 4, (1.1)
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where A1,A2 and A3 are 4 × 4 real-valued matrix functions of the form

Aj =

⎛
⎜⎜⎝

ui δi1κ
−1a δi2κ

−1a δi3κ
−1a

δi1κa ui 0 0
δi2κa 0 ui 0
δi3κa 0 0 ui

⎞
⎟⎟⎠ , j = 1, 2, 3,

κ = 2(γ − 1)−1 and γ is the adiabatic exponent of the medium under consideration. The
independent and dependent variables are denoted by x = (t = x0, x1, x2, x3) ∈ X ⊂ R

4 and
u = (a, �u) ∈ U ⊂ R

4, respectively, and ui stands for the first-order partial derivatives of u,
i.e. uα

i ≡ ∂uα/∂xi, α = 1, . . . , 4, i = 0, 1, 2, 3. Here, the quantity a stands for the velocity
of sound in the medium and �u is the velocity vector field of the flow. Throughout this paper,
we adopt the summation convention over repeated lower and upper indices.

The purpose of this paper is to obtain rank-k solutions of system (1.1) expressible in terms
of Riemann invariants. To this end, we seek solutions u(x) of (1.1) defined implicitly by the
following set of relations between the variables uα, rA and xi ,

u = f (r1(x, u), . . . , rk(x, u)),

rA(x, u) = λA
i (u)xi,

ker
(
λA

0 I4 + Ai (u)λA
i

) �= 0,

(1.2)

for some function f : R
k → R

4 and A = 1, . . . , k � 3. Such a solution is called a rank-k
solution if rank(uα

i ) = k. The functions rA(x, u) are called the Riemann invariants associated
with the wave vectors λA = (

λA
0 , �λA

) ∈ R
4 of the system (1.1). Here, �λA = (

λA
1 , λA

2 , λA
3

)
denotes a direction of wave propagation and the eigenvalue λA

0 is a phase velocity of the
considered wave. Two types of admissible wave vectors for the isentropic equations (1.1) are
obtained by solving the dispersion relation

det (λ0(u)I4 + λi(u)Ai (u)) = [(λ0 + �u · �λ)2 − a2�λ2](λ0 + �u · �λ)2 = 0. (1.3)

They are called the entropic (E) and acoustic (S) wave vectors and are defined by

λE = (εa + �u · �e,−�e), ε = ±1, (1.4a)

λS = (det (�u, �e, �m),−�e × �m), |�e|2 = 1, (1.4b)

where �e and �m are unit and arbitrary vectors, respectively.
The construction of rank-k solutions through the conditional symmetry method (CSM) is

achieved by considering an overdetermined system, consisting of the original system (1.1) in
four independent variables together with a set of compatible first-order differential constraints
(DCs),

ξ i
a(u)uα

i = 0, λA
i ξ i

a = 0, a = 1, . . . , 4 − k, (1.5)

for which a symmetry criterion is automatically satisfied. Such notions as conditional
symmetry, conditional symmetry algebra and conditionally invariant solution for the original
system (1.1) we use in accordance with definitions given in [10]. Under the above
circumstances, the following result holds:

The isentropic compressible ideal fluid equations (1.1) admit a (4 − k)-dimensional
conditional symmetry algebra L if and only if there exists a set of (4 − k) linearly independent
vector fields

Xa = ξ i
a(u)

∂

∂xi
, a = 1, . . . , 4 − k, ker

(
Ai (u)λA

i

) �= 0,

λA
i ξ i

a = 0, A = 1, . . . , k � 3,

(1.6)
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which satisfy on some neighborhood of (x0, u0) ∈ X × U the trace conditions

tr

(
Aμ ∂f

∂r
λ

)
= 0, (1.7a)

tr

(
Aμ ∂f

∂r
η(a1

∂f

∂r
· · · ηas)

∂f

∂r
λ

)
= 0, μ = 1, . . . , 4, (1.7b)

where

λ = (
λA

i

) ∈ R
k×4, r = (r1, . . . , rk) ∈ R

k,
∂f

∂r
=

(
∂f α

∂rA

)
∈ R

4×k,

ηas
=

(
∂λA

as

∂uα

)
∈ R

k×4, s = 1, . . . , k − 1,

and (a1, . . . , as) denotes the symmetrization over all indices in the bracket. Solutions of
the system which are invariant under the Lie algebra L are precisely rank-k solutions of the
form (1.2).

This result is a special case of the proposition in [10]. Note that these symmetries are
not symmetries of the original system, but they can be used to construct solutions of the
overdetermined system composed of (1.1) and (1.5).

For the case of rank-1 entropic solution E, the wave vector λE is a nonzero multiple
of (1.4a). Therefore, the corresponding vector fields Xi and Riemann invariant r become

Xi = −(a + �e · �u)−1ei

∂

∂t
+

∂

∂xi
, i = 1, 2, 3,

r(x, u) = (a + �u · �e)t − �e · �x, |�e|2 = 1,

(1.8)

where we chose ε = 1 in (1.4a). Rank-1 solutions invariant under the vector fields
{X1, X2, X3} are obtained through the change of coordinates

t̄ = t, x̄1 = r(x, u), x̄2 = x2, x̄3 = x3,

ā = a, ū1 = u1, ū2 = u2, ū3 = u3,
(1.9)

on R
4 × R

4. Assuming that the direction of the wave vector �e is constant, the fluid dynamics
equations (1.1) transform into the system

∂ā

∂x̄1
= κ−1ei

∂ūi

∂x̄1
,

∂ūi

∂x̄1
= κei

∂ā

∂x̄1
, i = 1, 2, 3, (1.10)

with the invariance conditions

āt̄ = āx̄j = 0, ūα
t̄ = ūα

x̄j = 0, j = 2, 3, α = 1, 2, 3. (1.11)

The general rank-1 entropic E solution takes the form

ā(t̄ , x̄) = ā(x̄1), ūi(t̄ , x̄) = κei ā(x̄1) + Ci,

Ci ∈ R, i = 1, 2, 3,
(1.12)

where the Riemann invariant x̄1 = r(x, u) is given by

r(x, u) = [(1 + κ)a + �e · �C]t − �e · �x, �C = (C1, C2, C3) ∈ R
3.

A similar procedure can be applied to the rank-1 acoustic solution S. Here, the wave
vector λS is a nonzero multiple of (1.4b) and the corresponding vector fields Xi and Riemann
invariant are

r(x, u) = det(�u, �e, �m)t−(�e×�m)·�x, Xi = (�e × �m)i

det(�u, �e, �m)

∂

∂t
+

∂

∂xi
, i = 1, 2, 3.(1.13)
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Again, the change of variables (1.9) leads to transformed dynamical equations, which we
integrate in order to find rank-1 acoustic solution of the form

ā(t̄ , x̄) = a0, ū1(t̄ , x̄) = ū1(x̄1), ū2(t̄ , x̄) = ū2(x̄1), C ∈ R,

ū3(t̄ , x̄) = (e1m2 − e2m1)
−1[C − (e2m3 − e3m2)ū

1(x̄1) − (e3m1 − e1m3)ū
2(x̄1)].

(1.14)

Here ū1 and ū2 are arbitrary functions of the Riemann invariant x̄1 = r(x, u) which has the
explicit form

r(x, u) = Ct − det(�x, �e, �m). (1.15)

In general, the overdetermined system composed of (1.7a) and (1.7b) is nonlinear and
cannot always be solved in a closed form. Nevertheless, particular rank-k solutions for many
physically interesting systems of PDEs are well worth pursuing. These particular solutions
of (1.7a) and (1.7b) can be obtained by assuming that the function f is in the form of a rational
function, which may also be interpreted as a truncated Laurent series in the variables rA. This
method can work only for equations having the Painlevé property [4]. Consequently, these
equations can be very often integrated in terms of known functions.

Applying a version of the conditional symmetry method to the isentropic model (1.1),
several new classes of solutions have been constructed in a closed form [9, 10]. Comparing
these results with those obtained via the generalized method of characteristics (GMC) [20],
it was shown that more diverse classes of solutions are involved in superpositions (i.e. rank-k
solutions) than in the case of the GMC [10].

This paper is a continuation of the papers [9, 10]. The objective is to construct bounded
elliptic solutions of the isentropic system (1.1) using the version of the CSM proposed in [10].
These types of solutions are obtained through a proper selection of differential constraints
(DCs) compatible with the initial system of equations (1.1). That is, the solution should
satisfy both the initial system (1.1) and the differential constraints (1.5). Among the new
results obtained, we have rank-2 and rank-3 periodic bounded solutions expressed in terms
of Weierstrass ℘-functions. They represent bumps, kinks and multiple waves, all of which
depend on Riemann invariants. These solutions remain bounded even when the invariants
admit a gradient catastrophe.

The paper is organized as follows. In section 2 we construct rank-2 and rank-3 elliptic
solutions of the system, among which multiple waves and doubly periodic solutions are
included, and we show that they remain bounded everywhere. Section 3 summarizes the
results obtained and contains some suggestions for future developments.

2. Rank-2 and rank-3 solutions

The construction approach outlined in section 1 has been applied to the isentropic flow
equations (1.1) in order to obtain rank-2 and rank-3 solutions. The results of our analysis are
summarized in tables 1 and 2. Several of them possess a certain amount of freedom. They
depend on one or two arbitrary functions of one or two Riemann invariants, depending on the
case. The range of the types of solutions obtained depends on different combinations of the
vector fields Xa as given in (1.6). For convenience, we denote by EiEj ,EiSj , SiSj , EiEjEk ,
etc, i, j, k = 1, 2, 3, the solutions which are the result of nonlinear superpositions of rank-1
solutions associated with different types of wave vectors (1.4a) and (1.4b). By r1, r2 and r3

we denote the Riemann invariants which coincide with the group invariants of the differential
operators Xa of the solution under consideration.
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Table 1. Rank-2 solutions with the freedom of one, two or three arbitrary functions of one or two variables. Unassigned unknown functions a(·), u(·), . . . are arbitrary functions of their
respective arguments.

No Type Vector fields Riemann invariants Solutions

1 E1S1 X1 = ∂

∂x2 − σ2
β1

∂
∂t

− β2
β1

∂

∂x1 r1 = ((1 + k)ā1(r
1) + C2)t − �e1 · �x ā = ā1(r

1) + a0, [�u2, �e2, �m2] = C

X2 = ∂

∂x3 − σ3
β1

∂
∂t

− β3
β1

∂

∂x1 r2 = Ct − [�x, �e2, �m2], [�e1, �e2, �m2] = 0 �u = kā1(r
1) + �u2(r

2), ū3
2(r

2) = C1ū
1
2(r

2)

βi = −(�e2 × �m2)i (a + �e1 · �u) + e1
i [�u, �e2, �m2] C2 = (C1e

1
1 − e1

3)
−1 a0, C, C1, C2 ∈ R

σj = −e1
1(�e2 × �m2)j + e1

j (�e2 × �m2)1, j = 2, 3

2a S1S2 X1 = ∂
∂t

+ u1 ∂

∂x1 + u2 ∂

∂x2 r1 = x1 − u1t ā = a0, ū1 = −φr2 , ū2 = φr1 ,

X2 = ∂

∂x3 r2 = x2 − u2t φ = ϕ(α1r
1 + α2r

2) + β1r
1 + β2r

2 + γ,

ū3 = ū3(r1, r2), a0, αi , βi , γ ∈ R, i = 1, 2,

2b S1S2 X1 = ∂
∂t

+ u1 ∂

∂x1 + u2 ∂

∂x2 r1 = x1 − u1t ā = a0, ū2 = ū3 = g(x1 − x2), a0 ∈ R,

X2 = ∂

∂x3 r2 = x2 − u2t ū1 = b(x1 − tg(x1 − x2), x2 − tg(x1 − x2))

2c S1S2 X2 = ∂

∂x2 − σ2
β1

∂
∂t

− β2
β1

∂

∂x1 r1 =
(

C1 +
λ1

1
λ2

1
C2

)
t − �λ1 · �x ā = a0, a0, C1, C2 ∈ R

X3 = ∂

∂x3 − σ3
β1

∂
∂t

− β3
β1

∂

∂x1 r2 =
(

C2 +
λ2

1
λ1

1
C1 + G(r1)

)
t − �λ2 · �x ū1 = 1

λ1
1
(C1 − λ1

2ū
2
1(r

1) − λ1
3ū

3
1(r

1))

βj = λ2
j [�u, �e1, �m1] − λ1

j [�u, �e2, �m2] λ
j

i = −(�ej × �mj )i −
(

λ2
3

λ2
1
η +

λ2
2

λ2
1

)
ū2

2(r
2) + C2

λ2
1

σi = λ1
1λ

2
i − λ1

i λ
2
1 G(r1) = 1

λ1
1

(
(λ1

1λ
2
2 − λ1

2λ
2
1)ū

2
1(r

1) ū2 = ū2
1(r

1) + ū2
2(r

2)

+ (λ1
1λ

2
3 − λ2

1λ
1
3)ū

3
1(r

1)
)

ū3 = ū3
1(r

1) + ηū2
2(r

2), η = λ2
1λ1

2−λ1
1λ2

2
λ1

1λ2
3−λ1

3λ2
1

3 E1E2S1 X = ∂

∂x3 − σ1
β12

∂
∂t

+ β23
β12

∂

∂x1 + β31
β12

∂

∂x2 r1 = βū1
3(r3)t−e1

1x1−e1
2x2

1−α(1+κ)t
ā = α((e1

1+e2
1)x1+(e1

2+e2
2)x2)

1−α(1+κ)t
, ū3 = u3

0

σ1 = εijke
1
i e

2
j (�e3 × �m)k r2 = −βū1

3(r3)t−e2
1x1−e2

2x2

1−α(1+κ)t
ū1 = −κα

(
((e1

1)2+(e2
1)2)x1+(e1

1e1
2+e2

1e2
2)x2

)
−ū1

3(r3)

1−α(1+κ)t

βij = (e1
j e

2
i − e1

i e
2
j )[�u, �e3, �m3] r3 = x3 − u3

0t ū2 = κα

(
e1

2

(
βū1

3(r3)t−e1
1x1−e1

2x2
)

1−α(1+κ)t

+(e2
j (�e3 × �m3)i − e2

i (�e3 × �m3)j )(a + �e1 · �u) β = (1 + κ−1)/(e1
1 − e2

1) +
e2

2

(
−βū1

3(r3)t−e2
1x1−e2

2x2
)

1−α(1+κ)t

)
+

e2
2−e1

2
e2

1−e1
1
ū1

3(r
3)

+(e1
i (�e3 × �m3)j − e1

j (�e3 × �m3)i )(a + �e2 · �u) α, u3
0 ∈ R

5
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Table 2. Rank-3 solutions. Unassigned unknown functions a(·), u(·), . . . are arbitrary functions of their respective arguments.

No Type Vector fields Riemann invariants Solutions

1 E1E2E3 X1 = ∂

∂x3 + σ1
β3

∂
∂t

+ β1
β3

∂

∂x1 + β2
β3

∂

∂x2 ri = (1 + κ)ai(r
i )t − �ei · �x, i = 1, 2, 3 ā = ā1(r

1) + ā2(r
2) + ā3(r

3)

σ1 = −[�e1, �e2, �e3] �ei · �ej = −1/κ, i �= j = 1, 2, 3 �u = κ(�e1ā1(r
1) + �e2ā2(r

2) + �e3ā3(r
3))

βi = (�e2 × �e3)i (a + �e1 · �u)

+(�e1 × �e3)i (a + �e2 · �u)

+(�e1 × �e2)i (a + �e3 · �u)

2a E1S1S2 X = e2
1

∂

∂x1 + e2
2

∂

∂x2 r1 = ((1 + k−1)f (r1) + a0 + u3
0)t − x3 ā = k−1f (r1) + a0, ū1 = sin g(r2, r3)

r2 = t − x1 sin g(r2, r3) + x2 cos g(r2, r3) ū2 =− cos g(r2, r3), ū3 = f (r1) + u3
0

∂r3

∂t
+ (f (r1) + u3

0)
∂r3

∂x3 = 0 a0, u
3
0 ∈ R

2b E1S1S2 X = e2
1

∂

∂x1 + e2
2

∂

∂x2 r1 = ((1+k−1)B+a0+u3
0)t−x3

1−(1+k−1)At
ā = k−1(Ar1 + B) + a0,

r2 = t − x1 sin g(r2, r3) + x2 cos g(r2, r3) ū1 = sin g(r2, r3), ū2 = − cos g(r2, r3)

r3 = �
[ 1

A
(A(ka0 − u3

0)t + x3 − ka0 − B)((1 + k)At − k)−k/k+1
]

ū3 = Ar1 + B + u3
0, a0, u

3
0 ∈ R

2c E1S1S2 X = ∂

∂x3 r1 = (k−1f (r1) + a0)t − x1 cos f (r1) − x2 sin f (r1) ā = k−1f (r1) + a0, ū1 = sin f (r1)

r2 = −t cos f (r1) − x2 ū2 = − cos f (r1), a0 ∈ R

r3 = −t sin f (r1) + x1 ū3 = g(r2 cos f (r1) + r3 sin f (r1))

6
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The arbitrary functions appearing in the solutions listed in tables 1 and 2 allow us to
change the geometrical properties of the governed fluid flow in such a way as to exclude the
presence of singularities. This fact is of special significance since, as is well known [16, 21], in
most cases, even for arbitrary smooth and sufficiently small initial data at t = t0 the magnitude
of the first derivatives of Riemann invariants becomes unbounded in some finite time T. Thus,
solutions expressible in terms of Riemann invariants usually admit a gradient catastrophe.
Nevertheless, we have been able to show that it is still possible in these cases to construct
bounded solutions expressed in terms of elliptic functions, through the proper selection of
the arbitrary functions appearing in the general solution. For this purpose it is useful to
select DCs corresponding to a certain class of the nonlinear Klein–Gordon equation which is
known to possess rich families of bounded solutions [1]. We choose elliptic solutions of the
Klein–Gordon equation because a group theoretical analysis has already been performed [22].
The obtained results can be adapted to the isentropic ideal compressible fluid flow in (3 + 1)

dimensions. Thus, we specify the arbitrary function(s) appearing in the general solutions
listed in tables 1 and 2, say φ, to the differential constraint in the form of the Klein–Gordon
φ6-field equation in three independent variables r1, r2 and r3 which form the coordinates of
the Minkowski space M(1, 2)

φr1r1 − φr2r2 − φr3r3 = cφ5, c ∈ R. (2.1)

Here, we choose r1 to be timelike and r2, r3 to be spacelike coordinates. It is well known (see,
e.g. [22]) that equation (2.1) is invariant with respect to the similitude Lie algebra sim(1, 2)

involving the following generators:

D = ri∂ri − 1
2φ∂φ, Pi = ∂ri , i = 1, 2, 3,

Lab = ra∂rb − rb∂ra , a �= b = 2, 3,

K1a = −(r1∂ra − ra∂r1), a = 2, 3,

(2.2)

where D denotes a dilation, Pi represents translations, Lab stands for rotations and K1a for
Lorentz boosts. A systematic use of the subgroup structure [22] of the invariance group
of (2.1) allows us to generate all symmetry variables ξ in terms of the Riemann invariants
r1, r2, r3. We concentrate here only on the case when symmetry variables are invariants of the
assumed subgroups Gi of Sim(1, 2) having generic orbits of codimension one. For illustration
purposes, we perform a symmetry reduction analysis on four selected members of the list of
subalgebras given in ([22], table 4) which involve dilations. For each selected subalgebra
in Minkowski space M(1, 2), we compute the group invariants ξ of the corresponding Lie
subgroup and reduce equation (2.1) to a second-order ODE. The application of the symmetry
reduction method to equation (2.1) leads to solutions of the form

φ(r) = α(r)F (ξ(r)), r = (r1, r2, r3), (2.3)

where the multiplier α(r) and the symmetry variable ξ(r) are given explicitly by group
theoretical considerations and F(ξ) satisfies an ODE obtained by substituting (2.3) into
equation (2.1). The results of our computation are listed below.

1. {D,P1} : α = {4c[(r2)2 + (r3)2]}−1/4, ξ = 1

2
arctan

r3

r2
, F ′′ + F + F 5 = 0,

2. {D,L31} : α = {−c(r1)2/4}−1/4, ξ = (r2)2 + (r3)2

(r1)2
,

ξ(1 + ξ)F ′′ +

(
2ξ +

3

2

)
F ′ +

3

16
F + F 5 = 0,

7
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3.

{
D +

1 + q

q
K12, L23

}
: α =

{
− (2q + 1)

c

}1/4

(r1 + r2)q/2,

ξ = [(r1)2 − (r2)2 − (r3)2](r1 + r2)q,

F ′′ +
3q + l

2q + 1

1

ξ
F ′ + F 5 = 0, q = −l/3, l − 2, 4 − 3l, l ∈ Z

+,

4.

{
D +

1

2
K12, L1 − K13

}
: α = (9/4C)1/4{r2 − (r1 + r3)2/4}−1/2,

ξ = 6(r3 − r1) + 6r2(r1 + r3) − (r1 + r3)3

8(r2 − (r1 + r3)2/4)3/2
, (1 + ξ 2)F ′′ +

7

3
F ′ +

1

3
F + F 5 = 0.

(2.4)

The parity invariance of (2.1) suggests the substitution

F(ξ) = [H(ξ)]1/2

which transforms the equations listed in (2.4) to

{D,P1} H ′′ = H ′2

2H
− 2(H + H 3), (2.5)

{D,L31} H ′′ = H ′2

2H
− 1

ξ(1 + ξ)

[(
2ξ +

3

2

)
H ′ +

3

8
H + 2H 3

]
, (2.6)

{
D +

1 + q

q
K12, L23

}
H ′′ = H ′2

2H
−

[
m

ξ
H ′ + 2H 3

]
, m = 3q + l

2q + 1
= (0, 4/3, 2), (2.7)

{
D +

1

2
K12, L1 − K13

}
H ′′ = H ′2

2H
− 1

1 + ξ 2

[
7

3
ξH ′ +

2

3
H + 2H 3

]
, (2.8)

where the three admissible values for the scalar m come from group theoretical considerations
[22]. Each of these four equations possesses a first integral

K ′ = 1

4
Gg2 (gH)′2

gH
− c0

4
(gH)3 − 3e0gH, (2.9)

in which the four sets of functions G, g and constants e0, c0 obey the respective conditions

G = −3c0

4
, g2 = 4e0

c0
,

G = −3c0

4
ξ(ξ + 1), g2 = −64e0

c0
ξ,

G = −3c0

4
, (a, e0, g

2) = (0, 0, k1), (4/3, 0, k1ξ
4/3),

(
2, e0,−16e0

c0
ξ 2

)
,

G = −3c0

4
(ξ 2 + 1), g = k1(1 + ξ 2)1/3, e0 = 0

(k1 denotes an arbitrary nonzero real constant). Under a transformation (H, ξ) → (U, ζ )

which preserves the Painlevé property,

H(ξ) = U(ζ )/g(ξ),

(
dζ

dξ

)2

= 1

Gg2
,

equation (2.9) becomes autonomous

U ′2 − c0U
4 − 12e0U

2 − 4K ′U = 0, c0 �= 0.

8
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When K ′ = 0, U−1 is either a sine, cosine, hyperbolic sine or a hyperbolic cosine function,
depending on the signs of the constants, therefore bounded solutions are easily characterized.

When K ′ �= 0, it is convenient to first integrate this elliptic equation in terms of the
Weierstrass function ℘(ζ, g2, g3),

U(ζ ) = K ′

℘(ζ ) − e0
, g2 = 12e2

0, g3 = −8e3
0 − c0K

′2,

℘ ′2 = 4(℘ − e1)(℘ − e2)(℘ − e3) = 4℘3 − g2℘ − g3

(where we abbreviate ℘(ζ, g2, g3) by ℘(ζ )) then to use the classical formulae which connect
℘ and various bounded Jacobi functions.

This correspondence is quite easy to write down if one uses the symmetric notation of
Halphen [14] to represent the Jacobi functions. Halphen introduces three basis functions

hα(u) =
√

℘(u) − eα, α = 1, 2, 3,

and the connection between the Weierstrass ℘ function and the Jacobi copolar trio cs, ds, ns
is given by [14, p 46]

cs(z|k)

h1(u)
= ds(z|k)

h2(u)
= ns(z|k)

h3(u)
= u

z
= 1√

e1 − e3
, k2 = e2 − e3

e1 − e3
,

where k is the modulus of the Jacobi elliptic functions. For full details on Halphen’s symmetric
notation, see [15]. We give here explicit solutions in terms of the Weierstrass function, leaving
the conversion to Jacobi’s notation to the reader. These solutions are obtained by convenient
choices of the normalization constants e0, c0,K

′, k1.
With the normalization e0 = −1/3, c0 = −4/3,K ′ = C, the general solution of (2.5) is

F 2(ξ) = C

℘(ξ) + 1/3
, ζ = ξ, g2 = 4

3
,

g3 = 8

27
+

4

3
C2, C ∈ R.

(2.10)

With the normalization e0 = k−2
0

/
48, c0 = −(4/3)k−2

0 ,K ′ = C, the solution of (2.6) has the
form

F 2(ξ) = Cξ−1/2

℘(ζ ) − 1
48k2

0

, ζ = −2k0argth
√

ξ + 1,

g2 = 1

192k4
0

, g3 = − 1

13824k6
0

+
4C2

3k2
0

,

with k0, C ∈ R.
The three cases for equation (2.7) associated with the subalgebra

{
D + 1+q

q
K12, L23

}
yield

the respective solutions

q = −k/3 : F 2(ξ) = C

℘(ξ)
, ζ = ξ, g2 = 0, g3 = 4C2

3
,

q = 4 − 3k : F 2(ξ) = Cξ−2/3

℘(ζ )
, ζ = 3k0ξ

1/3, g2 = 0, g3 = 4C2

3k2
0

,

q = k − 2 : F 2(ξ) = Cξ−1

℘(ζ ) − 1
12k2

0

, ζ = k0 log ξ, g2 = 1

12k4
0

, g3 = − 1

216k6
0

+
4C2

3k2
0

.

Finally, equation (2.8) integrates as (equation (4) in (2.4))

F 2(ξ) = C(ξ 2 + 1)−1/3

℘(ζ )
, ζ = ξ 2F1

(
1

2
,

5

6
; 3

2
;−ξ 2

)
, g2 = 0, g3 = 4C2

3k2
0

,

where 2F1 denotes the hypergeometric function.

9
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Using these results, we construct bounded rank-3 solutions of equations (1.1). For this
purpose, for each general solution appearing in tables 2 and 3, we introduce the arbitrary
functions into the Klein–Gordon equation (2.1) and select only the solutions expressed in
terms of the Weierstrass ℘-function.

For illustration, let us now discuss the case of the rank-3 entropic solution E1E2E3 which
represents a superposition of three rank-1 entropic solutions Ei given by (1.12). We assume
that the entropic wave vectors λE1 , λE2 and λE3 are linearly independent and take the form

λEi = (a + �ei · �u,−�ei), |�ei |2 = 1, i = 1, 2, 3.

Hence the corresponding vector field X and Riemann invariants are given by

X = ∂

∂x3
− [�e1, �e2, �e3]

β3

∂

∂t
+

β1

β3

∂

∂x1
+

β2

β3

∂

∂x2
, ri(x, u) = (a + �ei · �u)t − �ei · �x, (2.11)

where βi = (�e2 × �e3)i(a + �e1 · �u) + (�e1 × �e3)i(a + �e2 · �u) + (�e1 × �e2)i(a + �e3 · �u). The rank-3
entropic solutions invariant under the vector field X are obtained through the change of
coordinates

t̄ = t, x̄1 = r1(x, u), x̄2 = r2(x, u), x̄3 = r3(x, u),

ā = a, ū1 = u1, ū2 = u2, ū3 = u3,
(2.12)

on R
4 × R

4. Specifying the form of the solution as a linear superposition of rank-1
solutions (1.12),

ā = ā1(r
1) + ā2(r

2) + ā3(r
3), �u = κ(�e1ā1(r

1) + �e2ā2(r
2) + �e3ā3(r

3)), (2.13)

the fluid dynamics equations (1.1) transform to

2∑
i=1

3∑
j=i+1

[κ(�ei · �ej )2 + (1 − κ)(�ei · �ej ) − 1]ā′
i (r

i)ā′
j (r

j ) = 0, (2.14)

while the invariance conditions have the form

āt̄ = ū1
t̄ = ū2

t̄ = ū3
t̄ = 0. (2.15)

This solution exists if and only if the three entropic wave vectors �e1, �e2, �e3 intersect at a certain
specific angle given by

cos φij = − 1

κ
, i �= j = 1, 2, 3,

where φij denotes the angle between the wave vectors �ei and �ej [10, 20]. Imposing the
condition that each of the functions āi (r

i), i = 1, 2, 3 obeys the ODE

F ′′ + F + F 5 = 0,

then according to (2.10), the rank-3 entropic solution takes the form

a =
3∑

i=1

Ci(
℘

(
ri, 4

3 , 8
27 + 4

3C4
i

)
+ 1

3

)1/2 , �u = κ

3∑
i=1

Ci
�λi(

℘
(
ri, 4

3 , 8
27 + 4

3C4
i

)
+ 1

3

)1/2 ,

ri = −(1 + κ)
Ci(

℘
(
ri, 4

3 , 8
27 + 4

3C4
i

)
+ 1

3

)1/2 t + �λi · �x, i = 1, 2, 3.

(2.16)

Making use of an explicit expression for the zeros of the ℘-function, we show that the values
for which the denominator in solution (2.16) vanish are not located on the real axis for a
specific choice of the constants of integration Ci . Then we have the following result.

10
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Table 3. Bounded real solutions for the nonscattering solution E1E2E3 obtained by submitting the arbitrary functions to the various reductions (2.5)–(2.8) of the Klein–Gordon
equation (2.1).

No Riemann invariants Solution Type and comments

1 ri = −(1 + κ)
Ci(

℘
(
ri , 4

3 , 8
27 + 4

3 C4
i

)
+ 1

3

)1/2 t + �λi · �x a =
3∑

i=1

Ci(
℘

(
ri , 4

3 , 8
27 + 4

3 C4
i

)
+ 1

3

)1/2 Periodic solution

�u = κ

3∑
i=1

Ci
�λi(

℘
(
ri , 4

3 , 8
27 + 4

3 C4
i

)
+ 1

3

)1/2 Ci ∈ R

2a ri = −(1 + κ)

⎛
⎜⎝ Ci

℘

(
ri ,0,

4C2
i

3

)
⎞
⎟⎠

1/2

t + �λi · �x a =
3∑

i=1

⎛
⎜⎜⎝ Ci

℘

(
ri , 0,

4C2
i

3

)
⎞
⎟⎟⎠

1/2

, �u = κ

3∑
i=1

⎛
⎜⎜⎝ Ci

℘

(
ri , 0,

4C2
i

3

)
⎞
⎟⎟⎠

1/2

�λi Periodic solution

Ci > 0

2b ri = −(1 + κ)

⎛
⎜⎝ Ci (r

i )−2/3

℘(ζi ,0,
4C2

i

3k2
0

)

⎞
⎟⎠

1/2

t + �λi · �x a =
3∑

i=1

⎛
⎜⎝ Ci(r

i )−2/3

℘(ζi , 0,
4C2

i

3k2
0
)

⎞
⎟⎠

1/2

, �u = κ

3∑
i=1

⎛
⎜⎝ Ci(r

i )−2/3

℘(ζi , 0,
4C2

i

3k2
0
)

⎞
⎟⎠

1/2

�λi Bump

ζi = 3k0(r
i )1/3 k0 ∈ R, Ci > 0

2c ri=−(1+κ)

(
Ci (r

i )−1(
℘

(
ζi ,12e2

0 ,−8e3
0+16C2

i
e0

)
−e0

)
)1/2

t+�λi ·�x a =
3∑

i=1

(
Ci(r

i )−1(
℘

(
ζi , 12e2

0, −8e3
0 + 16C2

i e0
) − e0

)
)1/2

Bump

ζi = k0 ln ri �u =
3∑

i=1

κ

(
Ci(r

i )−1(
℘

(
ζi , 12e2

0,−8e3
0 + 16C2

i e0
) − e0

)
)1/2

�λi e0,∈ R, Ci > 0

3 ri = −(1 + κ)

⎛
⎜⎝ Ci ((r

i )2+1)−1/3

℘

(
ζi ,0,

4C2
i

3k2
0

)
⎞
⎟⎠

1/2

t + �λi · �x a =
3∑

i=1

⎛
⎜⎜⎝Ci((r

i )2 + 1)−1/3

℘

(
ζi , 0,

4C2
i

3k2
0

)
⎞
⎟⎟⎠

1/2

Kink

ζi = ri
2F1

(
1
2 , 5

6 ; 3
2 ; −(ri )2

)
�u = κ

3∑
i=1

⎛
⎜⎜⎝Ci((r

i )2 + 1)−1/3

℘

(
ζi , 0,

4C2
i

3k2
0

)
⎞
⎟⎟⎠

1/2

�λi k0, ∈ R, Ci > 0

11
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If the constants of integration Ci are equal to
√

19/6, then the elliptic rank-3 entropic
solution (2.16) of the isentropic ideal compressible fluid flow equations (1.1) is bounded.

Indeed, according to recent results obtained by Duke and Imamoglu in [6], the location
of the zeros of the ℘-function can be given explicitly in terms of generalized hypergeometric
functions.

Considering a lattice L = Z + τZ, Imτ > 0, the doubly periodic Weierstrass ℘-function
is defined by

℘(z; τ) = 1

z2
+

∑
ω �=0

(
1

(z − ω)2
− 1

ω2

)
,

where the sum ranges over all ω ∈ L. Note that the ℘-function assumes every value of the
extended complex plane exactly twice in L and since it is even, its zeros are of the form ±z0.
The value of z0 can be determined from the following theorem.

Theorem [6]. The zeros ±z0 of the ℘-function are given by

z0 = 1 + τ

2
+

c2s
1/4

3F2
(

1
3 , 2

3 , 1; 3
4 , 5

4 ; s
)

2F1
(

1
12 , 5

12 ; 1; 1 − s
) , c2 = − i

√
6

3π
, |s| < 1, |1 − s| < 1,

(2.17)

where pFq denotes the generalized hypergeometric functions and s is a function of the modular
discriminant � and the Eisenstein series E4,

s = 1 − 1728�

E3
4

, �(τ) = q
∏
n�1

(1 − qn)24,

E4(τ ) = 1 + 240
∞∑

n=1

n3qn

1 − qn
, q = e2π iτ .

(2.18)

It is understood that the principal branch is to be taken in the radical expression s1/4.

We now illustrate the application of this theorem by showing that the function ℘(z, 4/3, 1)

is always strictly positive for real z. This case is the specific case of solution (2.10) for which
C = √

19/6. From given invariants g2 and g3, by finding the roots e1, e2, e3 of the cubic
polynomial 4t3 − g2t − g3, one can determine the values of the periods ω1 and ω2. In the case
when g2 = 4/3 and g3 = 1, we obtain the periods ω1 = 2.81 and ω2 = 1.405 + i2.902, hence
τ = ω2/ω1 = 0.5 + i1.033.

For any pair of periods ω1, ω2, the lattice ω1Z + ω2Z can be rescaled in such a way that
ω1 is normalized to 1 by using the well-known formula for the ℘-function

℘(z, ω1, ω2) = ℘(z/ω1, ω2/ω1)/ω
2
1. (2.19)

Introducing the numeric value of τ into (2.18), we can evaluate from (2.17) and (2.19) the
zeros of the Weierstrass function ℘(z, 4/3, 1), z0 = ±(1.405 + i0.929), which are indeed
complex. Note that the ℘-function always possesses a double pole at z = 0 and that it tends
to +∞ at this point. Since it is continuous for all real z ∈ (0, ω1), this implies that it must
always be strictly positive. Hence, ℘(z, 4/3, 1) + 1/3 > 0 on the real interval (0, ω1) and the
function (℘ (z, 4/3, 1) + 1/3)−1 is therefore bounded for all real z. Choosing the constants
Ci as values of the initial constant C for which solution (2.10) is bounded then guarantees the
boundedness of functions a and �u in solution (2.16). Therefore, solution (2.16) is bounded
everywhere, even when the Riemann invariants ri admit the gradient catastrophe. A similar
analysis can be applied to every solution presented in table 3 to show that they are bounded.

12
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This can be accomplished by the same procedure as presented above through the use of the
theorem from [6].

This solution is physically interesting since it remains bounded for every value of the
Riemann invariants ri . Thus, it represents a bounded solution with periodic flow velocities.
Similarly, it is possible to submit the arbitrary functions of the differential equations no 2, 3, 4
listed in (2.4) to obtain other types of bounded solutions. Table 3 presents these various types
of solutions with their corresponding Riemann invariants. They are all bounded solutions of
periodic, bump or kink type. Note that these solutions of (1.1) admit gradient catastrophes at
some finite time. Hence, some discontinuities can occur like shock waves [5, 13]. Note also
that the solutions remain bounded even when the first derivatives of ri tend to infinity after
some finite time T. However, after time T, the solution cannot be represented in parametric
form by the Riemann invariants and ceases to exist.

3. Concluding remarks

The methods presented in this paper can be applied quite broadly and can usually provide at
least certain particular solutions of hydrodynamic type equations. The conditional symmetries
refer to the symmetries of the overdetermined system obtained by subjecting the original
system (1.1) to certain differential constraints defined by setting the characteristics of the
vector fields Xa to zero. The conditional symmetries are not symmetries of the original
system (1.1). However, they are used to construct classes of rank-3 solutions of this system
which are not obtainable by the classical symmetry approach. Among the new results obtained,
we have rank-2 and rank-3 periodic solutions expressed in terms of the Weierstrass ℘-function
that we have shown to be bounded over the real axis. They represent bumps, kinks and
multiple-wave solutions, all of which depend on Riemann invariants. These solutions remain
bounded even when the invariants admit the gradient catastrophe.

Among the questions that one may ask is what role do exact analytical solutions play in the
physical interpretation. One possible response is that such solutions may display qualitative
behavior which would otherwise be difficult to detect numerically or by approximations.
For example, the doubly periodic properties of certain solutions expressed in terms of the
Weierstrass ℘ function would not be very easily seen numerically.

One could also inquire about the stability property of the obtained solutions. Indeed,
solutions which possess the property of stability should be observable physically and such
analysis could be the starting point for perturbative computations. This task will be undertaken
in a future work.
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equations The Painlevé Property, One Century Later (CRM Series in Mathematical Physics) ed R Conte
(New York: Springer) pp 591–660

[4] Conte R and Musette M 2008 The Painlevé Handbook (New York: Springer)
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