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Abstract

This paper is concerned with a system that couples the incompressible Navier-Stokes
equations to the Vlasov-Fokker-Planck equation. Such a system arises in the modeling of
sprays, where a dense phase interacts with a disperse phase. The coupling arises from the
Stokes drag force exerted by a phase on the other. We study the global-in-time existence
of classical solutions for data close to an equilibrium. We investigate further regularity
properties of the solutions as well as their long time behavior. The proofs use energy
estimates and the hypoelliptic structure of the system.

1 Introduction

We are concerned with the following PDEs system

ut + u · ∇xu+∇xp−4xu =
∫
R3

(v − u)F dv, (t, x) ∈ R+×T3, (1.1)

∇x · u = 0, (1.2)

Ft + v · ∇xF + divv
(
(u− v)F −∇vF

)
= 0, (t, x, v) ∈ R+×T3×R3 . (1.3)

The system is completed by the initial data:

u|t=0 = u0, ∇x · u0 = 0, F |t=0 = F0, (1.4)
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and we assume periodic boundary conditions with respect to the variable x ∈ [−π, π]3 = T3.
The system is intended to describe the interactions of particles —- droplets or bubbles —- with
a viscous and incompressible fluid. The fluid is described by its velocity field u(t, x) ∈ R3, and
its pressure p(t, x), which are both function of the time variable t ≥ 0 and the space variable
x = (x1, x2, x3) ∈ T3. The particles are described by their distribution function in phase
space which depends additionally on the velocity variable v = (v1, v2, v3) ∈ R3: at time t,
F (t, x, v) dv dx gives the number of particles having their position in the infinitesimal domain
centered on x with volume dx with velocity in the domain centered on v with volume dv. It
is assumed that the presence of particles does not affect the density of the fluid, supposed
to be constant, and collisions between particles are neglected. The coupling between the two
phases is only due to the drag force, which is proportional to the relative velocity (u − v).
Here we restrict to the simplest situation where the drag force is linear with respect to the
relative velocity. This framework corresponds to the modeling of the so-called thin sprays
at moderate Reynolds number. As a matter of fact, we observe that certain quantities are
conserved or dissipated:

Mass conservation:
d

dt

∫
T3×R3

F dx dv = 0, (1.5)

Momentum conservation:
d

dt

(∫
T3
u dx+

∫
T3×R3

vF dx dv

)
= 0, (1.6)

Energy/Entropy dissipation:
d

dt

∫
T3

(
|u|2

2
+
∫
R3

(F lnF +
|v|2 +M0

2
F ) dv

)
dx

+
∫
T3×R3

|(u− v)F −∇vF |2

F
dx dv +

∫
T3
|∇xu|2 dx = 0, (1.7)

with M0 ∈ R any constant. Of course, the analysis of (1.1)-(1.4) utilizes strongly these
remarkable properties.

We refer to [28] or [31] for an introduction to the physical background. In fact a large
variety of models can be used for modeling sprays, depending on the physical properties of
the flows: compressible or incompressible fluid, viscous or inviscid fluid equations (which
might sound strange since the viscosity enters in the definition of the drag force, but it can
be justified on scaling arguments), with or without thermal diffusion acting on the particles...
Anyway, the mathematical analysis remains difficult since the systems always couple nonlinear
evolution equations for unknowns that do not depend on the same set of variables. Concerning
the system (1.1)-(1.4), the global existence of weak solutions without the Fokker-Planck term
is due to [18], in the case without convection, revisited in [3]. The compressible case is
investigated in [25]. Scaling and stability issues are discussed in [14, 15, 5, 26]. Another
viewpoint consists in investigating the local in time well-posedness; we refer to [1, 24] for
results in this spirit. We also mention the traveling wave analysis in [11, 12]. Here, we

adopt a different strategy. We start by remarking that u = 0, f = Me−
|v|2
2 with M ≥ 0,

is a (equilibrium) solution of (1.1)-(1.4). Then we are interested in solutions which are
perturbations of the equilibrium state. To be more specific, without loss of generality, we
consider the normalized Maxwellian

µ(v) =
1

(2π)3/2 |T |3
e−v

2/2
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and we look at solutions of (1.3) which read

F = µ+
√
µf. (1.8)

Plugging (1.8) into (1.1), we obtain the following new system for (u, f):

ut + u · ∇xu+∇xp−4xu+ u+ u

∫
R3

√
µf dv −

∫
R3
v
√
µf dv = 0, (1.9)

∇x · u = 0, (1.10)

ft + v · ∇xf + u · (∇vf −
v

2
f)− u · v√µ = −|v|

2

4
f +

3
2
f +4vf. (1.11)

In what follows, we shall consider the global existence of classical small solutions to (1.9)–
(1.11) together with the initial datum

u|t=0 = u0, f |t=0 = f0, (1.12)

which is requested to satisfy∫
T3
u0 dx+

∫
T3×R3

v
√
µf0 dv dx = 0, and ∇ · u0 = 0. (1.13)

This assumption will be crucial to the analysis. According to (1.6), it means that the per-
turbation has a vanishing momentum since we have

d

dt

(∫
T3
u dx+

∫
T3×R3

v
√
µf dv dx

)
= 0.

Similarly, if we assume further ∫
T3×R3

√
µ f0 dv dx = 0, (1.14)

then the perturbation does not affect the global mass.
The use of fine energy estimates will lead to the global existence of smooth solutions, at the

price of a smallness condition on the perturbation. This approach is in the spirit of the striking
results [16, 17] for the Boltzmann and Landau equations. We also mention the analysis of
viscoelastic flows and polymeric fluids [20, 21, 22, 23]. We address three questions: firstly,
the global existence of a smooth solution, small perturbation of an equilibrium; secondly, we
discuss the asymptotic trend to the equilibrium, with an exponential rate and thirdly, we
investigate further regularity issues. The paper is organized as follows. In section 2 we set
up the needed notation and we give the statements of our main results. Section 3 is devoted
to the existence theory. Section 4 deals with the large time behavior. The analysis relies
on the dissipative properties of the system, or more precisely on its hypocoercive structure,
which allows to appeal to the strategy detailed in [30]. This strategy has already been applied
successfully to many situations, see e. g. [10, 27]. Eventually, we discuss in Section 5 the
smoothing effect of the system. This Section is based on hypoellipticity arguments, according
to methods presented in [2] and further developed for many applications in plasmas physics
[6, 7, 8, 19].
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2 Notation and statements of the main results

We start by introducing the notation that will be used throughout the paper. Let α =
(α1, α2, α3) ∈ N3 be a multi-index. The length of the multi-index is defined by |α| = α1 +
α2 + α3. We denote by ∂α the corresponding space derivative

∂α = ∂α1
x1

∂α2
x2

∂α3
x3
.

Similarly, for the velocity variable, we denote

∂αv = ∂α1
v1 ∂α2

v2 ∂α3
v3 .

Given two muti-indices α and β, with βi ≤ αi, we denote(
α
β

)
=

3∏
i=1

αi!
βi!(αi − βi)!

.

The same notation
〈
·, ·
〉

stands for the standard L2 inner product on R3 or on T3×R3:

〈
f, g
〉

=
∫
T3
fg dx or

〈
f, g
〉

=
∫
T3×R3

fg dv dx.

We denote by ‖ · ‖L2 the corresponding norms. Equally, given s ∈ N, ‖ · ‖Hs represents the
usual Sobolev norm either on R3 or on T3×R3, based on the L2 norm of all derivatives,
with respect to all variables, up to order s. For a function φ : T3×R3 → R, we shall need
the partial Sobolev norm

|φ|s =


∫
T3×R3

∑
|α|≤s

|∂αφ|2 dx dv


1
2

.

Eventually, we use the convention that the same letter C represents constants the value of
which might vary from a line to another, but bearing in mind it is uniform with respect to
the data.

Coming back to (1.9)-(1.11), it is convenient to define the mean fluid velocity

ū(t) def=
1
|T |3

∫
T3
u(t, x) dx.

Averaging (1.9), we check that

ūt + ū+
1
|T3 |

∫
T3
u

∫
R3

√
µf dv dx− 1

|T3 |

∫
T3×R3

v
√
µf dv dx = 0.

However, the momentum conservation (1.6) together with the condition (1.13) imply that

−
∫
T3×R3

v
√
µf dv dx =

∫
T3
u dx.
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Hence the evolution equation for ū recasts as

ūt + 2ū+
1
|T3 |

∫
T3
u

∫
R3

√
µf dv dx = 0. (2.15)

We are now ready to state our main results. We begin with the global existence of classical
solutions for small initial data.

Theorem 2.1 Let s ≥ 2 be an integer. Let (u0, f0) satisfy (1.13). Then, there exists a
sufficiently small constant ε such that if

‖u0‖2Hs + |f0|2s ≤ ε, (2.16)

holds, then (1.1)-(1.4) has a unique global classical solution (u, F ) with F = µ +
√
µf ≥ 0

satisfying

sup
t≥0

(‖u(t)‖2Hs + |f(t)|2s) +
∫ t

0

[
|ū|2 + ‖∇xu‖2Hs +

∣∣√µu− (∇vf +
v

2
f)
∣∣2
s

]
dτ ≤ Cε. (2.17)

Furthermore, if (2.16) holds with s ≥ 3, then for any positive time t ≥ t0 > 0, we have

sup
t≥t0

(
‖u(t)‖2Hs + ‖f(t)‖2Hs + ‖vf(t)‖2Hs−1

)
+
∫ t+1

t

[∥∥∇vf +
v

2
f
∥∥2

Hs +
∥∥v ⊗∇vf +

v ⊗ v
2

f
∥∥2

Hs−1

]
dτ ≤ C(t0, ε), (2.18)

where C(t0, ε) blows up as t0 goes to 0.

The second result is concerned with the large time convergence to equilibrium.

Theorem 2.2 There exists ε0 > 0 and λ > 0 such that for any initial data verifying (1.13),
(1.14) and (2.16) with s ≥ 3 and 0 < ε < ε0, the following estimate of exponential convergence
holds:

‖u(t)‖2L2 + ‖f(t)‖2L2 ≤ C(t0, ε)e−λt,

for any t ≥ t0 > 0, with a positive constant C(t0, ε).

Estimate (2.18) already indicates that the system has an instantaneous smoothing effect.
A statement with a slightly different flavor can be obtained, by reasoning directly on the
original system (1.1)-(1.3) and by exploiting the hypoelliptic structure of the Fokker-planck
equation, in the spirit of [2].

Theorem 2.3 Let (u, F ) be a (local) solution to (1.1)-(1.4). If the initial data u0 and F0

satisfy for some integers n ≥ 3 and q ≥ 2 the following estimate

‖u0‖2Hq + |F0〈v〉n|2q <∞,

where 〈v〉 = (1 + |v|2)
1
2 , then, there exists a time T > 0 such that for all 0 < t? < T? < T ,

the solution (u, F ) of (1.1)-(1.4) satisfies:

sup
t?≤t≤T?

(‖u(t)‖2Hq + ‖F (t)〈v〉n−3‖2Hq) +
∫ T?

t?

[
‖u‖2Hq+1 + ‖F 〈v〉n−3‖2Hq+1

]
dτ

≤ C(T, ‖u0‖Hq , |F0〈v〉n|q) <∞. (2.19)
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Remark 2.1 This statement can be applied to the solutions obtained in Theorem 2.1 and it
shows that these solutions become immediately smooth with respect to all variables. Indeed,
(2.17) implies that, for s ≥ 3 and for any integer n and some T > 0,

sup
0≤t≤T

(‖u(t)‖2Hs + |F (t)〈v〉n|2s) ≤ C(1 + ε).

Thus, (2.19) implies the smoothness of the solution for any positive time.

3 Global existence and regularity theory

In this section we present the proof of Theorem 2.1. It uses the conservation and dissipation
properties (1.5)-(1.7). The proof splits into two parts. Firstly, we detail the derivation of
(2.17) which is the key estimate for justifying the global existence of solutions. Secondly, we
prove the strengthened regularity estimate (2.18).

3.1 Existence of global solutions to (1.9)-(1.12)

It is well-known that the existence of solutions to a nonlinear PDE can be obtained by con-
structing solutions to approximated problems and proving estimates which are uniform with
respect to the approximation parameter. For (1.9)-(1.13), one can construct such approx-
imate solutions via Galerkin’s approximation, like in [22]. For simplicity, we do not detail
this part. Instead, we assume that there is a positive time T such that (1.9)-(1.12) has a
unique smooth enough solution on [0, T ], and we shall present the a priori estimates for such
solutions. Obtaining estimates uniform with respect to T allows to construct global solutions.
The main issue is summarized in the following claim.

Proposition 3.1 Let s ≥ 2. Let (u, f) be a solution of (1.9)-(1.13). We have

1
2
d

dt

(
‖u‖2Hs + |f |2s + |ū|2

)
+ ‖∇u‖2Hs + 2|ū|2 +

∣∣∣u√µ−∇vf − v

2
f
∣∣∣2
s

≤ C(|f |s + ‖u‖Hs)
(
‖∇u‖2Hs + |ū|2 +

∣∣∣u√µ−∇vf − v

2
f
∣∣∣2
s

)
. (3.20)

Proof. The proof is based on energy estimates. Let s ≥ 2 be a positive integer and let
α ∈ N3 with |α| ≤ s. We first apply ∂α to (1.9), then multiply the resulting equation by
∂αu, and integrate over T3. We get

1
2
d

dt
‖∂αu‖2L2 + 〈∂α(u · ∇u), ∂αu〉+ ‖∇∂αu‖2L2 + ‖∂αu‖2L2

+
〈
∂α
(
u

∫
R3

√
µf dv

)
, ∂αu

〉
−
〈∫

R3
v
√
µ∂αf dv, ∂αu

〉
= 0. (3.21)

Similar arguments applied to (1.11) yield

1
2
d

dt
‖∂αf‖2L2 +

〈
∂α
(
u ·
(
∇vf −

v

2
f
))
, ∂αf

〉
−
〈
∂αu · v√µ, ∂αf

〉
= −

∥∥∥∇v∂αf +
v

2
∂αf

∥∥∥2

L2
. (3.22)
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Note that ∇·u = 0, and thus integrating by parts we have
〈
u·∇xu, u

〉
= 0. Since s ≥ 2 > 3/2,

we can estimate as follows∣∣〈∂α(u · ∇xu), ∂αu
〉∣∣ =

∣∣〈∂α(u · ∇u)− u · ∂α∇xu, ∂αu
〉∣∣ ≤ C‖u‖Hs‖∇u‖2Hs .

Furthermore, since µ is normalized and satisfies ∇v
√
µ = −v

2

√
µ, by using an integration by

parts we obtain

‖∂αu‖2L2 − 2
〈
∂αu · v√µ, ∂αf

〉
+
∥∥∇v∂αf +

v

2
∂αf

∥∥2

L2

=
∥∥∂αu√µ−∇v∂αf − v

2
∂αf

∥∥2

L2 .

We can also write 〈
∂α
(
u

∫
R3

√
µf dv

)
, ∂αu

〉
+
〈
∂α
(
u ·
(
∇vf −

v

2
f
))
, ∂αf

〉
=
〈
∂α(uf), ∂αu

√
µ−∇v∂αf −

v

2
∂αf

〉
.

Then owing to (3.21) and (3.22), we are led to

1
2
d

dt

(
‖∂αu‖2L2 + ‖∂αf‖2L2

)
+ ‖∇∂αu‖2L2 +

∥∥∂αu√µ−∇v∂αf − v

2
∂αf

∥∥2

L2

≤ C‖u‖Hs‖∇xu‖2Hs +
∣∣∣〈∂α(uf), ∂αu

√
µ−∇v∂αf −

v

2
∂αf

〉∣∣∣. (3.23)

Still using s ≥ 2, we get (see Lemma 3.1 of [23] for a similar estimate)

‖∂α(uf)‖L2 ≤ |uf |s ≤ C‖u‖Hs |f |s ≤ C(‖u‖L2 + ‖∇xu‖Hs−1)|f |s.

Now, we make use of the mean velocity ū. By the Poincaré-Wirtinger inequality, there exists
a constant CP such that

‖u‖L2 ≤ ‖u− ū‖L2 +
√
|T3 | |ū| ≤ CP (‖∇xu‖L2 + |ū|) ≤ CP (‖∇xu‖Hs−1 + |ū|),

since s− 1 ≥ 0. Hence, we obtain

‖∂α(uf)‖L2 ≤ C(‖∇xu‖Hs−1 + |ū|)|f |s.

Summing over α, (3.23) leads to

1
2
d

dt
(‖u‖2Hs + |f |2s) + ‖∇u‖2Hs +

∣∣u√µ−∇vf − v

2
f
∣∣2
s

≤ C(|f |s + ‖u‖Hs)
(
‖∇u‖2Hs + |ū|2 +

∣∣u√µ−∇vf − v

2
f
∣∣2
s

)
. (3.24)

It remains to derive an estimate for the mean fluid velocity. To this end, we go back to (2.15).
We deduce the following estimate

1
2
d

dt
|ū|2 + 2|ū|2 = − ū

|T3 |
·
∫
T3
u

∫
R3

√
µf dv dx

≤ 1
|T3 |

‖u‖L2‖f‖L2 |ū|

≤ C‖f‖L2(‖∇xu‖2L2 + |ū|2), (3.25)
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where the last line follows from the Poincaré-Wirtinger inequality. Combining (3.24) with
(3.25), we obtain (3.20). This completes the proof of Proposition 3.1. �

Having disposed of this preliminary step, we are in position to present the proof to the
existence part of Theorem 2.1.

Proof of Theorem 2.1 (Existence and estimate (2.17)). According to what is stated
at the beginning of this subsection, the crucial point consists in proving (2.17). Indeed, this
estimate provides all the necessary compactness on the sequence of approximations which
allows to pass to the limit in the equations, and thus we obtain a solution which still satisfies
(2.17). We skip the discussion of this point and switch to the proof of (2.17), assuming a
smallness condition on the initial data. Clearly (2.16) combined to the Sobolev imbedding
H2(T3) ⊂ L1(T3) yields

‖u0‖2Hs + |ū0|2 + |f0|2s ≤ C0ε, (3.26)

for some C0 > 0. Then using continuity with respect to time, we define

T ∗
def= sup

{
T̃ ≥ 0 : sup

0≤t<T̃

(
‖u(t)‖2Hs + |ū|2 + |f(t)|2s

)
≤ 2C0ε

}
. (3.27)

However, (3.20) can be recast as

1
2
d

dt

(
‖u‖2Hs + |f |2s + |ū|2

)
+
(
1− C (|f |s + ‖u‖Hs)

)(
‖∇u‖2Hs + 2|ū|2 +

∣∣u√µ−∇vf − v
2f
∣∣2
s

)
≤ 0.

Let us fix ε such that 0 < ε < 1/(2C0C). Hence, on 0 ≤ t ≤ T ∗ we have 1−C (|f |s+‖u‖Hs) >
0 and it follows that

‖u(t)‖2Hs + |f(t)|2s + |ū(t)|2 ≤ ‖u0‖2Hs + |ū0|2 + |f0|2s ≤ C0ε,

holds on 0 ≤ t ≤ T ∗. It prevents T ∗ for being finite. Thus, the proof to the existence part of
Theorem 2.1 is complete. �

3.2 Estimates of full Sobolev norms

Up to now, we have only obtained a partial regularity for the particles distribution function,
since only space derivatives are involved in the norm |f |s. We wish to strengthen the regularity
analysis, showing that for positive time, the regularity of f with respect to the space variables
can be transferred to the velocity variables. We make use of the nice structure of the Fokker-
Planck operator, which allows to avoid any estimates on the moment of the distribution,
like it is done in [21] for the Dumbbell model. We start by introducing convenient functions
spaces and justify a useful statement on real variable functions.

Definition 3.1 We consider the cone of non negative continuous functions

C+(R+) :=
{
f ∈ C(R+) : f ≥ 0

}
.

8



Then, for any K, r > 0, we set

B(K, r) :=
{
f ∈ C+(R+) :

∫ t+1

t
f(τ) dτ ≤ K, ∀ t ≥ r

}
.

Lemma 3.1 Let ζ(t), ξ(t) ∈ B(K, r), and η(t) ∈ C+(R+) satisfy

ζ ′(t) + η(t) ≤ K(1 + ξ(t)). (3.28)

Then for all t0 > r, there exists a constant K̃ depending on t0, r and K, such that

sup
t≥t0

ζ(t) ≤ K̃ and η(t) ∈ B(K̃, t0).

Proof. We first prove the uniform estimate on ζ. Let n be the smallest integer such that
t0 < r + n. Since ζ ∈ B(K, r), we have∫ t0

r
ζ(τ) dτ ≤

∫ r+n

r
ζ(τ) dτ ≤ nK.

Hence the mean value theorem allows us to find some τ0 ∈]r, t0[ such that:

ζ(τ0) ≤ nK

t0 − r
.

Then for t ∈ [t0, τ0 + n+ 1] we have

ζ(t) = ζ(τ0) +
∫ t

τ0

ζ ′(τ) dτ

≤ ζ(τ0) +
∫ τ0+n+1

τ0

K(1 + ξ(τ)) dτ

≤ nK

t0 − r
+ (n+ 1)(K +K2),

by using (3.28) and the fact that ξ is non negative.
For t ≥ τ0 + n+ 1 > r + 1, since ζ ∈ B(K, r) we have∫ t

t−1
ζ(τ) dτ ≤ K.

Thus there exists t̃ ∈ [t− 1, t[ such that ζ(t̃) ≤ K. Integration of (3.28) over [t̃, t] yields

ζ(t) ≤ ζ(t̃) +K

∫ t

t̃
(1 + ξ(τ)) dτ

≤ K +K

∫ t

t−1
(1 + ξ(τ)) dτ

≤ K +K(1 +K),

where we used the definition of t̃ and again the fact that ξ ∈ B(K, r) and η ≥ 0.
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Summarizing the obtained estimates, we get

sup
τ≥t0

ζ(τ) ≤ max
(

2K +K2,
nK

t0 − r
+ (n+ 1)(K +K2)

)
:= K1.

Finally, let us integrate (3.28) over [t, t+ 1]. It follows that, for any t ≥ t0,∫ t+1

t
η(τ) dτ ≤ ζ(t) +K

[
1 +

∫ t+1

t
ξ(τ) dτ

]
≤ K1 +K(1 +K) := K̃.

This concludes the proof of the Lemma 3.1. �

Lemma 3.1 will be useful for proving the transfer of regularity. The argument is based
on an induction reasoning.

Lemma 3.2 Let s ≥ 3. Let (u, f) be a solution to (1.9)-(1.11), satisfying for any t ≥ 0

sup
t≥0

(‖u(t)‖2Hs + |f(t)|2s) +
∫ t+1

t

∣∣∇vf +
v

2
f
∣∣2
s
dτ ≤ A. (3.29)

Then for any t0 > 0 and t ≥ t0, there holds:

sup
t≥t0

(|∂vif |2s−1 + |vif |2s−1) +
∫ t+1

t

[∣∣∣∇v∂vif +
v

2
∂vif

∣∣∣2
s−1

+
∣∣∣v ⊗∇vf +

v ⊗ v
2

f
∣∣∣2
s−1

]
dτ ≤ C(t0, A). (3.30)

Proof. Let h def= ∇vf + v
2f. Then a simple calculation shows that

∂th+ v · ∇xh+ u · (∇vh−
v

2
h)− uf − u√µ = −|v|

2

4
h+

3
2
h+4vh− h−∇xf.

Let |α| ≤ s− 1. We remark that∫
R3
∂α
(
− |v|

2

4
h+

3
2
h+4vh

)
∂αh dv =

∫
R3

(
|∂α∇vh|2 −

v2

4
|∂αh|2 +

3
2
|∂αh|2

)
dv

=
∫
R3

(
|∂α∇vh|2 −

v2

4
|∂αh|2 +

1
2
∇v · v|∂αh|2

)
dv

=
∫
R3

(
∇v∂α h+

v

2
∂αh

)2
dv.

Thus, the following energy estimate holds

1
2
d

dt
‖∂αh‖2L2 +

∥∥∂α[∇vh+
v

2
h]
∥∥2

L2 + ‖∂αh‖2L2

= −
〈
∂α
[
u ·
(
∇vh−

v

2
h
)]
, ∂αh

〉
+
〈
∂α[uf ], ∂αh

〉
+
〈
∂αu
√
µ, ∂αh

〉
−
〈
∂α∇xf, ∂αh

〉
.

The third and the fourth term in the right hand side can be estimated by C|h|s−1‖u‖Hs−1

and C|f |s‖u‖Hs−1 respectively. Moreover, we observe that∣∣∣〈∂α[u · (∇vh− v

2
h
)]
, ∂αh

〉∣∣∣ =
∣∣∣〈∂α(uh), ∂α

(
∇vh+

v

2
h
)〉∣∣∣

≤ C‖u‖Hs−1

∣∣∇vh+
v

2
h
∣∣
s−1
|h|s−1

≤ C‖u‖2Hs−1 |h|2s−1 +
1
2

∣∣∇vh+
v

2
h
∣∣2
s−1

,
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and, since s− 1 ≥ 3/2,∣∣〈∂α(uf), ∂αh
〉∣∣ ≤ C‖u‖Hs−1 |f |s−1|h|s−1 ≤ C‖u‖Hs−1

(
|f |2s−1 + |h|2s−1

)
.

Therefore, by using (3.29), we obtain

d

dt
|h|2s−1 +

∣∣∇vh+
v

2
h
∣∣2
s−1

+ |h|2s−1 ≤ CA(1 + |h|2s−1).

We apply lemma 3.1 with ζ = ξ = |h|2s−1 which belongs to B(A, 0) by virtue of (3.29), and
η =

∣∣∇vh+ v
2h
∣∣2
s−1

. We get for t ≥ t0 > 0

sup
t≥t0
|h(t)|2s−1 +

∫ t+1

t
|∇vh+

v

2
h|2s−1 dτ ≤ C(t0, A). (3.31)

Now we make use of the following formulae

|h|2s−1 = |∇vf |2s−1 + |v
2
f |2s−1 −

3
2
|f |2s−1,∣∣∇vh+

v

2
h
∣∣2
s−1

= |∇vh|2s−1 + |v
2
h|2s−1 −

3
2
|h|2s−1,

∂vjhi = ∂vi(∂vjf) +
vi
2

(∂vjf) + δij
f

2
,

v

2
hi =

v

2
∂vif +

v

2
vi
2
f,

consequently, (3.31) leads to

sup
t≥t0

(
|∇vf |2s−1 +

∣∣v
2
f
∣∣2
s−1

) ≤ sup
t≥t0
|h|2s−1 +

3
2

sup
t≥t0
|f |2s−1

≤ C(t0, A) + 3A,

and ∫ t+1

t

3∑
i,j=1

[∣∣∣∂vi(∂vjf) +
vi
2

(∂vjf)
∣∣∣2
s−1

+
∣∣∣vj∂vif + vj

vi
2
f
∣∣∣2
s−1

]
dτ

≤ 4
∫ t+1

t

[
|∇vh|2s−1 +

∣∣v
2
h
∣∣2
s−1

+
3
2
|f |2s−1

]
dτ

≤ 4
∫ t+1

t

[∣∣∣∇vh+
v

2
h
∣∣∣2
s−1

+ 3|f |2s−1

]
dτ ≤ 4C(t0, A) + 12A.

It completes the proof Lemma 3.2. �

Thanks to Lemma 3.2, we now can present the estimate for mixed derivatives of f via an
inductive argument.

Lemma 3.3 Under the assumptions of Lemma 3.2, for any t ≥ t0 > 0 we have

sup
t≥t0

(
‖u(t)‖2Hs + ‖f(t)‖2Hs + ‖vf(t)‖2s−1

)
+
∫ t+1

t

[∥∥∇vf +
v

2
f
∥∥2

Hs +
∥∥v ⊗∇vf +

v ⊗ v
2

f
∥∥2

s−1

]
dτ ≤ C(t0, A). (3.32)
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Proof. We wish to estimate the mixed derivatives ∂αx ∂
β
v f with |α| + |β| ≤ s. Lemma 3.2

already tells us that for any |α|+ |β| ≤ s with |β| ≤ 1 we have

sup
t≥t0>0

‖∂αx ∂βv f‖2L2 +
∫ t+1

t

∥∥∇v(∂αx ∂βv f) +
v

2
∂αx ∂

β
v f
∥∥2

L2 dτ ≤ C(t0, A). (3.33)

For N ∈ {1, ..., s}, we define P (N) as the following property:

For all t1 > 0 there exists a constant C(t1, A) such that:

1. For all multi-indices α and β such that |α|+ |β| ≤ s, 0 ≤ |β| ≤ N < s,

sup
t≥t1>0

‖∂αx ∂βv f‖2L2 +
∫ t+1

t

∥∥∇v(∂αx ∂βv f) +
v

2
∂αx ∂

β
v f
∥∥2

L2 dτ ≤ C(t1, A). (3.34)

2. For all multi-indices α and β such that |α|+ |β| ≤ s− 1, 0 ≤ |β| ≤ N − 1 < s and
t ≥ t1 > 0,

sup
t≥t1>0

‖v∂αx ∂βv f‖2L2 +
∫ t+1

t

∥∥v ⊗∇v(∂αx ∂βv f) +
v ⊗ v

2
∂αx ∂

β
v f
∥∥2

L2 dτ ≤ C(t1, A). (3.35)

Property P (1) holds true, due to Lemma 3.2: see (3.30) and (3.33). Let us now assume that
P (N) is satisfied.

Let us set
gα,β

def= ∂αx ∂
β
v f

with |α|+ |β| ≤ s− 1, |β| = N < s. We use the generalized Leibniz formula

∂α(ϕψ) =
∑

0≤γ≤α

(
α

γ

)
∂γϕ ∂α−γψ.

Let us define the operators

K = ∇v +
v

2
, L = ∇v −

v

2
.

We apply ∂αx ∂
β
v to (1.11). Then gα,β satisfies:

∂tgα,β + v · ∇xgα,β

+
∑
i

(
β

δi

)
∂α+δi
x ∂β−δiv f − ∂αxu · ∂βv (v

√
µ) + ∂αx

[
u · L(∂βv f)

]
− 1

2

∑
i

(
β

δi

)
∂αx

[
ui∂

β−δi
v f

]
= −|v|

2

4
gα,β +

3
2
gα,β +4vgα,β −

1
2

∑
i

[(
β

2δi

)
∂αx ∂

β−2δi
v f +

(
β

δi

)
vi∂

α
x ∂

β−δi
v f

]
,

where δi is the multi-index whose ith component is 1, and the others are 0.
Before going further, we set Hα,β

def= ∇vgα,β + v
2gα,β. Noticing that:

Hj
α,β = Kj(gα,β) and Kj∂

α
x = ∂αxKj ,

12



we apply Kj to the previous equation so that Hj
α,β satisfies

∂tH
j
α,β + v · ∇Hj

α,β + ∂xjgα,β + Ij = −|v|
2

4
Hj
α,β +

3
2
Hj
α,β +4vH

j
α,β −H

j
α,β + IIj ,

where

Ij =
∑
i

[(
β

δi

)
Kj

(
∂α+δi
x ∂β−δiv f

)]
− ∂αxu ·

[
Kj

(
∂βv (v

√
µ)
)]

+ ∂αx

[
u ·KjL(∂βv f)

]
−1

2

∑
i

(
β

δi

)
∂αx

[
uiKj

(
∂β−δiv f

)]
,

and

IIj = −1
2

∑
i

[(
β

2δi

)
Kj

(
∂αx ∂

β−2δi
v f

)
+
(
β

δi

)
viKj

(
∂αx ∂

β−δi
v f

)]
−1

2

(
β

δj

)
∂αx ∂

β−δj
v f.

We now multiply the previous equation by Hj
α,β and standard energy estimates will tell us

that

1
2
d

dt
‖Hα,β‖2L2 + ‖∇vHα,β +

v

2
Hα,β‖2L2 +

1
2
‖Hα,β‖2L2 ≤

1
2
‖∇gα,β‖2L2 +

∑
j

∣∣〈Ij + IIj , H
j
α,β

〉∣∣
holds.

Let us estimate the components of the last sum, term by term. By Young’s inequality,
we only need to bound the L2 norm of each term contained in the Ij and IIj ’s. To this end,
we use the estimates contained in P (N). More precisely, we have for t ≥ t1:∥∥∥Kj

(
∂α+δi
x ∂β−δiv f

)∥∥∥2

L2
+
∥∥∥Kj

(
∂αx ∂

β−2δi
v f

)∥∥∥2

L2
≤

∑
|a|+|b|≤s−1,

1≤|b|≤N

∥∥∇v(∂ax∂bvf) +
v

2
∂ax∂

b
vf
∥∥2

L2 ,

and ∥∥∥viKj

(
∂αx ∂

β−δi
v f

)∥∥∥2

L2
≤

∑
|a|+|b|≤s−2,
1≤|b|≤N−1

∥∥v ⊗∇v(∂ax∂bvf) +
v ⊗ v

2
∂ax∂

b
vf
∥∥2

L2 ,

∥∥∥∂αxu ·Kj

(
∂βv (v

√
µ)
)∥∥∥2

L2
≤ C‖u‖2s,∥∥∥∂αx ∂β−δjv f

∥∥∥2

L2
≤ C(t1, A).

The last non linear term in Ij reads∥∥∥∥∂αx [uiKj

(
∂β−δiv f

)] ∥∥∥∥2

L2

=
∑

α1+α2=α

∥∥∥∥∂α1
x uiKj

(
∂α2
x ∂β−δiv f

)∥∥2

L2 .
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When |α| ≤ 1, it can be estimated as follows∥∥∥∥∂αx [uiKj

(
∂β−δiv f

)] ∥∥∥∥2

L2

≤ C‖u‖2
H|α1|+2

∣∣∣∣Kj

(
∂β−δiv f

) ∣∣∣∣2
|α2|

≤ C‖u‖2Hs

∑
|a|+|b|≤s−1,

1≤|b|≤N

∥∥∇v(∂ax∂bvf) +
v

2
∂ax∂

b
vf
∥∥2

L2 .

Now we turn to the case |α| ≥ 2 > 3/2. We have∥∥∥∥∂αx [uiKj

(
∂β−δiv f

)] ∥∥∥∥2

L2

≤ C‖u‖2
H|α|

∣∣∣∣Kj

(
∂β−δiv f

) ∣∣∣∣2
|α|

≤ C‖u‖2Hs

∑
|a|+|b|≤s−1,

1≤|b|≤N

∥∥∇v(∂ax∂bvf) +
v

2
∂ax∂

b
vf
∥∥2

L2 .

Therefore, we conclude that∥∥∥∥∂αx [uiKj

(
∂β−δiv f

)] ∥∥∥∥2

L2

≤ C‖u‖2s
∑

|a|+|b|≤s−1,
1≤|b|≤N

∥∥∇v(∂ax∂bvf) +
v

2
∂ax∂

b
vf
∥∥2

L2 .

Eventually, for the non linear terms of Ij which involve L, we proceed as follows∣∣∣∣〈∂αx [u ·KjL
(
∂βv f

)]
, Hj

α,β

〉∣∣∣∣ =
∑
m

∣∣∣∣〈∂αx [umKjLm

(
∂βv f

)]
, Hj

α,β

〉∣∣∣∣
≤
∑
m

∣∣∣∣〈∂αx [umLmKj

(
∂βv f

)]
, Hj

α,β

〉∣∣∣∣+
∣∣∣∣〈∂αx [ujKj

(
∂βv f

)]
, Hj

α,β

〉∣∣∣∣
≤
∑
m

∣∣∣∣〈∂αx [umKj

(
∂βv f

)]
,KmH

j
α,β

〉∣∣∣∣+
∣∣∣∣〈∂αx [ujKj

(
∂βv f

)]
, Hj

α,β

〉∣∣∣∣
≤ Cε‖u‖2s

( ∑
|a|+|b|≤s−1,

1≤|b|≤N

∥∥∇v(∂ax∂bvf) +
v

2
∂ax∂

b
vf
∥∥2

L2

)
+ ε(‖KmH

j
α,β‖

2
L2 + ‖Hj

α,β‖
2
L2),

with ε > 0, where we use the fact that K∗i = −Li , and [Kj , Li] = −δi,j in the second
inequality.

Combining together all the above estimates, we end up with

1
2
d

dt
‖Hα,β‖2L2 +

1
2
‖∇vHα,β +

v

2
Hα,β‖2L2 +

1
4
‖Hα,β‖2L2

≤ C
(
‖∇xgα,β‖2L2 +

∑
|a|+|b|≤s−2,
1≤|b|≤N−1

∥∥v ⊗∇v(∂ax∂bvf) +
v ⊗ v

2
∂ax∂

b
vf
∥∥2

L2

+
∑

|a|+|b|≤s−1,
1≤|b|≤N

∥∥∇v(∂ax∂bvf) +
v

2
∂ax∂

b
vf
∥∥2

L2 + 1
)
. (3.36)
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Let us now prove that P (N + 1) holds true. Estimate (3.34) in P (N) implies for all t ≥ t1∫ t+1

t
‖Hα,β‖2L2 dτ ≤ C(t1, A) and

∫ t+1

t
‖Ha,b‖2L2 dτ ≤ C(t1, A).

We also have

‖∇xgα,β‖2L2 = ‖∇x∂αx ∂βv f‖2L2 =
∑
i

‖∂α+δi
x ∂βv f‖2L2 ≤ C(t1, A).

Since now |α| + |β| ≤ s − 1 and |β| = N < s so that (3.34) in P (N) can be used again.
Therefore, we can exhibit a a constant (still denoted by C(t1, A)) such that (3.36) becomes

d

dt
‖Hα,β‖2L2 + ‖∇vHα,β +

v

2
Hα,β‖2L2 ≤ C(t1, A)(1 + ξ).

where by using now the second assumption (3.35) in P (N), the non negative function ξ
belongs to B(C(t1, A), t1).

We use Lemma 3.1 with ζ(t) = ‖Hα,β‖2L2 , which lies in B(C(t1, A), t1), and
η(t) = ‖∇vHα,β + v

2Hα,β‖2L2 . Then for all t ≥ t2 > t1, there exists a constant denoted C(t2, A)
such that:

‖Hα,β(t)‖2L2 +
∫ t+1

t
‖∇vHα,β +

v

2
Hα,β‖2L2 dτ ≤ C(t2, A). (3.37)

Observe that

‖H i
α,β‖2L2 = ‖∂vigα,β‖2L2 + ‖vi

2
gα,β‖2L2 −

1
2
‖gα,β‖2L2 ,

‖∇vHα,β +
v

2
Hα,β‖2L2 = ‖∇vHα,β‖2L2 + ‖v

2
Hα,β‖2L2 −

3
2
‖Hα,β‖2L2 ,

∂vjH
i
α,β = ∂vi(∂vjgα,β) +

vi
2
∂vjgα,β + δij

gα,β
2
,

vj
2
H i
α,β =

vj
2
∂vigα,β +

vj
2
vi
2
gα,β.

Hence, we rewrite (3.37) as follows

sup
t≥t2

(∑
i

‖∂vigα,β‖2L2 + ‖vi
2
gα,β‖2L2

)
+
∫ t+1

t

∑
i,j

∥∥∂vi(∂vjgα,β) +
vi
2
∂vjgα,β

∥∥2

L2 +
∥∥vj

2
∂vigα,β +

vj
2
vi
2
gα,β

∥∥2

L2
dτ

≤ C(t2, A).

As a consequence, P (N + 1) holds. More precisely, we have

1. For all multi-indices α and β such that |α|+ |β| ≤ s, |β| ≤ N + 1, and t ≥ t2 > 0 ,

sup
t≥t2>0

‖∂αx ∂βv f‖2L2 +
∫ t+1

t

∥∥∇v(∂αx ∂βv f) +
v

2
∂αx ∂

β
v f
∥∥2

L2 dτ ≤ C(t2, A).

2. For all multi-indices α and β such that |α|+ |β| ≤ s− 1, |β| ≤ N and t ≥ t2 > 0,

sup
t≥t2>0

‖v∂αx ∂βv f‖2L2 +
∫ t+1

t

∥∥v ⊗∇v(∂αx ∂βv f) +
v ⊗ v

2
∂αx ∂

β
v f
∥∥2

L2 dτ ≤ C(t2, A).
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The induction is proved and this procedure stops when |β| = s, which gives (3.32). This
completes the proof of Lemma 3.3. �

Remark 3.1 The proof does not involve the commutator [v · ∇x,4v]. The main reason for
this lies in the fact that the inductive method depends only on the structure of the Fokker-
Planck operator (and the basic Lemma 3.1), which also can be applied to treat other models
(see[20]).

End of proof of Theorem 2.1: proof of (2.18)). Owing to Lemma 3.3, we are left with
the task of justifying that (3.29) holds. Actually, due to (2.17), it only remains to exhibit a
positive constant A such that ∫ t+1

t

∣∣∇vf +
v

2
f
∣∣2
s
dτ ≤ A, (3.38)

holds for any t ≥ 0. Remarking that
∣∣∇vf ± v

2f
∣∣2
s

=
∣∣∇vf ∓ v

2f
∣∣2
s
∓ 3|f |2s, we deduce from

(3.22) that

1
2
d

dt
|f |2s +

∣∣∇vf +
v

2
f
∣∣2
s
≤ C‖u‖Hs |f |s

(
1 +

∣∣∇vf +
v

2
f
∣∣
s

)
holds. Using the basic inequality |ab| ≤ a2/2 + b2/2, we conclude that

d

dt
|f |2s +

∣∣∇vf +
v

2
f
∣∣2
s
≤ C‖u‖Hs |f |s(1 + ‖u‖Hs |f |s).

Integrating this inequality over [t, t+ 1] yields that∫ t+1

t

∣∣∇vf +
v

2
f
∣∣2
s
dτ ≤ Cε(1 + ε)

as a consequence of (2.17). It proves (3.38) and concludes the proof of Theorem 2.1. �

4 Large time behavior

In this section, we consider the large time behavior of the solutions to the nonlinear system
(1.9)-(1.11) and prove Theorem 2.2. The key obstacle is that there is no dissipation terms
to control the microscopic solution f . However, the diffusion operator in (1.11) takes the
abstract form K∗K + P , with P a skew-symetric operator P ∗ = −P . This specific form
makes appealing the use of the hypocoercivity method, see [30]. ¿From now on, we denote

K = ∇v +
v

2
, P = v · ∇x, Si = [Ki, P ] = ∂xi

We remark that K∗Kf = (−∇v +v/2) ·
[
(∇v +v/2)f

]
= −4vf −∇v · (v2f) + v

2 ·∇vf + v2

4 f =
−4vf − 3

2f −
v
2 · ∇vf + v

2 · ∇vf + v2

4 f so that

K∗Kf = −4v −
3
2

+
v2

4
, P ∗ = −P, [S, P ] = 0 = [S,K].
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Accordingly, the microscopic equation (1.11) can be rewritten as

∂tf + Pf +K∗Kf = g (4.39)

where
g = u · v√µ+ u ·K∗f.

Note also that
Ker(K∗K + P ) = Span

{
11(x)

√
µ(v)

}
,

since 〈(K∗K + P )f, f〉 = ‖Kf‖2L2 =
∫
|∇v(f/

√
µ)|2 µdv dx. Let us set

N = Ker⊥(K∗K + P ) =
{
g ∈ L2(T3×R3);

∫
T3×R3

g
√
µdx dv = 0

}
.

Bearing in mind Propositon 4.2, we introduce a new inner product ((·, ·)) on N defined as
follows

((f, g)) def= 2〈Kf,Kg〉+ 〈Kf, Sg〉+ 〈Sf,Kg〉+ 〈Sf, Sg〉.

We can find two constants C∗ > C∗ > 0 such that

C∗
(
‖Kf‖2L2 + ‖Sf‖2L2

)
≤ ((f, f)) ≤ C∗

(
‖Kf‖2L2 + ‖Sf‖2L2

)
. (4.40)

Then, the key ingredient for obtaining the exponential convergence to equilibrium relies on
the following statement.

Proposition 4.1 Let the assumptions of Theorem 2.1 be fulfilled with s ≥ 3 and 0 < ε < ε0
small enough. Furthermore, we assume that (1.14) holds. Then, there exists a strictly positive
constant λ1 such that

d

dt
((f, f)) + λ1(‖Kf‖2L2 + ‖Sf‖2L2 + ‖K2f‖2L2 + ‖KSf‖2L2)

≤ C(λ1)(‖u‖2L2 + ‖∇xu‖2L2 + ‖Kf‖2L2). (4.41)

We begin with the proof of a weighted Poincaré inequality.

Proposition 4.2 There exists a constant C∗P > 0 such that for any f ∈ L2(T3×R3) veri-
fying

∫
T3×R3 f

√
µdv dx = 0, we have

‖f‖2L2 ≤ C∗P (‖Kf‖2L2 + ‖Sf‖2L2). (4.42)

Proof. We argue by contradiction: suppose that for any integer n, there exists a function
fn such that ‖fn‖L2 = 1 and

‖Kfn‖2L2 + ‖Sfn‖2L2 ≤
1
n
. (4.43)

Since
‖∇vf‖2L2 +

∥∥v
2
f
∥∥2

L2 = ‖Kf‖2L2 +
3
2
‖f‖2L2 ,
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we immediately deduce that

‖∇vfn‖2L2 +
∥∥v

2
fn
∥∥2

L2 + ‖∇xfn‖2L2 ≤
1
n

+
3
2
.

Since this estimate controls both the derivatives of fn and the tails for large velocities, we can
assume, as a consequence of the Rellich-Kondrazhov theorem, that a subsequence satisfies

fnk −→ f strongly in L2(T3×R3),
∇xfnk ⇀ ∇xf and ∇vfnk ⇀ ∇vf weakly in L2(T3×R3)

with furthermore ‖f‖L2 = 1. Coming back to (4.43), we obtain∥∥∇vf +
v

2
f
∥∥2

L2 + ‖∇xf‖2L2 ≤ lim inf
k→∞

(‖Kfnk‖
2
L2 + ‖Sfnk‖

2
L2) = 0.

We deduce that f(x, v) = M
√
µ(v) for some M ∈ R. Eventually, assuming that the fn’s are

orthogonal to
√
µ we get∫

T3×R3
f
√
µdv dx = lim

k→∞

∫
T3×R3

fnk
√
µdv dx = 0.

Hence f = 0, which contradicts the fact that f is normalized. This completes the proof of
Proposition 4.2. �

Proof of Proposition 4.1. Multiply (4.39) by f and use the new scalar product. It yields

1
2
d

dt
((f, f)) + ((Pf +K∗Kf, f)) = ((g, f)). (4.44)

We shall estimate the quantities of this equality, term by term.
Firstly, by definition of the scalar product, we have

((Pf, f)) = 2〈KPf,Kf〉+ 〈KPf, Sf〉+ 〈SPf,Kf〉+ 〈SPf, Sf〉.

Since P is skew-symmetric, for any u we have 〈Pu, u〉 = −〈u, Pu〉 = 0 so that 〈SPf, Sf〉 =
〈PSf, Sf〉 = 0 and 〈KPf,Kf〉 = 〈[K,P ]f,Kf〉. We can also write 〈SPf,Kf〉 = 〈PSf,Kf〉 =
−〈PKf, Sf〉. We thus arrive at

((Pf, f)) = 2〈[K,P ]f,Kf〉+ 〈[K,P ]f, Sf〉
= 2(Sf,Kf) + ‖Sf‖2L2

≥ 3
4
‖Sf‖2L2 − 4‖Kf‖2L2 .

Secondly, we get

((K∗Kf, f)) = 2〈KK∗Kf,Kf〉+ 〈KK∗Kf, Sf〉+ 〈Kf, SK∗Kf〉+ 〈SK∗Kf, Sf〉
= 2〈[Ki,K

∗
j ]Kjf,Kif〉+ 2〈KiKjf,KjKif〉+ 〈[Ki,K

∗
j ]Kjf, Sif〉

+2〈KiKjf,KjSif〉+ 〈SiKjf,KjSif〉
= 2‖Kf‖2L2 + 2‖K2f‖2L2 + ‖SKf‖2L2 + 〈Kf, Sf〉+ 2〈K2f, SKf〉

≥ 3
2
‖Kf‖2L2 +

1
2
‖K2f‖2L2 +

1
3
‖SKf‖2L2 −

1
2
‖Sf‖2L2 ,
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where we used the identity

[Ki,K
∗
j ] = δij . (4.45)

We treat now the right hand side of (4.44). We have, for any ε > 0,

|((u · v√µ, f))| =
∣∣∣2〈K(u · v√µ),Kf

〉
+
〈
K(u · v√µ), Sf

〉
+
〈
S(u · v√µ),Kf

〉
+
〈
S(u · v√µ), Sf

〉∣∣∣
≤ ε(‖Kf‖2L2 + ‖Sf‖2L2) + Cε(‖u‖2L2 + ‖∇xu‖2L2),

since ‖K(u · v√µ)‖L2 ≤ C‖u‖L2 and ‖S(u · v√µ)‖L2 ≤ C‖∇xu‖L2 . Next, by virtue of of
(4.45), we can write〈

K(u ·K∗f),Kf
〉

=
〈
K∗(u ·Kf),Kf

〉
+
〈
[K,K∗]uf,Kf

〉
=
〈
u ·Kf,K2f

〉
+
〈
uf,Kf

〉
.

Therefore, we are led to the following estimate∣∣((u ·K∗f, f))
∣∣ =

∣∣∣2〈u ·K∗f,K2f
〉

+ 2
〈
uf,Kf

〉
+
〈
K(u ·K∗f), Sf

〉
+
〈
S(u ·K∗f),Kf

〉
+
〈
S(u ·K∗f), Sf

〉∣∣∣
≤ ‖u‖L∞

(
2‖Kf‖L2‖K2f‖L2 + 2‖f‖L2‖Kf‖L2

+2‖Kf‖L2‖KSf‖L2 + ‖KSf‖L2‖Sf‖L2

)
+‖∇xu‖L∞

(
‖Kf‖2L2 + ‖Kf‖L2‖Sf‖L2

)
.

We combine now (4.42), the Sobolev embedding H3(T3) ⊂ W 1,∞(T3) and the Young in-
equality, so that this relation becomes∣∣((u ·K∗f, f))

∣∣ ≤ C‖u‖H3(‖Kf‖2L2 + ‖Sf‖2L2 + ‖KSf‖2L2 + ‖K2f‖2L2)
≤ Cε(‖Kf‖2L2 + ‖Sf‖2L2 + ‖KSf‖2L2 + ‖K2f‖2L2),

where the last line uses (2.17). Combining all together the estimates concludes the proof of
Proposition 4.1. �

We now are in position to prove Theorem 2.2.

Proof of Theorem 2.2. Thanks to Theorem 2.1, we can revisit the basic energy estimates.
Coming back to (3.23) with α = 0 (so that there is no contribution from the convection term
in (1.9)) we obtain:

1
2
d

dt
(‖u‖2L2 + ‖f‖2L2) + ‖∇u‖2L2 +

∥∥u√µ−∇vf − v

2
f
∥∥2

L2

≤
∣∣〈uf, u√µ−∇vf − v

2
f
〉∣∣ ≤ C‖u‖L2 |f |s

∥∥u√µ−∇vf − v

2
f
∥∥
L2

≤ Cε
(
‖u‖2L2 +

∥∥u√µ−∇vf − v

2
f
∥∥2

L2

)
.

We have used successively the Sobolev embedding Hs(T3) ⊂ L∞(T3) for s > 3/2 and (2.17).
Similarly, (2.17) allows to deduce from (3.25)

1
2
d

dt
|ū|2 + 2|ū|2 ≤ Cε(‖∇u‖2L2 + |ū|2).
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Since K = ∇v + v
2 we expand ‖u√µ−∇vf − v

2f‖
2
L2 = ‖u‖2L2 +‖Kf‖2L2−2〈u√µ,Kf〉. Hence,

we deduce that

d

dt
(‖u‖2L2 + ‖f‖2L2 + |ū|2) + 2‖∇xu‖2L2 + 2|ū|2 + 2‖u‖2L2 + 2‖Kf‖2L2

≤ 4〈u√µ,Kf〉+ Cε
(
2‖u‖2L2 − 2(u

√
µ,Kf) + ‖Kf‖2L2 + ‖∇xu‖2L2 + |ū|2

)
holds. Let α > 1 to be determined later. By using the Young inequality, we arrive at

d

dt
(‖u‖2L2 + ‖f‖2L2 + |ū|2) + (2− Cε)

(
‖∇xu‖2L2 + |ū|2

)
+
(
(2− Cε)(1− α)− 2Cε

)
‖u‖2L2 + (2− Cε)(1− 1/α)‖Kf‖2L2 ≤ 0.

(4.46)

The last step uses the Poincaré-Wirtinger inequality which tells us that for any κ > 0,

κ‖u‖2L2 − κCP
(
‖∇xu‖2L2 + |ū|2

)
≤ 0.

Therefore, we can modify (4.46) as follows

d

dt
(‖u‖2L2 + ‖f‖2L2 + |ū|2) + (2− Cε− κCP )

(
‖∇xu‖2L2 + |ū|2

)
+
(
κ+ (2− Cε)(1− α)− 2Cε

)
‖u‖2L2 + (2− Cε)(1− 1/α)‖Kf‖2L2 ≤ 0.

Let us now choose the parameters in a suitable way. We proceed as follows:

• Firstly we pick κ small enough to ensure 2− κCP > 0,

• Secondly, we pick ε small enough to ensure both 2 − κCP − Cε > 0 and κ − 2Cε > 0,
that is 0 < ε ≤ 1

C min(2− κCP , κ2 ),

• Thirdly, we pick α > 1 such that the coefficient in front of ‖u‖2L2 is positive that is
1 < α < κ−2Cε+2−Cε

2−Cε = 1 + κ−2Cε
2−Cε .

Summarizing, we exhibit a constant λ2 > 0 such that

d

dt
(‖u‖2L2 + ‖f‖2L2 + |ū|2) + λ2(‖∇xu‖2L2 + |ū|2 + ‖Kf‖2L2) ≤ 0. (4.47)

To finish the proof of Theorem 2.2, we pick λ > 0 such that

2C(λ1) + 2C(λ1)CP < λλ2,

with λ1 and C(λ1) defined in Proposition 4.1, and we introduce

E (t) := λ(‖u(t)‖2L2 + ‖f(t)‖2L2 + |ū(t)|2) + ((f(t), f(t))).

Thanks to Proposition 4.2, (4.40) and Poincaré-Wirtinger’s inequality, we see that

E ≤ C(‖∇u‖2L2 + |ū|2 + ‖Kf‖2L2 + ‖Sf‖2L2).
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Combining estimates (4.41) and (4.47), the Poincaré-Wirtinger inequality again, and the
definition of λ, we have

d

dt
E (t) ≤ −λλ2(‖∇u‖2L2 + |ū|2 + ‖Kf‖2L2) + C(λ1)(‖u‖2L2 + ‖∇xu‖2L2 + ‖Kf‖2L2)− λ1‖Sf‖2L2

≤ −C(λ1)(‖∇u‖2L2 + |ū|2 + ‖Kf‖2L2)− λ1‖Sf‖2L2

≤ −min(C(λ1), λ1)(‖∇xu‖2L2 + |ū|2 + ‖Kf‖2L2 + ‖Sf‖2L2).

At last, one obtains the existence of a constant λ3 (:=min(C(λ1),λ1)
C+1 ) such that

d

dt
E (t) + λ3E (t) ≤ 0, (4.48)

so that, by using (2.18),
E (t) ≤ C(t0, ε)e−λ3t.

This completes the proof of Theorem 2.2.

5 Smoothing effect

In this section, we wish to investigate the smoothing effect of system (1.1)-(1.3). The analysis
is based on the hypoellipticity property of (1.3) We start the proof of Theorem 2.3 with the
following claim.

Proposition 5.1 Let s ≥ 2. Let f, g ∈ Hs+1(T3) and set Dγ
x = (−4x)γ/2 with 0 < γ < 1.

Then

‖Dγ
x(fg)‖Hs ≤ ‖Dγ

xf‖Hs‖g‖Hs + ‖f‖Hs‖Dγ
xg‖Hs .

Proof. We introduce the operator 4γ,k defined by

4γ,kf =
f(x+ k)− f(x)

|k|γ+
3
2

,

so that (see e. g. [29], Lemma 16.3)

‖Dγ
xf‖L2(x) = ‖4γ,kf‖L2(x,k).

It implies

‖Dγ
x(fg)‖Hs = ‖4γ,k(fg)‖L2(k;Hs(x))

≤ ‖(4γ,kf)g(x+ k)‖L2(k;Hs(x)) + ‖f(x)4γ,kg‖L2(k;Hs(x))

≤ ‖4γ,kf‖L2(k;Hs(x))‖g‖Hs + ‖f‖Hs‖4γ,kg‖L2(k;Hs(x))

= ‖Dγ
xf‖Hs‖g‖Hs + ‖f‖Hs‖Dγ

xg‖Hs ,

so that Proposition 5.1 is proven. �
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Proof of Theorem 2.3. Let s ≥ 2 be a positive integer and |α| ≤ s. For every integer
n ≥ 3, we can derive from (1.1) the following energy estimate

1
2
d

dt
‖∂αu‖2L2 + ‖∇x∂αu‖2L2 ≤ C‖u‖2Hs‖∇u‖Hs + C|F 〈v〉n|s‖u‖2Hs + C|F 〈v〉n|s‖u‖Hs .

By using the Young inequality, we deduce that

1
2
d

dt
‖u‖2Hs +

1
2
‖∇xu‖2Hs ≤ C

(
‖u‖4Hs + ‖u‖2Hs + |F 〈v〉n|2s

)
(5.49)

holds. Treating similarly (1.3), we get

1
2
d

dt
|F 〈v〉n|2s +

1
2
|(∇vF )〈v〉n|2s ≤ C

(
‖u‖2Hs + 1

)
|F 〈v〉n|2s (5.50)

≤ C
(
‖u‖4Hs + |F 〈v〉n|2s + |F 〈v〉n|4s

)
.

Let us set
X(t) = ‖u(t)‖2Hs , and Y (t) = |F (t)〈v〉n|2s.

Then X and Y satisfy the following system of differential inequalities
d

dt
X(t) ≤ C

(
X(t)2 +X(t) + Y (t)

)
,

d

dt
Y (t) ≤ C

(
X(t)2 + Y (t) + Y (t)2

)
,

so that

d

dt

(
X(t) + Y (t)

)
≤ C

((
X(t) + Y (t)

)2 +
(
X(t) + Y (t)

))
.

Therefore we can estimate

X(t) + Y (t) ≤ C(T,X(0) + Y (0)) <∞,

at least on a (small enough) time interval 0 ≤ t ≤ T (related to the life time of the solution of
d
dtz = C(z2 + z) with initial data z(0) = X(0) + Y (0)). Accordingly, coming back to (5.49),
(5.50), we have, for every integer n ≥ 3,

sup
0≤t≤T

(‖u(t)‖2Hs + |F (t)〈v〉n|2s) +
∫ T

0

[
‖u‖2Hs+1 + |(∇vF )〈v〉n|2s

]
dτ

≤ C(T, ‖u0‖Hs , |F0〈v〉n|s). (5.51)

Let us introduce
p ∈ N and φ ∈ C∞c ((0, T ]).

We set
gp = φ(t)∂αxF 〈v〉p,

which satisfies

∂tg
p + v · ∇xgp = divv(∇vgp + hp1) + hp2, (5.52)
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where

hp1 = φ(t)∂α[(v − u)F ]〈v〉p − 2φ(t)∂αFp〈v〉p−2v,

hp2 = −p〈v〉p−2φ(t)∂α[(v − u)F ] · v + 2φ(t)∂αFdivv[p〈v〉p−2v]
−φ(t)∂αF4v(〈v〉p) + φ′(t)∂αF 〈v〉p.

Owing to (5.51), we check that

‖gp‖L2(R×T3×R3) + ‖hp1‖L2(R×T3×R3) + ‖hp2‖L2(R×T3×R3) < C(T, ‖u0‖Hs , |F0〈v〉p+1|s).

Then the basic energy estimate for (5.52) yields

‖∇vgp‖L2(R×T3×R3) ≤ C(‖gp‖L2(R×T3×R3) + ‖hp1‖L2(R×T3×R3) + ‖hp2‖L2(R×T3×R3)).

Thus, we can make use of Theorem 2.1 from [2]. It allows to control the L2 norm, with

respect to time, space and velocity variables, of D
1
3
x gp by quantities depending on the L2

norms of gp,∇vgp, hp1, h
p
2. We obtain

‖D
1
3
x g

p‖L2(R×T3×R3) ≤ C(T, ‖u0‖Hs , |F0〈v〉p+1|s). (5.53)

We shall repeat the argument in order to estimate a full space derivative of gp. We
introduce another cut-off function

ϕ1 ∈ C∞c ((0, T ]), supp(ϕ1) ⊂ supp(φ),

and we set
g̃p = ϕ1(t)D

1
3
x g

p.

The function g̃p verifies

∂tg̃p + v · ∇xg̃p = divv
(
∇v g̃p + ϕ1(t)D

1
3
x h

p
1

)
+ ϕ1(t)D

1
3
x h

p
2 + ϕ′1(t)D

1
3
x g

p. (5.54)

Due to the Proposition 5.1, we have∣∣∣Dγ
x

[
φ(t)uF 〈v〉p

]∣∣∣2
s
≤ C

(
‖Dγ

xu‖2Hs

∣∣∣φ(t)F 〈v〉p
∣∣∣2
s

+ ‖u‖2Hs

∣∣∣Dγ
x

[
φ(t)F 〈v〉p

]∣∣∣2
s

)
.

Integrating with respect to time, it follows that∫ T

0

∣∣∣Dγ
x

[
φ(t)uF 〈v〉p

]∣∣∣2
s
dt ≤ C

(
‖Dγ

xu‖2L2(0,T ;Hs(T3))
sup

0≤t≤T

∣∣∣φ(t)F 〈v〉p
∣∣∣2
s

+‖u‖2
L∞(0,T ;Hs(T3))

∫ T

0

∣∣∣Dγ
x

[
φ(t)F 〈v〉p

]∣∣∣2
s
dt
)
.

By using this formula, we obtain the following estimate∫ T

0

∥∥∥ϕ1(t)Dγ
xh

p
1

∥∥∥2

L2(T3×R3)
dt ≤ C

(
‖Dγ

xu‖2L2(0,T ;Hs(T3))
sup

0≤t≤T

∣∣∣ϕ1(t)F 〈v〉p
∣∣∣2
s

+
(
1 + ‖u‖2

L∞(0,T ;Hs(T3))

) ∫ T

0

∣∣∣Dγ
x

[
ϕ1(t)F 〈v〉p+1

]∣∣∣2
s
dt
)
,
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since hp1 involves a higher moment with respect to v. Therefore, coming back to (5.53) we
are led to ∥∥ϕ1(t)D

1
3
x h

p
1

∥∥2

L2((0,T )×T3×R3)
≤ C(T, ‖u0‖Hs , |F0〈v〉p+2|s). (5.55)

By the same calculation, we also get∥∥ϕ1(t)D
1
3
x h

p
2

∥∥2

L2((0,T )×T3×R3)
+
∥∥ϕ′1(t)D

1
3
x g

p
∥∥2

L2((0,T )×T3×R3)
(5.56)

≤ C(T, ‖u0‖Hs , |F0〈v〉p+2|s).

Consequently, the basic energy estimate for (5.54) yields

‖∇v g̃p‖L2(t,x,v) ≤ C(T, ‖u0‖Hs , |F0〈v〉p+2|s).

With this estimate, together with (5.55) and (5.56), we can apply Theorem 2.1 of [2] again

to equation (5.54). It allows to estimate D
1
3
x g̃p by means of hp1, hp2, gp, g̃p and ∇v g̃p and thus

it finally leads to ∥∥D 1
3
x g̃p
∥∥
L2(R×T3×R3)

≤ C(T, ‖u0‖Hs , |F0〈v〉p+2|s). (5.57)

Let us consider

ϕ2 ∈ C∞c ((0, T ]), supp(ϕ2) ⊂ supp(ϕ1) ⊂ supp(φ).

Set
ĝp = ϕ2(t)D

2
3
x g

p.

Then ĝp verifies

∂tĝp + v · ∇xĝp = divv
(
∇v ĝp + ϕ2(t)D

2
3
x h

p
1

)
+ ϕ2(t)D

2
3
x h

p
2 + ϕ′2(t)D

2
3
x g

p.

Repeating the previous argument and using (5.57) we show that∥∥ϕ2(t)D
2
3
x h

p
1

∥∥2

L2((0,T )×T3×R3)
≤

∥∥D 2
3
x u
∥∥2

L2(0,T ;Hs(R3))
sup

0≤t≤T

∣∣∣ϕ2(t)F 〈v〉p
∣∣∣2
s

+
(
‖u‖2

L∞(0,T ;Hs(R3))
+ 1
)∫ T

0

∣∣∣D 2
3
x

[
ϕ2(t)F 〈v〉p+1

]∣∣∣2
s
dt

≤ C(T, ‖u0‖Hs , |F0〈v〉p+3|s)

holds. Therefore, we can prove∥∥D 1
3
x ĝp‖L2((0,T )××T3×R3) ≤ C(T, ‖u0‖Hs , |F0〈v〉p+3|s).

In other words, for all 0 < t? < T? < T, we have∫ T?

t?

|F (τ)〈v〉p|2s+1 dτ < C(T, ‖u0‖Hs , |F0〈v〉p+3|s). (5.58)

Once this estimate of a higher full space derivative has been obtained, it becomes quite
standard to justify (2.19), by using (5.51) and (5.58), and the parabolic structure with respect
to the variable v of the Fokker-Planck equation (1.3). �
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Remark 5.1 As a final comment, let us mention that an alternative proof of the smoothness
of the solution in Theorem 2.1 can be proposed. This proof is based on the averaging lemma,
see [13] and [4], and does not use explicitly the hypoellipticity result of [2]. Let us sketch the
proof, referring for details to [8] and [9] where this approach has been successfully used. Let
us assume we already know that, for all t > t1 > 0, u(t) and F (t) belong to Hs(T3) and
Hs(T3×R3), respectively, with s ≥ 3.

• Firstly, thanks to the diffusion term in (1.1), we see that, for all t > t1, u(t) ∈
Hs+1(T3).

• Secondly, thanks to the diffusion term with respect to v in (1.3), we get ∇vF (t) ∈
Hs(T3×R3), still for t > t1.

• Writing the equation satisfied by any derivative of order ≤ s of F , we can apply the
averaging lemma (see [13] and [4]) and get that the averages with respect to the v
variable of this derivative lie in H1/6(T3).

• Interpolating this result with the estimate of regularity that we obtained for the v vari-
able, we get that F (t) ∈ Hs+1/20(T3×R3) for t > t1.

• Iterating this result 20 times (it requires to write down the equation satisfied by transla-
tions of the derivatives of F of order less than s), we end up with F (t) ∈ Hs+1(T3×R3),
for all t > t1 and, finally, that f is of class C∞.
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Supérieure de Cachan (2007).

[25] A. Mellet and A. Vasseur. Global weak solutions for a Vlasov-Fokker-Planck/Navier-
Stokes system of equations, Math. Models Methods Appl. Sci, 17 (2007), n. 7, 1039-1063.

[26] A. Mellet and A. Vasseur. Asymptotic analysis for a Vlasov-Fokker-Planck/compressible
Navier-Stokes system of equations, Comm. Math. Phys., 281 (2008), no. 3, 573-596.

[27] C. Mouhot and L. Neumann. Quantitative perturbative study of convergence to equilib-
rium for collisional kinetic models in the torus, Nonlinearity, 19 (2006), 969-998.

[28] P. O’Rourke. Collective drop effects on vaporizing liquid sprays. PhD thesis, Princeton
University (1981).

[29] L. Tartar. An introduction to Sobolev spaces and interpolation spaces (Springer, 2007).

[30] C. Villani. Hypocoercivity, Mem. Amer. Math. Soc. (2008), in press.

[31] F. A. Williams. Combustion theory, 2nd ed. (Benjamin Cummings Publ., 1985).

27


