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Abstract.

The aim of this paper is to investigate the geometrical behavior of the TVL1 model used in image
processing, by making use of the notion of Cheeger sets. This mathematical concept was recently
related to the celebrated Rudin-Osher-Fatemi image restoration model, yielding important advances
in both fields. We provide the reader with a geometrical characterization of the TVL1 model. We
show that, in the convex case, exact solutions of the TVL1 problem are given by an opening followed
by a simple test over the ratio perimeter/area. Shapes remain or suddenly vanish depending on this
test. As a result, we suggest a very simple numerical scheme to apply the model to digital images.
As a by-product, we justify the use of the TVL1 model for image decomposition, by establishing a
connection between the model and morphological granulometry. Eventually, we propose an extension
of TVL1 into an adaptive framework, in which we derive some theoretical results.

Key-words. Total variation, Cheeger sets, mathematical morphology, adaptive
image denoising

1. Introduction. The aim of this paper is to analyze the geometrical behavior
of the TVL1 denoising model. This analysis is made possible by recent progresses in
the study of Cheeger sets. Let us first recall the definition of this model. Consider
a function f : R2 → R. We are interested in finding some u in BV , the space of
functions with bounded variations, which solves the following minimization problem:

inf
u∈BV (R2)

{∫

R2

|Du| + λ

∫

R2

|f − u| dx

}

(1.1)

This type of energy was introduced by S. Alliney in [4, 3] in a discrete setting for
one-dimensional signals. M. Nikolova showed in [34] that such an approach is efficient
to restore images corrupted by impulse noise. Chan and Esedoglu then gave a first
theoretical analysis of the model in [25], exhibiting some very specific properties. For
instance, in the case when f is the characteristic function of a disc, the solution of
(1.1) is either f itself or 0, depending on the value of λ. Thanks to the notion of
Cheeger sets, we will generalize this type of results in the present paper. Notice that
this behavior is specific to the TVL1 model. For instance, in the celebrated TVL2
model (or Rudin-Osher-Fatemi, ROF, model) [37], one solves the problem:

inf
u∈BV (R2)

{∫

R2

|Du| + λ

∫

R2

|f − u|2 dx

}

(1.2)

It is well-known that if f is the characteristic function of a disc, then the solution
u of (1.2) is also the characteristic function of the same disc, but with a smaller
contrast, whatever the value of λ in (0,+∞). This particular behavior of the solutions
of the TVL1 model (1.1) was the motivation of the work in [25], that has been
the inspiration of several subsequent works. Let us mention the work by Yin et
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al [43], where the connection of TVL1 with a geometric problem on level sets is
investigated. We will emphasize on this connection in Section 4. Let us also mention
the work by Allard [2, 1] which we noticed while writing this paper: as in the present
paper, he also uses geometrical measure theory results to study the TVL1 model.
In particular, regularity results similar to those of Section 5.2 are derived in a more
general setting. The specificity of our analysis, apart from aiming explicitly at image
processing applications, is that it is based on recent results from V. Caselles and his
collaborators [18, 6, 24]. In particular, by focusing on the case of dimension 2, we
give a characterization of the solution of TVL1 in the convex case through classical
operators from mathematical morphology.

The plan of the paper is the following. In Section 2 and 3, we introduce some
basic tools that will be used in the rest of the paper. In Section 4, we study the
link between problem (1.1) and a geometrical problem on level sets. Section 5 is
then devoted to the analysis of this geometrical problem. This is the most important
section of the paper. In particular, we completely characterize the behavior of the
solutions of (1.1) in the case when f is the characteristic function of some convex set
(Theorem 5.14). Thanks to this analysis, we can propose a geometrical numerical
scheme in Section 6. We illustrate this scheme with examples on images and we com-
pare our results with a graph-cut algorithm introduced by Darbon and Sigelle in [27].
Eventually, we generalize our study in Section 7 to the case when the regularization
parameter is no longer a constant.

2. Notations and definitions.

2.1. Functions of bounded variation. In this section, we recall some defini-
tions and properties about functions of bounded variation. All considered functions
will be defined on the plane and we shall denote by L1 the space of integrable functions
on R2. For more details, we refer the reader to [10] or [9].

Definition 2.1. A function u ∈ L1 is said to be of bounded variation if its
distributional gradient is a vector valued Radon measure with finite total variation.
The total variation of Du on an open set Ω ⊂ R2 is equal to:

|Du|(Ω) = sup

{∫

R2

udiv ϕ/ ϕ ∈ C1
c (Ω,R2),∀x ∈ Ω, |ϕ(x)| ≤ 1

}

(2.1)

(where for a vector |v| = (v1, v2) ∈ R2, we set |v|2 = v2
1 + v2

2). When Ω = R2, this
quantity is called the total variation of u, and will be denoted by |u|TV (or sometimes
J(u)).

The total variation of a Borel set B ⊂ R2 is defined as inf{|Du|(A), A open , B ⊂
A}.

If u = χE is the characteristic function of a measurable set E ⊂ R2 and has
bounded variation, we say that E is a set of finite perimeter, and write Per E =
|DχE |(R

2), or Per (E,Ω) = |DχE |(Ω).

For sets of finite perimeter, one can define the essential boundary ∂∗E which is
countably rectifiable with finite one-dimensional Haussdorff measure H1 and compute
the outer unit normal ν(x) at H1 almost every point x ∈ ∂∗E. Then |DχE | coincides
with the restriction of H1 to ∂∗E.

If E is of class C1,1, the curvature of ∂E (defined H1 almost everywhere) will be
denoted by κ.
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Theorem 2.2 (Coarea Formula). Let u ∈ BV . Then:

|Du|(R2) =

∫ +∞

−∞

Per {x ∈ R2, u(x) > t}dt (2.2)

For u ∈ L1, if the right member of the equation is finite, then u ∈ BV (R2) and the
last equality holds.

In this paper, we only consider the case of dimension N = 2. We thus have:
BV (Ω) ⊂ L2(Ω) (with continuous embedding). We can then extend the total variation
|Du| as a convex lower semi-continuous function J defined on R2 by:

J(u) =

{
|Du|(Ω) if u belongs to BV (Ω)
+∞ if u ∈ L2(Ω)\BV (Ω)

(2.3)

J being a proper convex function, we can use the notion of subgradient ∂J of J [36]:
v ∈ ∂J(u) if and only if for all w ∈ L2(Ω), we have J(u + w) ≥ J(u) + 〈v, w〉L2(Ω)

where 〈., .〉L2(Ω) stands for the usual L2(Ω) inner product.

2.2. A generalized Green’s formula. In order to recall the framework of
[18],[6], [24], we need the following formula. Let Ω be an open subset of R2. Following
[11], [12], define

X∞(Ω) := {z ∈ L∞(Ω,R2)/ div z ∈ L∞(Ω)} (2.4)

If z ∈ X∞(Ω) and w ∈ BV (Ω) we define the functional (z,Dw) : C∞
0 (Ω) → R by the

formula:

〈(z,Dw), ϕ〉 := −

∫

Ω

wϕdiv zdx−

∫

Ω

wz · ∇ϕdx (2.5)

Then (z,Dw) is a Radon measure in Ω,
∫

Ω
(z,Dw) =

∫

Ω
z ·∇wdx for all w ∈W 1,1(Ω)

and:

∀B Borel set ⊂ Ω,

∣
∣
∣
∣

∫

B

(z,Dw)

∣
∣
∣
∣
≤

∫

B

|(z,Dw)| ≤ ‖z‖∞

∫

B

|Dw| (2.6)

Theorem 2.3. Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary. Let
u ∈ BV (Ω), z ∈ X∞(Ω). Then there exists a function [z · ν] ∈ L∞(∂Ω) such that
‖[z · ν]‖L∞(∂Ω) ≤ ‖z‖L∞(Ω,R2),

∫

Ω

udiv zdx+

∫

Ω

(z,Du) =

∫

∂Ω

[z · ν]udH1 (2.7)

When Ω = R2 we have the following integration by parts formula:

∫

R2

wdiv zdx+

∫

R2

(z,Dw) = 0 (2.8)
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3. Some basic notions about calibrable and Cheeger sets. In [18], the
authors characterize bounded sets with finite perimeter that evolve at constant speed
by the total variation flow ∂u

∂t = div ( Du
|Du| ). Such sets E ⊂ R2 necessarily satisfy the

condition λEχE ∈ ∂J(χE) for some λE ∈ R, where ∂J is the subdifferential of the
total variation. Those sets are called calibrable.

Definition 3.1. Let E be a bounded set with finite perimeter. We say that E is
calibrable if there exists a vector field ξ ∈ X∞ with ‖ξ‖∞ ≤ 1 such that −div ξ = λEχE

in D′(R2) for some λE, and (ξ,DχE) = |DχE | as measures in R2.

In that case, λE is uniquely determined by λE = Per E
|E| where |E| denotes the

two-dimensional (Lebesgue) area. In the rest of this paper, we shall use this notation

to refer to Per E
|E| whether E ⊂ R2 is calibrable or not.

In this paper, we will not be directly using this definition but we will rather use
the following two propositions ([18], [11]):

Proposition 3.2 ([18]). Let F ⊂ R2 be a calibrable set. Then:
(i)

Per F

|F |
≤

Per U

|U ∩ F |
for all U ⊂ R2 (3.1)

(ii) Each connected component of F is convex.
Proposition 3.3. Let C ⊂ R2 be a bounded convex set with finite perimeter.

The following assertions are equivalent:
(i) C is calibrable
(ii) C is a solution of the problem:

min
X⊂C

Per X − λC |X|

(

where λC =
Per C

|C|

)

(3.2)

A very interesting property of convex calibrable set is the following characteriza-
tion, proved in ([28] Theorem A.1, [6] , [18], [30] )

Proposition 3.4. Let C be a bounded convex set. Then C is calibrable iff the
following two conditions hold:

(i) ∂C is of class C1,1

(ii) ess supx∈∂C κ(x) ≤
Per C
|C|

Example. It was proved in [30] that an ellipse with excentricity lower than ē ≈
0.7192 is calibrable.

A related topic is the Cheeger problem. Given a nonempty open bounded set

F ⊂ R2, find: λF := infX⊂F
Per X
|X| . Any minimizer X of this problem is called a

Cheeger set of F . If F itself is a minimizer, we say that F is Cheeger in itself.
Notice that F is Cheeger in itself if and only if it is solution of the problem:

minX⊂F Per X − λF |X|. As a consequence, by Proposition 3.2, a calibrable set is
Cheeger in itself, and the converse is true when the set is convex (by Proposition
3.3).

The following theorem is proved in [24] with the assumption that C is uniformly
convex with boundary of class C2. In [5], these assumptions are removed.

Theorem 3.5 ([24], [5]). Let C be a non-trivial convex body (i.e. a nonempty
compact convex subset of R2). Then there is a unique Cheeger set inside C. This set
is convex and of class C1,1.

This Cheeger set is given explicitely by the following theorem (see [7] and [30]):
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Theorem 3.6. Let C be a non-trivial convex body, then there exists a unique
value t = t∗ > 0 such that the Cheeger set of C is given by an opening with radius t∗.
This value t∗ is the unique value of t such that the area of the eroded set of C with
radius t is equal to πt2

4. The geometric equivalence theorem and its consequences.

4.1. The geometric equivalence. In this section, we first present a few basic
results about the TVL1 functional, then we state the equivalence between TVL1 and
a geometric problem.

For f ∈ L1, we want to solve:

inf
u∈L1

E(u) := |u|TV + λ

∫

R2

|f(x) − u(x)|dx (4.1)

The following result is well-known: it is a standard application of the direct
method of calculus of variations. We refer the reader to ([43], [25]) or to Section 7 for
a proof in the more general case of adaptive TVL1.

Proposition 4.1. There exists at least one solution to the Problem (4.1). Let
us define:

T : L1 → P(L1) (4.2)

the operator which maps f to the set of solutions Tf = {u ∈ L1, u is solution of (4.1)}.
The set Tf is a convex closed set in L1.

Let us notice that, since the functional is not strictly convex, many solutions may
exist. This is the reason why we need to define T as a set-valued map.

It was noticed in [25] that, using the coarea formula, the energy E(u) could be
reformulated as a sum of energies over the level sets of u:

E(u) =

∫ +∞

−∞

Per {x, u(x) > µ} + λ|{x, u(x) > µ} △ |{x, f(x) > µ}|dµ (4.3)

In view of this formula, one may consider the family of geometric problems, given
a function f ∈ L1:

inf
U⊂R2

Per U + λ|U △ Fµ| (Pµ) (4.4)

where µ ∈ R and Fµ = {x, f(x) > µ}.
Existence of solutions for each of these problems is standard, since it can be

proved by the direct method of the calculus of variations. Here again, we can define
a multivalued map T that maps Fµ to the set of solution sets T Fµ for Problem (Pµ).
Actually, in [25], the authors show that if the data is the characteristic function of
a set (f = χF ), then every level set of a solution u of (4.1) is a solution of the
geometric problem associated to F . In [43], it was pointed out that stacking solutions
of the geometric problem lead to a solution of (4.1). The following theorem states the
equivalence between the family of geometric problems on level sets and the functional
TVL1 problem. Let us observe that this result is implicitly assumed in order to
establish several properties in [26, 43], such as the contrast invariance of the TVL1
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model. It is however, to the best of our knowledge, not proved in the literature. Since
it is not trivial, we propose the following formulation and proof.

Theorem 4.2 (Geometric equivalence). Let f ∈ L1.The following assertions are
equivalent:

(i) u is solution of (4.1)
(ii) Almost every level set Uµ of u is a solution of (4.4).
We shall need the following monotonicity result. We state it in a similar way to

Yin, Goldfarb and Osher [43]. Let us mention that it was also established in terms of
Gibbs energy by Darbon and Sigelle [27] in order to derive their graph-cut algorithm.
For a proof of this result, we refer the reader to ([43] Theorem 3.1, [27] Lemma 1). In
Section 7.1, we will generalize this monotonicity result to the adaptive TVL1.

Theorem 4.3 (Pseudo-monotonicity of the geometric problem). Let S1 ⊂ S2 ⊂
R2, and Ui, i = 1, 2 be a solution the geometric problem associated to Si. Then

• U∧ = U1 ∩ U2 is a solution associated to S1

• U∨ = U1 ∪ U2 is a solution associated to S2

Remark 4.4. Notice that it is equivalent to consider a function f : R2 → R or
to consider a family of sets (Uµ)µ∈R that have the nesting property:

Uµ ⊂
⋂

ν<µ

Uν (4.5)

This fact is at the core of the following proof.
Proof. [of Theorem 4.2] Since the implication (ii) ⇒ (i) is clear by the coarea

formula, we only focus on proving (i) ⇒ (ii).
Let us notice that the mapping t 7→ Ft is non-increasing for the inclusion, therefore

it is continuous everywhere but on a countable set of points (we shall denote this set
J ). Let us consider a countable dense set D ⊂ R (for instance D = Q).
First step: We are going to construct by induction a family (Uq)q∈D. To this end,
let (qn)n∈N be an enumeration of D. We choose an optimal set Uq0

for problem (Pq0
).

Let us assume that we have chosen Uqj
(j = 0 . . . n) satisfying the nesting property,

and let us consider qn+1. Three cases are possible. If there exists m, p ≤ n such that
qm < qn+1 < qp (we can assume that qm (resp. qp) is the greatest (resp. smallest)
such element), then let us consider U ⊂ R2 solution of (Pqn+1

), and set:

Uqn+1
= (U ∩ Uqm

) ∪ Uqp
(4.6)

By induction hypothesis Uqp
⊂ Uqn+1

⊂ Uqm
, and therefore the family (Uqj

)j=0...n+1)
satisfies the nesting property. Theorem 4.3 ensures that Uqn+1

is solution of (Pqn+1
).

The other two cases (∀j ≤ n, qj < qn+1 or ∀j ≤ n, qj > qn+1) can be dealt with
similarly (take U ∩ Uqm

or U ∪ Uqp
).

Therefore we have built a countable family of optimal sets satisfying the nesting
property.
Second step: Now let us define the family (U∗

t )t∈R by:

U∗
t =

⋂

q<t,q∈D

Uq. (4.7)

This family has the nesting property ; let us show that it is solution of problem (Pt)
for almost every t ∈ R.

Let t ∈ R \ J , and (tn) an increasing sequence in D converging to t.
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For all V ⊂ R2, Per V + λ|V∆Ftn
| ≥ Per Utn

+ λ|Utn
∆Ftn

|. We take the lower-
limit as n→ +∞:

Per V + λ|V∆Ft| ≥ Per U∗
t + λ|U∗

t ∆Ft| (4.8)

where we used the continuity of t 7→ |Ft|, and the lower semicontinuity of the perime-
ter. Eventually, the elements of the family (U∗

t )t∈R are solutions of (Pt), except maybe
for t ∈ J .
Conclusion: We can then build a function u∗ by the formula:

u(x) = sup{t ∈ R, x ∈ U∗
t } (4.9)

Let then v be a solution of problem (4.1), and let us call Vt its level sets. By the
coarea formula, it is clear that u is a solution too, thus:

∫ +∞

−∞

Per Vt + λ|Ut △ Ft|dt =

∫ +∞

−∞

Per U∗
t + λ|U∗

t △ Ft|dt (4.10)

with the inequality for almost every t:

Per Vt + λ|Ut △ Ft| ≥ Per U∗
t + λ|U∗

t △ Ft| (4.11)

We deduce that there is actually equality for almost every t.
In the rest of this section, we will state a few properties of the TVL1 model that

are desirable when processing images. Some of them (Propositions 4.7, 4.9, 4.10,4.11)
are well-known ([26], [43]).

4.2. Maximum principle and monotonicity.

Proposition 4.5 (Maximum principle). Let M,m ∈ R and assume m ≤ f ≤M
almost everywhere. Then:

∀u ∈ Tf, m ≤ u ≤M almost everywhere. (4.12)

Proof. Let us assume by contradiction that u ∈ Tf with u(x) > M on a set
with non-zero Lebsegue measure. Then the truncated function uM = min(u,M) has
energy strictly lower than u. Indeed:

|uM |TV +λ

∫

R2

|f−uM | =

∫ M

−∞

Per {x, u(x) > µ}+λ|{x, u(x) > µ}△|{x, f(x) > µ}|dµ

(4.13)
whereas:

|u|TV + λ

∫

R2

|f − u| =

∫ M

−∞

Per {x, u(x) > µ} + λ|{x, u(x) > µ} △ {x, f(x) > µ}|dµ

+

∫ +∞

M

Per {x, u(x) > µ}dµ

︸ ︷︷ ︸

≥0

+

∫ +∞

M

λ|{x, u(x) > µ}|dµ

︸ ︷︷ ︸

=λ
R

R2 (u(x)−M)+dx>0

(4.14)
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which contradicts the fact that u is a minimizer.
Because of the non-uniqueness of the solution, we have to precise the notion of

monotonicity we will be using.
Definition 4.6. We say that an operator A : L1 7→ P(L1) is pseudo-monotone

if, given f, g ∈ L1 with f ≤ g a.e., we have:

∀u1 ∈ Af, ∀u2 ∈ Ag, max(u1, u2) ∈ Ag and min(u1, u2) ∈ Af (4.15)

A straightforward consequence of Theorems 4.2 and 4.3 is the following result:
Proposition 4.7 (Pseudo-monotonicity). T is pseudo-monotone.
Yet, it can be handful to define the notion of ”greatest” and ”lowest ” solutions

in order to take advantage of the classical notion of monotonicity.
Definition 4.8. Let us define the operators T+ and T− : L1 → L1 by:

T−f = arg min

{∫

R2

u, u ∈ Tf

}

(4.16)

T+f = arg max

{∫

R2

u, u ∈ Tf

}

(4.17)

Each operator defines a unique function, and is monotone. Moreover, this function
is a solution of (4.1).

Proof. Let us denote by K the minimal value of the energy (4.1). We shall prove
the result for T− (the result for T+ will follow since T+f = −T−(−f)).

The infimum of {
∫

R2 u, u ∈ Tf} is finite since:

∀u ∈ Tf,

∫

R2

(u− f) ≥ −

(

|u|TV + λ

∫

R2

|f(x) − u(x)|dx

)

= −K (4.18)

Now let un be a minimizing sequence. By Proposition 4.7, we can always assume,by
replacing un+1 by min(un+1, un), that the sequence un(x) is non-increasing for almost
every x ∈ R2.

Let u∗(x) be the pointwise limit of un(x). By Beppo-Levi’s theorem (monotone
convergence) we have that un converges to u∗ in L1, and we have:

∫

R2

u∗ = inf

{∫

R2

u, u ∈ Tf

}

(4.19)

Since the set of solutions of (4.1) is closed in L1, u∗ is a solution.
Now, we need to prove that u∗ does not depend on the choice of the sequence un.

Let vn be another minimizing sequence, then the associated limit v∗ is a solution of
(4.1). By Proposition 4.7, min(u∗, v∗) is a solution too, and its integral is lower than
those of u∗ et v∗. This is only possible if u(x) = v(x) almost everywhere.

Eventually, monotonicity is a consequence of Proposition 4.7.
Let us notice that T−f actually defines the lowest solution, and T+f the greatest.

Problem (4.1) has a unique solution iff T−f = T+f .
In a similar way, we can define the notion of largest and smallest solution to the

geometric problem, and denote them by T +, T −.
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4.3. Commutation with constants and affine invariance. In this subsec-
tion and only in this subsection, we shall consider data functions f ∈ L1 + C, that
is, sums of integrable functions and constants. Indeed, it is straightforward to extend
the problem to such functions since the total variation is not affected by the addition
of constants. The proofs of the next two propositions are elementary and omitted for
brevety.

Proposition 4.9. The operator T commutes with the addition of constants:

∀f ∈ L1,∀C ∈ R, T (f + C) = T (f) + C, (4.20)

and is self-dual:

∀f ∈ L1, T (−f) = −T (f), (4.21)

Proposition 4.10. The operator T commutes with translations and rotations:

∀f ∈ L1,∀R ∈ SOn, T (f ◦R) = T (f) ◦R (4.22)

4.4. Contrast Invariance. As observed in [26, 43], the following result is a
direct consequence of the geometric equivalence Theorem 4.2.

Proposition 4.11 (Contrast invariance). Let g be an increasing C1-diffeomorphism
with supR |g′| < +∞. Then: T (g ◦ f) = g(Tf).

Notice that one usually uses contrast invariance of a functional operator to derive
the existence of a level set formulation [29]. Interestingly enough, in the case of TVL1
we had to take the converse way.

5. The geometric problem. As it was shown in the last section, the study of
the TVL1 problem amounts to solving the following geometric problem:

inf
U⊂R2

EG(U) := Per U + λ|U △ F | (5.1)

where F ⊂ R2 is a measurable set (in fact it is a given level set of the data).

5.1. Suddenly vanishing sets. An interesting property of the TVL1 model is
the fact that some sets suddenly vanish. For instance, in [25], it is proved that the
model preserves characteristic functions of discs with radius R if λ > 2/R; below this
value, the solution is the null function. In this subsection we focus on sets which have
the same property. Those sets are necessarily Cheeger in themselves.

Proposition 5.1. Let F ⊂ R2 be a non empty set (not necessarily convex). Let
us assume that F has the thresholding property, i.e. there is some critical value λ̃ > 0
such that:

• F is a solution of the geometric problem (5.1) for λ > λ̃.
• ∅ is a solution of the geometric problem (5.1)for 0 < λ < λ̃.

Then F is Cheeger in itself, and λ̃ = λF := Per F
|F | .

Proof. Let us first notice that ∅ and F are solutions of the geometric problem for
λ = λ̃ (consider a monotone sequence (λn)n∈N converging to λ̃ and pass to the limit in
the inequality). Therefore, both sets have the same energy: Per ∅+ λ̃|F | = Per F −0.

and we deduce that λ̃ = Per F
|F | = λF .

Then, considering only sets U that are included in F , we notice that F is a non
empty solution of the problem: infU⊂F Per U−λF |U |, which means that F is Cheeger
in itself.
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The converse is true in the convex case (in which case Cheeger in itself is equivalent
to calibrable), but in general, not every Cheeger set in itself has the thresholding
property. Here is a sufficient condition though:

Proposition 5.2. Let F ⊂ R2 be a calibrable set. Then F has the thresholding
property, i.e.:

• F is the unique solution of the geometric problem (5.1) for λ > λF

• Both ∅ and F are solutions for λ = λF

• ∅ is the unique solution for λ < λF

where λF := Per F
|F | .

Notice that, when λ = λ̃, other solutions than F and ∅ may exist . For instance,
consider the union of two discs (F = D1 ∪ D2) with same radius R. Provided they
are far enough from each other, they behave independantly (see Section 5.3.3) and
for λ = 2/R the solutions are ∅, D1, D2 and D1 ∪D2.

Proof. Let us recall that, for all V with finite perimeter, Per F
|F | ≤ Per V

|V ∩F | .

• For λ < λF , we have:

EG(V ) = Per V − λ|V ∩ F | + λ|V ∪ F |

= Per V − λF |V ∩ F |
︸ ︷︷ ︸

≥0

+(λF − λ)
︸ ︷︷ ︸

>0

|V ∩ F | + λ|V ∪ F |

≥ λ|F | = E(∅)

and this inequality is strict if |V ∩ F | 6= 0. But, if |V ∩ F | = 0, then this
quantitiy is strictly minimized when |V | = 0.

• For λ = λF , let us write:

EG(V ) = Per V −
Per F

|F |
|V ∩ F |

︸ ︷︷ ︸

≥0

+
Per F

|F |
|V ∪ F |

≥ Per F
|F ∪ V |

|F |

≥ Per F = EG(F )

Therefore F is a solution.
Moreover ∅ is a solution (passing to the limit with a sequence λn ր λF ).

• For λ > λF = Per F
|F | :

EG(V ) = Per V + λF |V △ F |
︸ ︷︷ ︸

≥Per F

+(λ− λF )|V △ F |

≥ Per F + (λ− λF )
︸ ︷︷ ︸

>0

|V △ F |

≥ EG(F )

and this inequality is strict if V 6= F .

As a conclusion, every calibrable set suddenly vanishes by TVL1, and every sud-
denly vanishing set is Cheeger in itself. The converse implications are false. In
[43], it is shown that an annulus with large enough inner radius suddenly vanishes. It
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Fig. 5.1. The property Cheeger in itself imposes regularity ”from the inside” (an upper bound
on the curvature) whereas the property of being invariant by TVL1 requires regularity from ”both
sides” (the curvature is lower and upper-bounded). Therefore some Cheeger sets do not have the
suddenly vanishing property. From left to right: a set with corners, its cheeger set, the solution of
TVL1 with same curvature.

is connected and not convex, therefore it is not calibrable. Moreover, since suddenly
vanishing sets are solutions of TVL1, they are generally smoother than Cheeger sets
in themselves (see Figure 5.1).

5.2. Smoothness of the boundary.

Remark 5.3. As noticed by Alliney [4], if u is a solution of the TVL1 problem
associated to f , then u is a solution to the TVL1 problem associated to itself, since:

|v|TV + λ

∫

|u− v| ≥ |v|TV + λ

∫

(|f − v| − |f − u|) ≥ |u|TV (5.2)

Or equivalently: TVL1 is idempotent. As a consequence, it is sufficient to study
the sets that are invariant by TVL1 in order to describe all the sets that are solutions
of the geometric problem for some data.

Proposition 5.4. Let F ⊂ R2, and U ⊂ R2 be a solution of the TVL1 problem
associated to F . Then ∂U coincides with the reduced boundary FU of U in the sense
that H1(∂U \ FU) = 0, and the later is a C1,1 hypersurface.

Proof. We rely on results from [9]. Let us notice that U is a strong λ-minimizer
([9], Definition 4.7.3) in R2, that is:

Per (U,Ω) ≤ Per (U ′,Ω) + λ|U △ U ′| (5.3)

for every open set Ω and every U ′ with locally finite perimeter such that U△U ′ ⊂⊂ Ω.
Indeed, let Ω and U ′ be such sets: then |DχU |(R

2 \Ω) = |DχU ′ |(R2 \Ω). By the
above remark, U is a solution of TVL1 associated to U . Therefore:

Per (U,Ω) ≤ Per (U ′,Ω) + λ|U △ U ′| (5.4)

By corollary 4.2.4 in [9], H1(∂U \ FU) = 0, and the result stems from Theorems
4.7.1 and 4.7.4 in [9].

The next proposition shows that at points where the boundary of the solution
associated to F does not coincide with the boundary of F , the curvature is equal to
±λ.

Proposition 5.5. Let F ⊂ R2, U ⊂ R2 a solution of the geometric problem
(5.1) associated to F , x ∈ ∂U , κ(x) the curvature of ∂U at x, and V a neighborhood
of x.
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• If V ∩ F = ∅ then κ(x) = λ
• If V ∩ F = V then κ(x) = −λ.

Notice that, if no such V can be found, then ∂F and ∂U coincide at x. The
idea is that, restricted to V , the geometric problem is equivalent to the famous mean
curvature problem [9].

Proof. Without loss of generality, and up to a rotation of the axes, we can assume
that V = D × I where D ⊂ R and I ⊂ R are bounded open intervalls and V ∩ U is
the hypograph of a C1,1 function φ : D → I.

The geometric energy classicaly reformulates in case (i):

EG(U) = C +

∫

D

√

1 + |∇φ(x)|2dx+ λ

∫

D

φ(x)dx (5.5)

and in case (ii):

EG(U) = C +

∫

D

√

1 + |∇φ(x)|2dx+ λ

∫

D

(sup I − φ(x))dx (5.6)

where C is the energy outside V .
This is the prescribed mean curvature problem and the result follows by ([9],

Theorem 1.1.3). For the convenience of the reader, we recall the proof, working with
case (i). We consider a small perturbation of φ: (φ + ǫϕ) where ϕ ∈ C1

c (D). Then
the energy becomes:

∫

D

√

1 + |∇φ(x) + ǫ∇ϕ|2dx+ λ

∫

D

(φ+ ǫϕ(x))dx (5.7)

and since it is minimal in ǫ = 0, its derivative vanishes:

∀ϕ ∈ C1
c (D),

∫

D

〈∇φ,∇ϕ〉
√

1 + |∇φ|2
+ λ = 0 (5.8)

which means:

div

(

∇φ
√

1 + |∇φ|2

)

= λ (5.9)

The left term is exactly κ(x).
Remark. Using similar techniques one can prove that in fact:

ess sup
x∈∂U

|κ(x)| ≤ λ (5.10)

5.3. Reformulation of the energy for a convex data. To begin with, let us
point out that if F is convex, the energy can be simplified.

Proposition 5.6. Let us assume that F ⊂ R2 is convex. Then, the geometric
problem (5.1) associated to F reformulates:

inf
U⊂F

Per U − λ|U | (5.11)

Proof. The idea is to remark that every solution U of the geometric problem (5.1)
is contained in F (modulo a Lebesgue negligible set).
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Indeed, let U ⊂ R2. By contradiction, if |U \ F | > 0, let us prove that the
geometric energy EG(U∩F ) is strictly lower than EG(U). Since F is convex1: Per (U∩
F ) ≤ Per U (see [8]). We add λ|F \ U | on both sides, and we get:

Per (U ∩ F ) + λ|F \ U | < Per U + λ(|F \ U | + |U \ F |) since |U \ F | > 0 (5.12)

Which precisely means EG(U ∩ F ) < EG(U), and contradicts the fact that U is a
solution. Thus, the geometric energy reformulates:

Per U + λ|U △ F | = Per U + λ(|U | + |F | − 2|U ∩ F |

= Per U − λ|U | + λ|F |

The last term is constant. It has no influence on the choice of the solution.
Let us also recall a monotonicity result regarding the fidelity parameter λ. The

following proposition can be found in ([6], Lemma 4) or [16]:
Proposition 5.7 (Monotonicity with λ). Let 0 < λ < µ and Uλ, Uµ be solutions

of Problem (5.11) with fidelity parameter λ (resp. µ) . Then Uλ ⊂ Uµ.
In the convex case, calibrable is equivalent to Cheeger in itself. Therefore we can

state the following proposition (uniqueness is provided by Theorem 3.5).
Proposition 5.8 (Suddenly vanishing convex sets). Let F ⊂ R2 be a convex set.

Then F has the thresholding property if and only if it is calibrable. Moreover, when
λ = λF , {∅, F} is exactly the set of solutions.

5.3.1. Convex sets that are invariant by TVL1. In view of Propositions 5.5
and 5.6, it is very easy to see that, given any convex set that is invariant by TVL1,
both its curvature and its ratio perimeter/area are less than λ. A very interesting
property is that the converse is true, as proved in [6]. Indeed, Problem (5.11) was
studied in [6] in dimension N , in order to characterize convex calibrable sets. While
relying on some of their results (notably the next theorem), we shall follow a path
which is specific to dimension 2, in order to draw a parallel between the TVL1 model
and mathematical morphology.

Theorem 5.9 ([6], Theorem 9). Let C be a convex C1,1 bounded set of R2 and,
as before, λC = Per C/|C|. Let Λ = ess supx∈∂C |κ(x)|. Then C is a solution of the
geometric problem (5.11) associated to C (with fidelity parameter λ) if and only if
max(λC ,Λ) ≤ λ.

In view of Remark 5.3, let us notice that this theorem describes all convex solu-
tions of the TVL1 problem: a convex set C is solution of TVL1 for some F iff

max(λC ,Λ) ≤ λ. Notice that this criterion combines both a local and a global term.

5.3.2. Characterization of solutions for a convex data. In this subsection,
we explain how one can obtain the exact solution of the geometric problem using
openings and a simple thresholding procedure. By the geometric equivalence Theorem
4.2, this gives the exact solution of the TVL1 problem in case the data f is convex or
quasi-convex (i.e. its level sets are convex).

Definition 5.10. Let C ⊂ R2. Let us define the erosion and the opening with
radius r > 0 of C by:

Cr := C ⊖B(0, r) := {x ∈ C, B(x, r) ⊂ C} (5.13)

1A similar argument ensures that even in the non convex case, solutions of TVL1 are contained
in the convex hull of F .
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Fig. 5.2. General profile of the function λ 7→ |C1/λ| for a convex C. The value λ∗, at the

intersection with the graph of the function π/λ2, is such that the opening C1/λ∗

of C is the unique
Cheeger set of C.

Cr := Cr ⊕B(0, r) =
⋃

B(x,r)∈C

B(x, r) (5.14)

The following result can be found in [11], and is a consequence of Lemma 9.2 in
[19].

Lemma 5.11 ([11] Lemma 4.27). Let C ⊂ R2 be an open convex bounded set.
The following assertions are equivalent:

• There exists some ρ > 0 such that C = Cρ.
• ∂C is of class C1,1, and supp∈∂C essκ∂C(p) ≤ 1

ρ .

Next proposition describes the evolution of the ratio perimeter/area when per-
forming openings.

Proposition 5.12 ([7], [30]). The mapping λ 7→ |C 1
λ
| is continuous, increasing

on R∗
+, vanishes in a neighborhood of 0 and tends to |C| in +∞. Moreover:

Per C1/λ

|C1/λ|
< λ ⇔ |C1/λ| <

π

λ2
(5.15)

Eventually, there exists a unique λ∗ such that Per C1/λ∗

|C1/λ∗ |
= λ∗ (which is equivalent to

|C1/λ∗ | = π
λ∗2 ).

Notice that the value λ∗ is precisely the one for which the opening C1/λ∗

is the
Cheeger set of a convex body C (see Section 3).

Proof. For the continuity of the mapping, we refer the reader to [7]. We only
show here why the term π

λ∗2 appears. By Steiner’s formulas:

∀r > 0,Per (Cr ⊕B(0, r)) = Per Cr + 2πr (5.16)

|Cr ⊕B(0, r)| = |Cr| + rPer Cr + πr2 (5.17)

Therefore:

Per (Cr ⊕B(0, r))

|Cr ⊕B(0, r)|
>

1

r
⇔ rPer Cr + 2πr2 > |Cr| + rPer Cr + πr2 (5.18)

Lemma 5.13. Let C ⊂ R2 be a convex set, and λ > 0. The largest convex C1,1

open set included in C whose curvature is lower than λ is C1/λ.
Proof.
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• Let C̃ be an open C11 convex set contained in C with curvature lower than
λ. Then, by Lemma 5.11, C̃1/λ = C̃.
But, by monotonicity of the opening: C̃1/λ ⊂ C1/λ. Thus: C̃ ⊂ C1/λ.

• It is clear that C1/λ is convex (since if C contains two balls it contains their
convex hull) and it is open. By Lemma 5.11, C1/λ is C1,1 and its curvature
is lower than λ.

We are now in a position to state the main result of this section, giving the
solutions of the binary TVL1 problem in the convex case by means of operators from
mathematical morphology.

Theorem 5.14 (Solutions of the convex problem). Let C be a bounded, convex
set, and λ∗ defined by Proposition (5.12) (i.e. such that |C1/λ∗ | = π

λ∗2 )

• For λ > λ∗, the set C1/λ is the unique solution of the geometric problem
(5.11).

• For λ = λ∗, the set of solutions is exacly {C1/λ∗

, ∅}, and C1/λ∗

is the Cheeger
set of C.

• For λ < λ∗ the unique solution of Problem (5.11) is ∅.
Proof.

For λ > λ∗, let us define C∗ = T +C (see Definition 4.8). Then C∗ is C1,1 (Proposition
5.4) and its curvature is lower than λ (Proposition 5.9).

C1/λ is the greatest convex C1,1 open set contained in C with curvature lower
than λ (see Lemma 5.13), so that int C∗ ⊂ C1/λ ⊂ C, and as a result:

T +( int C∗) ⊂ T +C1/λ ⊂ T +C∗. (5.19)

But the extreme terms are equal to C∗ (because we can identify int C∗ and C∗, since
the C1,1 boundary has null measure), therefore modulo a Lebesgue negligible set ,
T +C1/λ = C∗.

Eventually, C1/λ is invariant by TVL1 (since Per C1/λ

|C1/λ|
≤ λ and κ ≤ λ), hence:

C1/λ = T +C1/λ = C∗ (5.20)

and C1/λ is solution of the geometric problem.
We still have to prove uniqueness. Let U ⊂ C be a solution associated with the

value λ. Let λn (resp. µn) be an increasing (resp. decreasing) sequence with limit λ.
The sets C1/λn are solutions of (5.11) associated to λn, thus, by monotonicity in λ
(Proposition (5.7)):

⋃

n

C1/λn ⊂ U ⊂
⋂

n

C1/µn (5.21)

Both extreme terms are equal to C1/λ. Hence uniqueness.
For λ = λ∗, we compare the energy to the Cheeger problem. If |U | > 0:

Per U − λ∗|U | = |U |

(
Per U

|U |
− λ∗

)

> 0 (5.22)

except if U = C1/λ∗

, in which case the energy is equal to 0, as well as the energy of ∅.
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For λ < λ∗:

Per U − λ|U | = Per U − λ∗|U | + (λ∗ − λ)|U |

> 0 except if U = ∅

At this point we can look back at the thresholding property of convex calibrable
sets (Proposition 5.8). These sets suddenly disappear because when λ > λ∗ they
are invariant to an opening with radius 1/λ (since, by characterization of convex

calibrable sets, κ(x) ≤ Per C
|C| = λ∗).

In the general convex case, the last shape we see when decreasing λ is the Cheeger
set of C. One should relate this with the Rudin-Osher-Fatemi model and the following
result of [6], [23] which is the key to the study of Cheeger sets in dimension N . Given a
data f = χC , denote by u the unique solution of this problem, then the set {x, u(x) ≥
‖u‖∞} is the Cheeger set of C. The similarity between the two problems stems from
the fact that in the convex case, the ROF model behaves like a ”stack of geometric
problems”: the level sets (Ut)t∈[0,1] minimize the quantity Per U − λ(1 − t)|U |.

This explains why Theorem 5.9, which was proved in the study of Cheeger sets,
ended up so helpful to the study of the TVL1 problem.

5.3.3. Separated convex components. We are now in a position to deal with
the case of several convex connected components, provided they are far enough from
one another.

Proposition 5.15. Let C1, . . . , C
m ⊂ R2, be non empty connex bounded sets

such that C̄i ∩ C̄j = ∅ for i 6= j, and F =
⋃m

i=1 Ci. Assume the sets Ci have the
following property:

(C) ∀U ⊃ F,Per (U) ≥
m∑

i=1

Per (Ci) (5.23)

Let us define a partition of every set U ⊂ R2 by U =
⋃m

i=0 Ui with U0 ⊂ FC and
Ui ⊂ Ci. Then, the geometric problem (5.1) can be split into independant problems:

∀i = 1, . . . ,m, min
Ui

Per Ui + λ|Ci \ Ui| (5.24)

Condition (C) intuitively means that the components Ci are far enough one from
another. It also implies that the Ci’s are convex. We can therefore apply results from
last subsection to characterize the solution in this case.

Proof.
Notice that by submodularity:

Per (U ∪
m⋃

i=1

Ci) + Per (U ∩
m⋃

i=1

Ci) ≤ Per U + Per (

m⋃

i=1

Ci)

︸ ︷︷ ︸

=
Pm

i=1
Per Ci

(5.25)

(since the distance between the Ci is strictly positive). But Per (U ∪
⋃m

i=1 Ci) ≥
∑m

i=1 Per Ci by condition (C). Thus, the inequality can hold only if: Per (U∩
⋃m

i=1 Ci) ≤
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Per U . Moreover:

|(U ∩
m⋃

i=1

Ci) △ F | =
m∑

i=1

|Ci \ Ui| ≤ |U0| +
m∑

i=1

|Ci \ Ui| ≤ |U △ F | (5.26)

We can infer that EG(U ∩
⋃m

i=1 Ci) ≤ EG(U). The geometric problem (5.1)
amounts then to: min

∑m
i=1(Per Ui + λ|Ci \ Ui|). These problems are independant

because Ui ⊂ Ci and the Ci’s are distant from one another.
Notice that Condition (C), which is here only a sufficient condition, is very similar

to conditions that appear naturally when studying calibrable sets (see [18], Theorem
6).

Remark 5.16. Although Condition (C) may not be optimal, notice that a condi-
tion on the distance between connected components appears necessary. This is easy to
check in the particular case of two discs of radius r. Assume the distance between their
centers is d ≥ 2r, then their convex hull has lower energy than the two discs when

2r ≤ d ≤ πr
2

(

1 + 1
1+λr

)

. One can choose such d as soon as λ < 1
r

(
2π−4
4−π

)

≈ 2.6
r . For

λ ∈
(

2
r ,

1
r

(
2π−4
4−π

))

, the independant evolution predicts that the solution is two discs,

which is contradicted by the fact that the convex hull has a lower energy.

5.4. Mathematical morphology almost everywhere...

5.4.1. TVL1 and mathematical morphology. In the convex case, we have
seen that TVL1 is equivalent to an opening followed by a thresholding. When the
connected components are non convex or too close to one another, things get more
complicated and one may wonder if a simple morphological operator can describe or
approximate the TVL1 model. K. R. Vixie and S. Esedoglu prove in [41] the following
result by geometric arguments:

Proposition 5.17 ([41]). Let F ⊂ R2 be a bounded measurable set, and U be
a solution of the corresponding geometric problem (5.1). Assume that a ball B(x, 2

λ )
lies completely in F . Then, U ∪B(x, 2

λ ) is a solution of the geometric problem (5.1).
Moreover, if B(x′, 2

λ ) ⊂ F c, then (B(x′, 2
λ ) ∪ U c)c is a solution too.

This result is all the more interesting as it gives the following geometrical bounds
on some solution of TVL1:

⋃

x:B(x, 2
λ )⊂F

B(x,
2

λ
) ⊂ U ⊂




⋃

x:B(x, 2
λ )⊂F C

B(x,
2

λ
)





C

(5.27)

Writing T for the TVL1 operator, O2/λ and F2/λ respectively for the opening

and closing operators with radius 2
λ , one can formally write:

O2/λ ⊂ T ⊂ F2/λ (5.28)

This result is somehow optimal since a ball with radius r < 2
λ vanishes by TVL1.

Therefore, it is hopeless to try to get a finer inequality by opening with balls with
a smaller radius. Nevertheless, the result is coarse in the sense that it implies a
curvature of ±λ

2 in regions where the boundary of U is distinct from the boundary of
F , and not ±λ as predicted by Proposition 5.5.
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Fig. 5.3. Opening of a corner with discs and calibrable ellipses . Circles of radius R = 1/λ = 12
and 2/λ are drawn in red. The ellipses are stretched to the limit of calibrability (α = 1, 635 ≈ α̃)
and with maximal curvature λ, so that they are invariant by TVL1. The arc of circle of radius 1/λ
(which is the exact solution in this case) is better approximated by the openings with these ellipses
than with an opening with a disc of radius 2/λ.

In fact, we can generalize Proposition 5.17 and give a simpler proof of it by
noticing that it is a consequence of the monotonicity Theorem 4.3 (since balls of
radius 2

λ are invariant by TVL1). In the framework of the present paper, one sees that
Proposition 5.17 is true when replacing B(x, 2

λ ) by any set that is invariant

by TVL1. As a consequence, one can replace balls in Equation 5.28 by any set that
is invariant by TVL1. In order to have better approximations of the TVL1 solutions,
we can therefore consider a larger family of structuring elements than just discs.

For instance one may consider ellipses, or any convex calibrable set satisfying the
hypothesis of Theorem 5.2, and try to refine the previous inequality. In theory, we are
guaranteed that, taking a large enough family, one could describe exactly operators
T + or T −: this is indeed a consequence of a famous theorem by Matheron [31] that
we now recall.

Theorem 5.18 (Matheron). Let P be a translation invariant standard monotone
operator. Let us consider B = {B ⊂ R2/0 ∈ PB}. Then:

PX = {x ∈ R2, x+B ⊂ X for some B ∈ B} (5.29)

Unfortunately, the family of structuring elements given by this theorem is far
too large for a practical use. Indeed any solution of TVL1, up to a translation, is a
structuring element! One may thus wonder if a reasonable family could lead to useful
approximations of TVL1, yielding curvature values close to λ. However, the choice
of a simple approximating family of structuring elements appears to depend on the
considered set. In Figure 5.3, we display the approximation of the evolution of a square
corner by openings with calibrable ellipses. Observe also that considering non rotation
invariant structuring sets compells us, if we want a rotationally invariant scheme, to
add every rotated version of the set in the family: numerically, the computing time
would become tremendous.
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Another way to express the result of TVL1 with the help of mathematical mor-
phology is to combine opening-like morphological operators with simple thresholdings.
Indeed, an immediate corollary to Theorem 5.14 is the following.

Corollary 5.19. Let C be a bounded, convex set, and λ > 0. Let C1/λ be the
opening of C with radius 1

λ . Then:

• If Per C1/λ

|C1/λ|
> λ, the solution is C1/λ.

• If Per C1/λ

|C1/λ|
< λ, the solution is ∅.

• If Per C1/λ

|C1/λ|
= λ, both C1/λ and ∅ are solutions.

The condition over the ratio perimeter/area appearing in this result essentially
means that the energy of the set after the opening is less than the energy of the
empty set. In the non convex case we can generalize it by imposing that the energy
when keeping the connected component is less than the energy when removing it.
Let us mention that a similar thresholding operation has already been proposed in
a completely different context, in the framework of morphological connected filters,
see [38].

Of course, the approach that would apply openings to non-convex sets is not sat-
isfactory, because it would obviously yields mistakes in locally concave parts. In order
to overcome this difficulty, we consider the operators given by an opening followed by
a closing or vice versa (F1/λO1/λ or O1/λF1/λ) with the idea that in regions where the
shape is locally convex or concave, Theorem 5.14 applies and these operators would
behave correspondingly. Notice also that both operators provide curvature ±λ and
also satisfy the same inequality as TVL1, Formula (5.28), namely:

O2/λ ⊂ O1/λF1/λ ⊂ F2/λ and O2/λ ⊂ F1/λO1/λ ⊂ F2/λ (5.30)

After applying operator F1/λO1/λ (or O1/λF1/λ), we consider every connected
component Ui of the result, and we test if its energy is lower than the energy of the
empty set i.e.:

Per Ui + λ (|Ui| − 2|Ui ∩ F |) ≤ 0 (5.31)

Several objections may be raised to this approach. For instance, none of the used
morphological operators is self-dual, while TVL1 is. Since there is no ordering between
O1/λF1/λ and F1/λO1/λ, one cannot even argue that they are good candidates for
T + or T −. This objection is often resolved in mathematical morphology by using
an alternating sequential filter [39]. This filter consists, given a small value r0, in
performing alternatively opening and closing of radius nr0 until nr0 ≥ 1/λ. When
r0 → 0 it is equivalent to start by an opening or a closing, and the algorithm is
self-dual.

Another objection is the fact that the thresholding driven by Equation 5.31 might
not be monotone in the non convex case. In order to avoid visible artefacts when ap-
plying the previous numerical scheme to images, we impose the monotonicity, by
removing all connected components of level sets that are included in a removed com-
ponent.

In Section 6, we detail the proposed scheme and illustrate it by numerical exper-
iments on both synthetic and natural images.

5.4.2. Some remarks about cartoon-texture decomposition. Theorem
5.14 shows that the behavior of the TVL1 model crucially depends on the scale of
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objects. It is interesting to relate this fact with the notion of granulometry used in
mathematical morphology in order to study the size of objects:

Definition 5.20. A granulometry is a family of openings {γµ} depending on a
positive parameter µ, that are decreasing functions with respect to µ: µ2 ≥ µ1 > 0 ⇒

γµ2
≤ γµ1

. The cumulative size distribution of a set F is µ 7→ 1− |γµF |
|F | . Its derivative

is called the granulometric spectrum of F : − 1
|F |

d
dµ |γµF |.

Leaving aside the condition on the ratio perimeter/area in Theorem 5.14, one can
notice that the TVL1 model provides a granulometry on the family of convex sets
(since γµF = Fµ if µ ≤ 1

λ∗
, ∅ otherwise).

In mathematical morphology, granulometric spectrums have notably been used
for texture analysis: a texture whose granulometric spectrum is concentrated on small
values of µ is ”rough” (that is, composed of tiny objects) whereas if the granulometric
spectrum is concentrated on high values of µ the texture is considered smoother (made
with objects at larger scale) (see for instance [39]). The property of granulometries,
which is to progressively destroy tiny objects, has proved helpful in practice when
trying to discriminate textures. It is reinforced in the TVL1 model by the tresholding
on the ratio perimeter/area.

This could explain why the TVL1 model performs surprisingly well in the problem
of cartoon-texture decomposition u+ v. Informally, TVL1 acts on images as a granu-
lometry (which kills small details and small curvatures) followed by a thresholding on
the ratio perimeter/area. When the fidelity parameter λ varies, objects are altered in
function of their granulometry and then vanish when their ratio perimeter/area is too
small. The v part contains object with fine granulometry, whereas u contains objects
with coarse granulometry (which is what we expect of a cartoon-type image).

It is remarkable that, while the whole community working on cartoon-texture
decomposition [32, 40, 35, 13, 14, 15] has investigated norms that tend to favor oscil-
lations in the texture term, one of the best decomposition model [27, 42] is provided
by a norm that does not even notice oscillations! The geometric criteria involved by
TVL1 have proved relevant in practice, since they have been used in mathematical
morphology for years in the study of textures.

6. Numerical experiments. Let us first mention that we do not intend to
compete in terms of speed with state-of-the-art algorithms like the one in [27]. We
do not claim either that we perform an exact minimization of the TVL1 functional in
the discrete case as in [27]. Our purpose here is to illustrate the results of this paper,
namely that the TVL1 minimization behaves (exactly in many cases, and at least not
very differently in general) like simple morphological operators such as openings or
closings.

As described above, the algorithm we propose first consists in performing an
opening then a closing(FO), or vice-versa (OF), or an alternate sequential filter
(ASF). Then we threshold the connected components of the level sets. More precisely:

• Compute the result M of the morphological filter (e.g. the ASF), and set
U = M .

• For j = 0..255, compute the upper level sets M j and U j . For each connected
component CCi,j of M j , if CCi,j is contained in a connected component of
a lower gray level which was thresholded, remove it in U j . Else perform the
test of Equation (5.31) (remove CCi,j in U j if the result is negative).

• For j = 255..0, compute the lower level sets Mj and Uj . For each connected
component CCi,j of Mj , if CCi,j is contained in a connected component of a
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higher gray level which was thresholded, remove it in Uj . Else, perform the
test of Equation (5.31) (remove CCi,j in Uj if the result is negative).

• Return U

Observe that the thresholding procedure is self-dual and the only cause of non
self-duality could stem from the morphological filter (OF , FO or ASF). Apparently,
this procedure might lead to contrast inversion in case of connected components with
holes. Notice that experimentally, we have never seen such a behavior. Moreover,
in theory, it can be proved that this phenomenon can never happen in the case of
concentric circles (annulus) because of the preliminary morphological filter. We are
currently working on an implementation using the Fast Level Set Transform [33] to
avoid this problem and speed up the computation.

It should be noted that in order to compare this algorithm with existing TVL1
algorithms, we should focus on schemes that satisfy the coarea formula. For instance,
when using a gradient descent formulation, numerical instabilities compells us to regu-

larize the total variation by replacing
√

u2
x + u2

y with
√

ǫ2 + u2
x + u2

y in the divergence

term. Although ǫ is assumed to be very small, this implies that the scheme does not
satisfy the coarea formula. As a consequence, new grey levels appear and characteris-
tic functions of sets are blurred. Therefore, it is not possible to experimentaly check
e.g. curvature values because of uncertainty on the boundary of the smoothed sets
(see Figure 6.1).

As a consequence, we compare our results with Darbon-Sigelle’s algorithm [27]
since, to our knowledge, it is the only algorithm that satisfies the coarea formula.
Observe however that this algorithm is anisotropic. Its authors propose two different
schemes: one relying on 4-connectivity and the other one relying on 8-connectivity,
the latter being more isotropic. In case of 4-connectivity, the scheme is actually con-
sistent with an anisotropic total variation formally defined as:

∫
(|ux|+ |uy|) instead of

∫ √

u2
x + u2

y. This kind of anisotropic, or crystalline, total variation is the framework

of intensive research (among which [19],[23], [17]). Let us mention that one can define
an anisotropic perimeter as well as an anisotropic curvature and that similar results
as those of Lemma 5.11 can be stated [19]. In our case the associated Wulff shape is
a square. It is not the purpose of this paper to explore the links between anisotropic
total variation and the results of Section 4, but we believe (and numerical experiments
tend to confirm it) that our results still hold with anisotropic total variation when
replacing opening with balls by opening with squares.

To sum up, the reader should mentally replace balls with squares while looking
at the result with Darbon-Sigelle’s algorithm.

Figure 6.1 shows the evolution of simple convex and non-convex shapes. First,
notice that results of rows 2 and 3 (respectively from Darbon-Sigelle’s algorithm and
our approach when using square structuring elements) are remarkably similar (al-
though a few pixels may differ). Observe also that, as it is well known, the finite
difference implementation of the fourth row exhibits blur. Last, we can notice that
results displayed on the last row, using balls as structuring elements, are the only
ones being both isotropic and with sharp edges.

Figure 6.2 displays an experiment on a natural image. In practice, the alternating
sequential filter is not exactly self-dual since a finite step r0 = 1 has to be chosen. As
a possible solution to this shortcoming, we computed the average between it and its
dual operator (an alternate closing/opening). In that case, although the two images
gives the same overall impression, some details are clearly different.
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Figure 6.3 and 6.4 illustrate the ability of the algorithm to provide isotropic
results when using balls as structuring element. However, let us notice that using
8-connectivity with Darbon-Sigelle’s algorithm yields slightly anisotropic results, but
in practice this is not very annoying.

Figure 6.5 shows the ”granulometry property” of the algorithm.

7. Adaptive TVL1. In the remaining of the paper, we consider the following
spatially varying version of the TVL1 problem:

inf
u

∫

R2

|Du| +

∫

R2

|u− f |λ(x)dx (7.1)

in which the fidelity parameter λ can be locally adapted to the content of the
image. Typically, in textured areas, one may want to use a higher fidelity parameter
in order to preserve fine details, while smoothing homogeneous regions. Another
application may be the denoising of medical images where one knows in advance
where objects of interest are and one wants to preserve them.

The aim of this section is to show that there are (locally) two options when using
adaptive TVL1 and defining λ(x): either one bounds λ(x) and gets regular solutions
(λ(x) giving a bound on the curvature), or one lets λ unbounded and then any shape
can be preserved by TVL1, including those with corners.

It will sometimes be more convenient to consider the weight λ as a density with
respect to the Lebesgue measure: λ(x)dx = dµ. For technical reasons we will assume
that λ ∈ L1

loc and that

∃c > 0, a.e.x ∈ R2, λ(x) ≥ c > 0 (7.2)

Notice that under these assumptions, the space of µ-integrable functions, that we

denote by Lp
λ, enjoys the usual properties of Lebesgue spaces (duality Lp

λ-Lp′

λ , density
of smooth functions, etc.).

When λ is constant, Problem (7.1) amounts to the regular TVL1 model, in which
case we shall say that the problem is stationary .

Proposition 7.1 (Existence). Assume condition (7.2) is true. Then there exists
(at least) one solution to Problem (7.1). Let us define:

T : L1
λ → P(L1

λ) (7.3)

the operator which maps f to the set of solutions Tf = {u ∈ L1
λ, u is a solution of (4.1)}.

Then the set Tf is convex and closed in L1
λ.

Proof. The proof relies on the direct method of the calculus of variations. Let un

be a minimizing sequence. Then,

min(c, 1)

(

|un|TV +

∫

R2

|f − un|

)

≤ |un|TV +

∫

R2

|f − un|dµ ≤ C (7.4)

thus we can extract a subsequence (still denoted as un) which converges to u ∈ L1 in
L1 and Dun ⇀ Du in the sense of measure convergence. Up to another extraction, we
can even assume that the sequence un(x) converges to u(x) for almost every x ∈ R2.
But then by semicontinuity and Fatou’s lemma:

lim inf
n

(

|un|TV +

∫

R2

|f − un|dµ

)

≥ |u|TV +

∫

R2

|f − u|dµ (7.5)
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Fig. 6.1. From top to bottom. First row: original image. Second row: result obtained with
Darbon-Sigelle’s algorithm (connectivity 4). Third row: result of an alternating sequential filter
(alternated opening/closing with increasing radius, the structuring element being a square of side
2/λ) completed with a thresholding. Fourth row: result of the gradient descent scheme (300 000
iterations, dt = 0.1). Fifth row: result of an alternating sequential filter with euclidean balls as
structuring elements. All pictures were computed with λ = 1/9, except the second column (λ = 1/6,
the small component vanishes). Notice the blurry effect introduced by the the gradient descent.
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Fig. 6.2. Result of the algorithm on a natural image. From left to right: original image,
Darbon-Sigelle’s algorithm [27] using 4-connectivity, and average between two alternating sequential
filters (one starting with opening the other with a closing, with squares as structuring element).
Both images are very similar. Notice however that some details, for instance on the trousers, look
different.

Fig. 6.3. Isotropy. Left: original image. Middle: result of Darbon Sigelle’s algorithm us-
ing 8-connectivity. Using 8-connectivity provides more isotropic results than using 4-connectivity.
However it is not as isotropic as the scheme proposed in this paper when using balls as structuring
element, as shown on the right image (the reader should examine the pupils with attention).

and u is a solution of Problem 7.1.

Proposition 7.2. The energy reformulates:

E(u) =

∫ +∞

−∞

Per {x, u(x) > t} + µ ({x, u(x) > t} △ |{x, f(x) > t}) dt (7.6)

We are thus led to study the geometric problem:

inf
U⊂R2

EG(U) := Per U + µ(U △ F ) (7.7)

where µ ∈ R and Fµ = {x, f(x) > µ}. Notice that when willing to insist on the
dependance on the data F , we shall write EG(U,F ).

Proof.
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Fig. 6.4. Isotropy again. The upper row illustrates the behavior the Darbon-Sigelle algorithm
using 8-connectivity on a detail of a Brodatz texture (from left to right: original image, result of the
algorithm with increasing values of λ) Lower row: behavior of the alternating sequential filter using
euclidean balls followed by a thresholding. Notice that the anisotropy of Darbon-Sigelle’s scheme is
not as tragic as it could since in practice it appears at really low values of λ (which are unrealistic
when denoising images).

∫

R2

|u− f |dµ =

∫

R2

(
∫ u(x)

f(x)

dt

)

χf(x)<u(x) +

(
∫ f(x)

u(x)

dt

)

χu(x)<f(x)dµ

=

∫

R2

∫ +∞

−∞

(
χf(x)≤t<u(x) + χu(x)≤t<f(x)

)
dt dµ

But

{x, (u(x) > t ≥ f(x)) or (u(x) ≤ t < f(x))} = {x, u(x) > t} △ {x, f(x) > t} (7.8)

By Fubini’s theorem:

∫

R2

|f − u|dµ =

∫ +∞

−∞

∫

R2

χ{x,u(x)>t}△{x,f(x)>t}dµdt

=

∫ +∞

−∞

∫

R2

µ ({x, u(x) > t} △ {x, f(x) > t}) dt

7.1. Monotonicity. In this section we generalize the monotonicity result (The-
orem 4.3), following the steps of [43] for the stationary case but giving different proofs.



26 VINCENT DUVAL, JEAN-FRANCOIS AUJOL AND YANN GOUSSEAU

Fig. 6.5. Scale space using the alternating sequential filter and thresholding algorithm. From
left to right, top to bottom: original image, result of the ASF-based algorithm (λ = 1, 1/2, 1/3,1/4,
1/5). Observe how details vanish one after the other, in function of their size: the shirt, the eyes
of the teddy-bear, one wing of the plane... This illustrates the ”improved granulometry” property of
the TVL1 model: objects evolve according to an opening/closing and then vanish depending on a
geometric criterion.

Lemma 7.3. Let F ⊂ G ⊂ R2, and let U1, U2 be corresponding solutions, and
U∧ = U1 ∩ U2. We have:

EG(U1, F ) − EG(U∧, F ) ≥ EG(U1, G) − EG(U∧, G) (7.9)

where EG(U,F ) is the geometric energy of U (see Equation (7.7)) with data F .
Proof. Since the perimeter parts of the energies are equal, it is sufficient to prove

the following inequality for the fidelity terms:

µ(U1 △ F ) − µ((U1 ∩ U2) △ F ) ≥ µ(U1 △G) − µ((U1 ∩ U2) △G) (7.10)

Replacing dµ with χB(0,n)dµ we can always assume that the following sets have
finite measure (take n→ +∞ to get the inequality).

µ(U1∆G) = µ(U1 ∪G) − µ(U1 ∩G)

= µ(U1 ∪ F ) + µ((G \ (F ∪ U1)) − (µ(U1 ∩ F ) + µ(U1 ∩ (G \ F ))

= µ(U1∆F ) + µ((G \ F ) ∩ UC
1 ) − µ(U1 ∩ (G \ F ))

Therefore (notice this expression is increasing with U1):

µ(U1∆F ) − µ(U1∆G) = µ(U1 ∩ (G \ F )) − µ((G \ F ) ∩ UC
1 ) (7.11)

and similarly:

µ((U1∩U2)∆F )−µ((U1∩U2)∆G) = µ(U1∩U2∩(G\F ))−µ((G\F )∩(U1∩U2)
C) (7.12)

Hence the result.
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Lemma 7.4. The mapping U 7→ µ(U △ F ) is submodular, ie:

µ(U ∩ V △ F ) + µ(U ∪ V △ F ) ≤ µ(U △ F ) + µ(V △ F ) (7.13)

Proof. Let us write: u = χU , v = χV and notice that u2 = u, v2 = v.
We have:

|uv − f | = |(u− f)v + (1 − v)(v − f)| ≤ v|u− f | + (1 − v)|v − f | (7.14)

|u+ v − uv − f | = |(u− f)(1 − v) − vf + v2| ≤ (1 − v)|u− f | + v|v − f | (7.15)

Therefore: |uv− f |+ |u+ v− uv− f | ≤ |u− f |+ |v− f |. Integration with respect to
the measure µ gives the result.

Theorem 7.5 (Pseudo-monotonicity). Let S1 ⊂ S2 ⊂ R2, and Ui, i = 1, 2 be a
solution of the adaptive geometric problem associated to Si. Then

• U∧ = U1 ∩ U2 is a solution associated to S1

• U∨ = U1 ∪ U2 is a solution associated to S2

Proof. We proceed as in [43].

0 ≥ EG(U1, S1) − EG(U∧, S1) by optimality of U1

≥ EG(U1, S2) − EG(U∧, S2) by Lemma 7.3

≥ EG(U∧, S2) − EG(U2, S2)

≥ 0 by optimality of EG(U2, S2)

The third inequality is a consequence of the submodularity of the perimeter and the
fidelity term. As a result, all inequalites are in fact equalities and U∧ (resp. U∨) is a
minimizer associated to S1 (resp. S2).

A consequence of this monotonicity property is the geometric equivalence theo-
rem.

Theorem 7.6 (Geometric equivalence). Let f ∈ L1.The following assertions are
equivalent:

(i) u is solution of (7.1)
(ii) Almost every level set Uρ of u is solution of (7.7).
Proposition 7.7 (Contrast invariance). Let g be an increasing C1-diffeomorphism,

and assume f is bounded. Then:

Tλ(g ◦ f) = g(Tλf) (7.16)

7.2. Smoothness of the boundary. The following results explain that, as in
the stationary case, when λ is bounded, the boundary of the solutions is smooth.

Proposition 7.8. Assume λ is essentialy bounded. Let F ⊂ R2, and U ⊂ R2

be a solution of the TVL1 problem associated to F . Then ∂U coincides with the
reduced boundary of U in the sense that H1(∂U \ FU) = 0, and the latter is a C1,1

hypersurface.
Proof. It is the same as the stationary case. We let M = ‖λ‖∞ and notice that

U is a strong M -minimizer [9].
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Notice that, if we assume λ to be only locally bounded, the result holds locally.
In the following proposition, we assume that the weight has bounded variation,

which ensures that it has a well-defined trace on the boundary of the solution. This
trace controls the curvature of the solution.

Theorem 7.9. Let us assume that λ ∈ BVloc ∩ L
∞
loc. Let U ⊂ R2 be a bounded

open set of class C1,1, solution of the TVL1 problem for some F ⊂ R2. Then:

|κ∂U (x)| ≤ λ(x) H1a.e.x ∈ ∂U (7.17)

Proof. Let V = D × I ⊂ R2 be an open set intersecting ∂U , such that U ∩ V
is the hypograph of a C1 function, and h ∈ C1

0 (V ). Let α > 0 small, and ψα(x) :=
x + αh(x)ν(x), where ν ∈ C1(V,R2) is a vector field such that |ν| = 1 on U , and
coincides with the outer normal of U on ∂U ∩ V . Let us extend ψα by ψα(x) = x for
x /∈ U . Notice that when α is small enough, ψα is a C1 diffeomorphism of R2 in R2,
such that ψα(U ∩V ) ⊂ U ∩V . Let us write Uα := ψα(U) . Then, if h is non-positive,
since U and Uα coincide outside V and U ∩ V ⊂ Uα ∩ V :

0 ≤
EG(Uα) − EG(U)

α
=

Per Uα − Per U

α
+
µ(Uα \ U)

α
(7.18)

(Note that EG refers here to the geometric energy associtated with data U .)
The first term tends to

∫

∂U
κ∂UhdH

1 for α → 0, so let us focus on the second
one. Since:

∫

Uα

λ(y)dy =

∫

U

λ(x+ αh(x)ν(x)) det(I + αD(hν))dx (7.19)

we have:

µ(Uα) − µ(U)

α
=

∫

U

λ(x+ ανh) − λ(x)

α
det(I+αDw)dx+

∫

U

λ(x)

(
det(I + αD(hν)) − 1

α

)

dx

(7.20)
The limit of this expression for α→ 0+ (see Lemmas 7.13 and 7.14) is:

∫

U

(Dλ, hν) +

∫

U

λdiv (hν) = −

∫

∂U

λhνdH1 (7.21)

Eventually, for all h ≤ 0 with support in V :

0 ≤

∫

∂U

(κ∂U − λ)hνdH1 (7.22)

thus κ(x) ≤ λ(x) H1a.e.x ∈ V ∩ ∂U .
In a similar way, taking h ≥ 0, we have Uα ⊂ U and κ(x) ≥ −λ(x) H1a.e.x ∈

V ∩ ∂U
As in the stationary case, on can prove that in neighborhoods where the bound-

aries of F and U do not coincide, the curvature of U is actually equal to ±λ(x),H1a.e.x
(whether the point x lies inside or outside F ).

Remark 7.10. It is easy to see (consider for instance a disc), that even in the

convex case, the condition (Per C
µ(C) ≤ 1, κ∂C(x) ≤ λ(x) H1a.e.x ∈ ∂C) of Theorem

5.9 is necessary but not sufficient for a general weight λ.
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However, it is possible to compare to the stationary case to get sufficient condi-
tions. If:

κ∂C(x) ≤ ess inf
y∈C

λ(y) and
Per C

|C|
≤ inf essy∈Cλ(y) (7.23)

then C is solution. (write: Per U +
∫

∅ dµ = Per U + c
∫

∅ dx ≤ Per V + c
∫

C\V
dx ≤

Per V +
∫

C\V
dλ )

7.3. Corners with adaptive TVL1. The last subsection showed that at places
where λ is bounded, the boundary of the solution is regular. In the stationary case
it is well-known that one cannot preserve sharp corners while minimizing the total
variation in the ROF model (see for instance [32]) or in the TVL1 model (Proposition
5.4). On the contrary, one might want, in certain regions of an image, to preserve
corners or tiny details.

In [16], it was proved that any bounded set F ⊂ R2 with finite perimeter has
a variational curvature, i.e. there exists a non-negative weight λ(x) such that F is
solution of the problem:

inf
U⊂F

Per U −

∫

U

λ(x)dx (7.24)

In view of the geometrical analysis of this paper, this clearly implies that when the
data F is convex (for instance a square), there exists a weight λ(x) such that TVL1
preserves this data. The idea in [16] is to consider an increasing sequence λn → +∞
and consider the associated solutions of the stationary problem (which gives a non-
decreasing sequence of sets Ei). Then define λ(x) = λi if x ∈ Ei \ Ei−1 (see Figure
7.1). We see that no condition is imposed on the weight λ outside of the convex set
since Ei ⊂ F .

It seems difficult to generalize this result to non convex shapes. However, in view
of image processing applications, we can extend it to polygons.

Proposition 7.11. Let F ⊂ R2 be a simple polygon (not necessarily convex).
Then there exists a weight λ ∈ L1 such that F is invariant by adaptive TVL1. More-
over, given a distance r > 0, one can assume that λ(x) = 0 for dist(x, F ) > r.

Let us remind the reader that a simple polygon is a polygon whose boundary does
not cross itself. The last part of the proposition means that the choice of λ is almost
local, and that one can combine weights associated with different objects provided
they are far enough from one another.

Proof. Let X = {(x1, y1), . . . , (xN , yN )} denote the set of vertices of the polygon
F . Set 0 < α < min ({|xi − xj |, /xi 6= xj |} ∪ {|yi − yj |, /yi 6= yj |}) and define a grid
αZ2. Define its open cells by:

∀(i, j) ∈ Z2, Vi,j = {(x, y) ∈ R2, αi < x < α(i+ 1), αj < y < α(j + 1)} (7.25)

Since the number of segments is finite, we can assume, up to a rotation of the axes,
that no segment is parallel with the axes (therefore the edges of F intersect with the
grid only at isolated points). Moreover, by choice of α the adherence of each Vi,j

contains at most one vertex, and either F ∩Vi,j is convex or FC ∩Vi,j is convex (since
it is the intersection of the triangle defined by the vertex and its two neighbors with
the convex cell Vi,j), see Figure 7.1.

In each cell Vi,j such that F ∩Vi,j 6= ∅, consider the restricted TVL1 problem (we
assume for clarity that F ∩ Vi,j is convex, but by self-duality of the model it deals
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with the other case as well):

inf
U⊂F∩Vi,j

Per U −

∫

U

λi,j(x)dx (7.26)

By the result of [16], one can find a weight λi,j such that F ∩ Vi,j is a solution, and
λi,j vanishes outside F ∩ Vi,j .

Now we collect the weights and define a function λ such that λ ≡ λi,j on Vi,j for
all (i, j) ∈ Z2. Then, since by assumption the edges of F intersect the grid at most
at isolated points:

|DχF |(R
2) =

∑

(i,j)∈Z2

|DχF |(Vi,j) (7.27)

By summing the inequalites on cells, for any U ⊂ R2:

|DχF |(R
2) =

∑

(i,j)∈Z2

(

|DχU |(Vi,j) +

∫

(F∩Vi,j)∆(U∩Vi,j)

λ(x)dx

)

≤ |DχU |(R
2)+

∫

(F∆U)

λ(x)dx

(7.28)
Therefore F is a solution with such λ.

To be coherent with our framework (Equation 7.2), once such λ is found, one can
even replace λ by λ+ c.

Fig. 7.1. (Left) A convex polygon and its solution Ei with TVL1 using an increasing sequence
λi (the darker the greater value of λ). In [16], it is proved that using precisely the weights λi in
the corresponding sets leads to a perfect preservation of the convex set. (Right) Generalization to
non convex polygons. If the boundary is simple, one can define a grid such that for each cell Vi,j ,
F ∩ Vi,j is convex or F C ∩ Vi,j is convex.

7.4. Generalized Cheeger sets and λ-calibrable sets. Interestingly enough,
the adaptive TVL1 model is related to the notion of generalized Cheeger set studied
in [21], [20], and [22].

Given a nonempty open bounded set F ⊂ R2, determine:

hF := inf
X⊂F

∫

F
|DχX |(x)
∫

X
λ(x)dx

=
Per X

µ(X)
(7.29)

Any minimizer X of this problem is called a generalized Cheeger set of F . If F
itself is a minimizer, we say that F is Cheeger in itself.

Notice that F is Cheeger in itself if and only if it is solution of the problem:

min
X⊂F

Per X − λFµ(X) . (7.30)
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with λF = Per F
µ(F ) .

We can also extend the notion of calibrable sets to this framework.
Definition 7.12. Let E be a bounded set with finite perimeter. We say that

E is µ-calibrable if there exists a vector field ξ ∈ X∞ with ‖ξ‖∞ ≤ 1 such that
−div ξ = λEχEλ(x) in D′(R2) for some λE, and (ξ,DχE) = |DχE | as measures in
R2.

With this definition, Propositions 3.2 and 3.3 are true when replacing the Lebesgue
measure with µ (see Appendix B).

As a consequence, a µ-calibrable set F is (µ-)Cheeger in itself, and the converse
is true when F is convex.

Replacing µ by αµ (α > 0), one can look for the sudden disparition of F when α
varies. As in the stationary case, one can show that every µ-calibrable set suddenly
vanishes, and that every suddenly vanishing set is µ-Cheeger in itself. In the convex
case, those implications are in fact equivalences, but one should be careful that in
general at the critical point (when α = λF ) the set of solutions strictly contains
({∅, F}), since uniqueness may not hold in the generalized Cheeger problem.
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Appendix A. We know state a few lemmas that are needed in the proof of The-
orem 7.9. For convenience, we shall write w(x) := h(x)ν(x) (we have w ∈ C1

c (R2,R2),
with suppw ⊂⊂ V ).

Lemma 7.13. Under the hypothesis of Theorem 7.9:

lim
α→0+

∫

U

λ(x)

(
det(I + αD(hν)) − 1

α

)

=

∫

U

λTr (D(hν))h (7.31)

Proof. Recall that when A and H are two matrices:

lim
t→0

det(A+ tH) − detA

t
= (detA)Tr (A−1H) (7.32)

Therefore d
dα det(I +αDw) = det(I +αDw)Tr

(
(I + αDw)−1Dw

)
, and by the mean

value theorem:

det(I + αDw) − 1

α
≤ sup

β∈[0,α]

det(I + βDw)
(
Tr (I + βDw)−1Dw

)
(7.33)

which is uniformly bounded on U .
As a consequence, the dominated convergence theorem applies, and the result

follows.
Lemma 7.14. Under the hypothesis of Theorem 7.9:

lim
α→0+

∫

U

λ(x+ ανh) − λ(x)

α
det(I + αDw)dx =

∫

U

(Dλ, hν) (7.34)
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Proof.

Let U1, U2 be two open sets, such that U2 ⊂⊂ U1 ⊂⊂ U and |Dλ|(U \ U2) ≤ ǫ
(which is possible since U is open). Let us choose ϕ ∈ C1

c , 0 ≤ ϕ ≤ 1, such that
ϕ(x) = 1 for x ∈ U1, suppϕ ⊂ U , and

∣
∣〈(Dλ,w), ϕ〉 −

∫

U
(Dλ,w)

∣
∣ ≤ ǫ. Notice that for

α small enough, ψα(U \U1) ⊂ U \U2, and we can even assume that 1/2 ≤ detDψα ≤ 2
uniformly on U .

The result will follow from the following inequality:

∣
∣
∣

∫

U
λ(x+αw)−λ(x)

α detDψαdx−
∫

U
(Dλ,w)

∣
∣
∣ ≤

∣
∣
∣

∫

U
λ(x+αw)−λ(x)

α (detDψα − ϕ) dx
∣
∣
∣

+
∣
∣
∣

∫

U
λ(x+αw)−λ(x)

α ϕdx−
∫

U
(Dλ,w)

∣
∣
∣

• Let us show that:

∣
∣
∣
∣

∫

U

λ(x+ αw) − λ(x)

α
(detDψα − ϕ) dx

∣
∣
∣
∣
≤ 6|Dλ|(U \ U2) ‖w‖∞ (7.35)

Since ϕ ≡ detDψα ≡ 1 on U1, it suffices to prove that:

∫

U\U1

|
λ(x+ αw) − λ(x)

α
|dx ≤ 2|Dλ|(U \ U2) ‖w‖∞ (7.36)

We proceed by approximation: let λn ∈ C∞(U) converging to λ in L1 and
|Dλn|(U \ U2) → |Dλ|(U \ U2).

∫

U\U1

|λn(x+ αw) − λn(x)|dx ≤ α

∫

U\U1

∫ 1

0

|〈∇λn(x+ αws), w〉|dsdx

≤ α

∫

U\U1

∫ 1

0

|∇λn(x+ αws)|dsdx‖w‖∞

≤ α

∫ 1

0

∫

U\U1

|∇λn(x+ αws)|dsdx‖w‖∞

≤ α

∫ 1

0

∫

U\U2

|∇λn((y))|detDψ−1
sα dy‖w‖∞ since ψsα(U \ U1) ⊂ U \ U2

≤ 2α‖∇λn‖L1(U\U2)‖w‖∞ = α|Dλn|(U \ U2)‖w‖∞

We pass to the limit n→ +∞ to get the inequality.
• On the other hand, we have:

∫

U

λ(x+ αw(x)) − λ(x)

α
ϕ(x)dx =

1

α

∫

Uα

λ(y)ϕ(ψ−1
α (y))|detDψ−1

α |dy−
1

α

∫

U

λ(x)ϕ(x)dx

(7.37)
But for y ∈ U \ Uα, ψ−1

α (y) /∈ U thus ϕ(ψ−1
α (y)) = 0. Therefore:
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∫

U
λ(x+αw(x)−λ(x))

α ϕ(x)dx =
∫

U
λ(y)







ϕ(ψ−1
α (y)) − ϕ(y)

α
︸ ︷︷ ︸

→−∇ϕ·w







|detDψ−1
α

︸ ︷︷ ︸

→1

|dy

+
∫

U
λ(y)ϕ(y)

detDψ−1
α − 1

α
︸ ︷︷ ︸

→−Tr Dw

dy

The quotients are uniformly bounded (by the mean value theorem) and con-
verge pointwise. Since λ ∈ L1, we can apply Lebesgue’s dominated conver-
gence theorem, which gives us the following limit:

−

∫

U

λ(y)∇ϕ(y) · w −

∫

U

λϕdiv w = 〈(Dλ,w), ϕ〉 (7.38)

• Finally:

lim sup
α→0

∣
∣
∣
∣

∫

U

λ(x+ αw) − λ(x)

α
detDψαdx−

∫

U

(Dλ,w)

∣
∣
∣
∣
≤ ǫ+ 6|Dλ|(U \ U2) ‖w‖∞

≤ (1 + 6‖w‖∞)ǫ

and this is true for every ǫ > 0, hence the result.

Appendix B.

Proposition 7.15. Let F ⊂ R2 be a µ-calibrable set. Then:
(i)

Per F

µ(F )
≤

Per U

µ(U ∩ F )
for all U ⊂ R2 (7.39)

(ii) Each connected component of F is convex.
Proof. We have:

µ(U∩F ) =

∫

R2

χUχF dµ =
1

λF

∫

R2

χU (−div ξ)dx =
1

λF

∫

R2

(ξ,DχU ) ≤ ‖ξ‖∞Per U
µ(F )

Per F
(7.40)

Proposition 7.16. Let C ⊂ R2 be a bounded convex set with finite perimeter.
The following assertions are equivalent:

(i) C is µ-calibrable
(ii) C is a solution of the problem:

min
X⊂C

Per X − λCµ(X)

(

where λC =
Per C

µ(C)

)

(7.41)

Proof.
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(i) ⇒ (ii): Let X be a set of finite perimeter. We have:

λCλ(C ∩X) =

∫

R2

λCχCχXdµ = −

∫

R2

div zχXdx =

∫

R2

(z,DχX) ≤ Per X

(7.42)
Thus Per X − λCµ(X) ≥ 0 = Per C − λCµ(C).

(ii) ⇒ (i): Let w ∈ L1
λ ∩ BV . Up to a decomposition of w in w+ − w−, and since

|w|TV = |w+|TV + |w−|TV by the coarea formula, we can assume that w is
non-negative. Then, writing f = λCχC :

∫

fwdµ =

∫ +∞

0

∫

R2

λCχCχ{w≥t}dµdt

=

∫ +∞

0

λCµ(C ∩ {w ≥ t}dt

≤

∫ +∞

0

Per (C ∩ {w ≥ t}dt since C is minimal

≤

∫ +∞

0

Per ({w ≥ t}dt since C is convex

≤ |w|TV

Therefore we have proved that ‖λCχC‖∗,λ ≤ 1. Consequently, there is some
z ∈ X∞, such that −div z = λCχCλ.
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