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Abstract
Dynamical degenerate four-wave mixing is studied analytically in detail.
By removing the unessential freedom, we first characterize this system by
a lower-dimensional closed subsystem of a deformed Maxwell–Bloch type,
involving only three physical variables: the intensity pattern, the dynamical
grating amplitude, the relative net gain. We then classify by the Painlevé
test all the cases when single-valued solutions may exist, according to the
two essential parameters of the system: the real relaxation time τ , and the
complex response constant γ . In addition to the stationary case, the only
two integrable cases occur for a purely nonlocal response (Re(γ ) = 0),
these are the complex unpumped Maxwell–Bloch system and another one,
which is explicitly integrated with elliptic functions. For a generic response
(Re(γ ) �= 0), we display strong similarities with the cubic complex Ginzburg–
Landau equation.

PACS numbers: 05.45.−a, 02.40.Xx, 42.65.−k

1. Introduction

The wave self-action by the degenerate mixing in a nonlinear medium involves three
simultaneous processes: the interference of waves, the recording of the dynamical grating by
an interference pattern, and the wave diffraction by the grating. This process is now the basic
technique of some important practical applications in real-time holography, including optical
phase conjugation, holographic interferometry, novelty filters, all-optical signal processing,
etc [15, 17, 22].

During the wave mixing, the self-diffraction of waves is governed by a self-consistent set
of five equations for five complex amplitudes Aj , j = 1, 2, 3, 4 and E , see e.g. [22]
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∂zA1 = −iEA2, ∂zĀ2 = iEĀ1, ∂zĀ3 = −iEĀ4, ∂zA4 = iEA3, (1)

∂tE = γ Im − E
τ

, (2)

Im = A1Ā2 + Ā3A4, (3)

where (1) is the coupled wave system for slow variable amplitudes Aj(z, t) [26], (2) is the
evolution equation of the grating amplitude E with a rhs including the grating gain and the
grating relaxation, (3) is the relevant interference pattern of the interacting waves. In our
notation a bar denotes complex conjugation, ∂ denotes partial derivation, τ is a real constant.

It must be emphasized that the response constant

γ = |γ | eig (4)

is complex. We will use the terms ‘local’ and ‘nonlocal’ response to describe the phase
shift between the index grating E and the interference pattern Im. In the case of a purely
nonlocal response (γ purely imaginary), an energy transfer occurs between the interacting
waves, whereas a local response (γ real) is characterized by an exchange of the phases of
the waves [22]. In particular, the complex value of the coupling coefficient E is an essential
feature for the existence of solitonlike solutions.

Apart from t and τ , all variables are assumed dimensionless, after normalizing the physical
variables A′

j , z
′,

Aj = A′
j√
I0

, z = k2
0

2kz

z′, (5)

where k0 is the amplitude of the wave vector in the free space, I0 is the total input intensity

I0 =
4∑

j=1

Ij = constant, Ij = |A′
j |2. (6)

We restrict ourselves here to the so-called degenerate four-wave mixing (the four
frequencies are identical), in the transmission geometry and in two space dimensions,

�kj = kj,x�ex + kj,z�ez, j = 1, 2, 3, 4, (7)

�k1 − �k2 = �k4 − �k3 = �K (8)

(�ex and �ez are unit vectors, �K is the grating vector).
So far, there exist two main analytic results:

• for γ purely imaginary (purely nonlocal response) and in the stationary regime, a sech
profile grating amplitude [18];

• when the phases of each Aj are independent of z, a parametric representation of the five
amplitudes also restricted to a purely imaginary γ [4, 5, 18],

Re(γ ) = 0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E = (∂zu) eiϕe , γ = iγNL, γNL real,

A1 = f12 sin(s12(u − C12)) eiϕ1 , A2 = f12 cos(s12(u − C12)) eiϕ2 ,

A4 = −f43 sin(s43(u + C43)) eiϕ4 , A3 = f43 cos(s43(u + C43)) eiϕ3 ,

ϕ1 − ϕ2 − ϕe +
π

2
= n12π, s12 = (−1)n12 ,

ϕ4 − ϕ3 − ϕe +
π

2
= n43π, s43 = (−1)n43 ,

Im = 1

2
ei(ϕe−π/2)

(
f 2

12 sin 2(u − C12) − f 2
43 sin 2(u + C43)

)
,

n12, n43 ∈ Z,

(9)
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in terms of the real solution u of a damped sine-Gordon equation [4, 5, 18],

uzt +
1

τ
uz − K sin(2u + α) = 0, K eiα = γNL

2

(
f 2

12 e−2iC12 − f 2
43 e2iC43

)
. (10)

The representation (9) displays the invariance (1, 2, 3, 4, ∂z, u) → (4, 3, 2, 1,−∂z,−u)

and depends on six arbitrary real functions of t (f12, f43, C12, C43 and the values of ϕ1 +ϕ2

and ϕ4 + ϕ3) and one arbitrary real constant (the phase ϕe). The stationary sech solution
[18] is then represented by [5] (see equation (23) below),

tg u = e2k(z−z0). (11)

In the present paper we classify all cases when the system admits solutions with a single-
valued dependence on the initial conditions, and, with one major exception, we integrate all
these cases. This major exception, left for future work, presents analogous difficulties to the
search, in the complex cubic Ginzburg–Landau equation (CGL3),

iAt + pAxx + q|A|2A − iγA = 0, pqγ �= 0, (A, p, q) ∈ C, γ ∈ R, (12)

for source [3], pulse [23] or front [21] solutions.

2. The intrinsic four-wave mixing, a deformed Maxwell–Bloch system

The ten-dimensional system (1)–(3) is invariant under any time-dependent rotation in the
space {A1, A2, A4, A3} which preserves the interference pattern (3). In order to remove this
five-parameter unessential freedom, let us apply repeatedly the derivation operator ∂z, starting
from the interference pattern (3), until a closed system has been obtained. This process ends
after two steps and results in the intrinsic system

∂zIm = −iEId, ∂zId = −2iĒIm + 2iEIm, ∂tE = γ Im − E
τ

, (13)

admitting the first integral

4|Im|2 + I 2
d = K(t), K arbitrary. (14)

The real field Id which is thus introduced,

Id = −|A1|2 + |A2|2 − |A3|2 + |A4|2, (15)

has a natural interpretation: this is the relative net gain, therefore the four-wave mixing is
characterized by three intrinsic variables: the intensity pattern Im, the grating amplitude E and
the relative net gain Id.

In previous integration methods [14] for the four-wave mixing, one would mainly look
for the wave amplitudes Aj from some nonlinear system. Thanks to the existence of the above
intrinsic system, the integration, whether analytic or numerical, now becomes systematic and
involves two steps,

(i) integration of the nonlinear intrinsic system (13);
(ii) knowing the grating E , integration of the two-dimensional linear system

∂zX = −iEY, ∂zY = −iĒX; (16)

indeed, given two linearly independent solutions (X, Y ) = (X1, Y1), (X2, Y2), the general
solution of (1) is defined in a matrix form by(

A1

A2

)
= a12

(
X1

Y1

)
+ b12

(
X2

Y2

)
,

(
Ā3

Ā4

)
= a34

(
X1

Y1

)
+ b34

(
X2

Y2

)
, (17)
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in which the eight integration constants aij , bij , constrained by the three relations (3) and
(15), depend on five arbitrary parameters according to relation (A.8) in the appendix.

The above system (13) is very similar to another classical system of nonlinear optics, the
pumped Maxwell–Bloch system, which is an integrable system defined in complex form as
[8]

∂Xρ = Ne, ∂Xρ = Ne, ∂XN = −(ρe + ρe)/2 + 4s = 0, ∂T e = ρ, ∂T e = ρ, (18)

with s being a real constant (the system is ‘pumped’ when s is nonzero).
In fact, there is only one situation when the intrinsic four-wave mixing system (13) and

the pumped Maxwell–Bloch system (18) can be identified. This occurs when, at the same
time, the four-wave mixing model is undamped (τ = +∞) and has a purely nonlocal response
(Re(γ ) = 0), while the Maxwell–Bloch system is unpumped (s = 0). After this identification,

1

τ
= 0, Re(γ ) = 0, s = 0 :

z

X
= t

T
= 2|γ |Im

ρ
= 2|γ |Im

ρ
= |γ |Id

N
= −2iE

e
= 2iĒ

e
,

(19)

the undamped, purely nonlocal response four-wave mixing model admits all the solutions of
the unpumped complex Maxwell–Bloch system.

The undamped case (relaxation time τ = +∞) physically means the recording of a
permanent grating. In optics that can be, for example, the permanent holographic memory
realized in nonlinear media.

For practical computations, it may be advisable to eliminate Im from the grating evolution
(2) and to equivalently consider the three-dimensional fifth-order closed system,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|γ |2∂zId − 2iγ E(∂t Ē + Ē/τ) + 2iγ̄ Ē(∂tE + E/τ) = 0,(
∂z∂t +

1

τ
∂z

)
E + iγ EId = 0,

4|γ |−2|∂tE + E/τ |2 + I 2
d = K(t), K arbitrary.

(20)

The following will display the crucial role of the third intrinsic variable (the relative net
gain Id) to perform the explicit analytic integration whenever it is possible.

3. The stationary case: general solution

When the amplitudes are independent of the time t, the integration can be performed
completely. The intrinsic system (13)–(14) for Im, Id, E reduces to⎧⎨

⎩
d

dz
Im = −iEId,

d

dz
Id = −4|γ |τ(sin g)|Im|2, E = γ τIm,

4|Im|2 + I 2
d = K,

(21)

in which the first integral K is independent of t, therefore Id obeys a first-order ordinary
differential equation (ODE) of the Riccati type,

d

dz
Id = |γ |τ(sin g)

(
I 2

d − K
)
. (22)

The case γ real is uninteresting for it involves no energy exchange and the intensities
|E|2, |Im|2, Id are all constant.
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For γ nonreal, the nonlinear intrinsic system (21) admits the general solution

γ /∈ R:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Id = − k tanh kz

|γ |τ sin g
, E = γ τIm = e2iϕ0

2 sin g
(k sech kz)1−i cotg g ,

K =
(

k

|γ |τ sin g

)2

,

(23)

in which k, z0, ϕ0 are constants of integration, with z − z0 written for shortness as z.
These bright profiles for |E|2 and |Im|2 extrapolate the solution of [5] which was restricted

to γ purely imaginary.
The amplitudes are found by noticing that each variable AjE−1/2, j = 1, 4 and

Aj Ē−1/2, j = 2, 3 obeys a second-order linear ODE with constant coefficients. The result is

γ /∈ R :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A1 = (k sech kz)(1−i cotg g)/2 e+iϕ0−ig/2(a12c− + b12s−),

A2 = (k sech kz)(1+i cotg g)/2 e−iϕ0+ig/2(−a12s+ + b12c+),

A3 = (k sech kz)(1+i cotg g)/2 e−iϕ0+ig/2(B34c+ + A34s+),

A4 = (k sech kz)(1−i cotg g)/2 e+iϕ0−ig/2(−B34s− + A34c−),

c± = cosh(1 ± i cotg g)
kz

2
, s± = sinh(1 ± i cotg g)

kz

2
,

(24)

in which the conditions that Āj be complex conjugate of Aj requires the four complex constants
a12, b12, A34, B34 to be represented as⎧⎨
⎩

a12 = R cos λ eiα12 , b12 = R cos μ eiβ12 , A34 = R sin λ e−iα34 , B34 = R sin μ e−iβ34 ,

2R2 = k

|γ |τ sin g
,

sin(α34 − β34)

sin(α12 − β12)
= −tan λ tan μ.

(25)

The five additional constants of integration, chosen to be all real, are λ,μ, α12 +β12, α34 +β34,
and for instance α12 − β12 + α34 − β34.

4. Determination of the cases of singlevaluedness

In the nonstationary case, the only existing analytic result, valid for a purely nonlocal response
(Re(γ ) = 0) and recalled in the introduction, is the parametric representation of the five
complex amplitudes in terms of the solution u of the damped sine-Gordon equation (10).
Rather than looking for solutions of this damped sine-Gordon equation, which would only
concern the case Re(γ ) = 0, let us investigate the question of finding single-valued closed form
solutions, by applying the Painlevé test [13] in order to detect all obstacles to singlevaluedness.

4.1. The Painlevé test

For the basic notation (singular manifold variable ϕ, expansion variable χ , auxiliary functions
S,C), we refer to detailed lecture notes [10].

Near a noncharacteristic (i.e., ∂z∂t �= 0) movable singular manifold, as shown in our
preliminary article [11], the amplitudes have the leading order,⎧⎪⎪⎨

⎪⎪⎩

Ak ∼ akχ
−1+ib, Āk ∼ bkχ

−1−ib, k = 1, 4,

Ak ∼ akχ
−1−ib, Āk ∼ bkχ

−1+ib, k = 2, 3,

E ∼ q0χ
−1+2ib, Im ∼ Im,0χ

−2+2ib, Id ∼ Id,0χ
−2,

Ē ∼ r0χ
−1−2ib, Im ∼ Im,0χ

−2−2ib,

(26)
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in which b is any one of the two real constants defined in terms of γ by

(2b2 − 1) cos g + 3b sin g = 0, g = arg γ. (27)

The leading coefficients depend on the nonzero auxiliary function C(z, t) and four arbitrary
complex functions λ,μ, p12, p43 of (z, t),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = Nλp12 cosh μ, b2 = −Nλp−1
12 cosh μ,

a4 = Nλp43 sinh μ, b3 = Nλp−1
43 sinh μ,

a2 = Nλ−1p12 cosh μ, b1 = Nλ−1p−1
12 cosh μ,

a3 = −Nλ−1p43 sinh μ, b4 = Nλ−1p−1
43 sinh μ,

q0 = −i(1 − ib)λ2, r0 = −i(1 + ib)λ−2,

Im,0 = −N2λ2, Im,0 = N2λ−2, Id,0 = −2N2,

N2 = C

|γ | ((1 − 2b2) sin g + 3b cos g), C �= 0.

(28)

The Fuchs indices of the linearized system only depend on the value of b; for the ten-
dimensional system (1)–(3), these are [11]

j = −1, 0, 0, 0, 0, 2, 2, 2,
5 ± √

1 − 48b2

2
. (29)

For the intrinsic five-dimensional system (13), the indices are

j = −1, 0,
5 ± √

1 − 48b2

2
, 4, (30)

then the linear system (16) admits the Fuchs indices

j = 0, 2. (31)

The diophantine condition that all Fuchs indices be integer therefore only admits the solution
b = 0, Re(γ ) = 0 corresponding to a purely nonlocal response of the medium.

In order to compute the necessary conditions for the absence of movable logarithms
arising from the integer Fuchs indices, one can handle equivalently either the ten-dimensional
nonlinear system (1)–(3), or the five-dimensional nonlinear system (13) followed by the two-
dimensional linear system (16). One must distinguish b = 0 from b �= 0, and it is useless
to test the quadruple index 0 (because the leading order already introduces four arbitrary
functions) and the index 4 (because of the existence of the single-valued first integral K(t),
equation (14). In the generic situation b �= 0 no movable logarithm is detected at the triple
index 2. In the nongeneric situation b = 0, for instance with the five-dimensional system (13),
two such necessary conditions Qj = 0 are generated, at the Fuchs indices j = 2 and 3,

Re(γ ) = 0:

{
Q2 ≡ τ−1 (Ct + CCz − (2/τ)C) = 0, C �= 0,

Q3 ≡ τ−1
(−�tt + (2/τ)�t − 2C�zt − C2�zz

) = 0, λ = ei�,
(32)

and no additional condition arises from the Fuchs index 2 of the linear system (16).

Remark 1. The analysis of the damped sine-Gordon equation (10) only generates the condition
Q2 = 0 [11], since the condition Q3 = 0 which involves the phases of the complex amplitudes
is then identically satisfied.

A first solution to the conditions (32) is 1/τ = 0, which identifies the unpumped
complex Maxwell–Bloch system as the purely nonlocal response, undamped limit (Re(γ ) = 0,

1/τ = 0) of the four-wave mixing model.

6
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Table 1. Possible single-valued solutions, according to time dependence, response (γ ) and damping
(τ ). The reduced variable is ξ = √

2z e−t/τ .

∂t Re(γ ) 1/τ Dependence Solution Section

=0 f (z) 8-param 3
�=0 =0 =0 f (z, t) Maxwell–Bloch 5
�=0 =0 �=0 f (ξ) 10-param 6.1
�=0 �=0 0 f (z, t)

�=0 �=0 �=0 f (z, t)

The second solution 1/τ �= 0 puts restrictions on the functions C and �. The condition on C,
whose general solution is [11]

2z/τ = C + F(e−2t/τC), F arbitrary function, (33)

restricts the expansion variable χ to only depend on the reduced variable ξ = √
2z e−t/τ (the√

2 is pure convenience) and therefore defines a reduction (z, t) → ξ of the PDE system to an
ODE system written and studied in section 6. As to the restriction on �, which only makes
sense for this ξ reduction, it will be further examined in section 6.

4.2. Conclusion of the test

The result of the test provides the guidelines to be followed in order to obtain explicitly single-
valued solutions of the four-wave mixing model. These detailed guidelines, summarized in
table 1, are the following.

• In the stationary case ∂t = 0, the test (not performed here) succeeds, therefore an eight-
parameter single-valued solution may exist. It has already been obtained in section 3.

• In the nonstationary, purely nonlocal response, undamped case (∂t �= 0, Re(γ ) = 0, 1/τ =
0), the system is equivalent to the unpumped complex Maxwell–Bloch system (18),
integrable in the sense of the inverse spectral transform [1], i.e. it admits N-soliton
solutions, see section 5.

• In the nonstationary, purely nonlocal response, damped case, no single-valued solution
exists unless the dependence on (z, t) is through the reduced variable ξ = √

2z e−t/τ .
Then, a single-valued solution may exist which depends on ten arbitrary parameters, we
obtain it explicitly in section 6.1.

• In the nonstationary, arbitrary response case, whether damped or undamped, which
includes the generic situation of the four-wave mixing, the structure of singularities
is quite similar to that of the cubic complex Ginzburg–Landau equation (12) (total
differential order four, two irrational Fuchs indices, no movable logarithm [9]). Single-
valued solutions are locally represented by two Laurent series depending on eight (instead
of ten as in the two previous cases) arbitrary functions, and the question of finding closed
form solutions a priori presents the same difficulty as for the CGL3 equation.

5. The unpumped Maxwell–Bloch system limit

Since the pumped complex Maxwell–Bloch system (18) admits the Lax pair [19]

∂X� = L�, ∂T � = M�,

L = 1

2

(
0 e

−e 0

)
+ f

(
1 0
0 −1

)
, M = 1

4f

(
N −ρ

−ρ −N

)
, f 2 = 2sT + λ2,

(34)

7
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in which λ is an arbitrary complex constant (the spectral parameter), the undamped four-wave
mixing model with a purely nonlocal response then admits N-soliton solutions, etc, as well as
solutions in terms of the third Painlevé function [12, 20, 25].

6. The dynamical case, reduction ξ = (2z)1/2 e−t/τ

The reduction (z, t) → ξ = (2z)1/2 e−t/τ (with an arbitrary origin for z and t) isolated by the
Painlevé test also exists for any value of γ and we define it so as to preserve the definitions
(3) and (15),

1

τ
�= 0, γ arbitrary:

⎧⎪⎪⎨
⎪⎪⎩

Im(z, t) = e−2t/τ−iωt Im,r(ξ), Id(z, t) = e−2t/τ Id,r(ξ),

E(z, t) = (1/2) e−t/τ−iωt (2z)−1/2Er(ξ),

Aj (z, t) = e−t/τ−iωt/2Aj,r(ξ), j = 1, 4,

Aj (z, t) = e−t/τ+iωt/2Aj,r(ξ), j = 2, 3.

(35)

It introduces one arbitrary real parameter ω.
The intrinsic system (13)–(14) for Im, Id, E and the linear system for the amplitudes Aj

reduce to⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d

dξ
Im,r = −iErId,r,

d

dξ
Id,r = 2i(ErIm,r − ĒrIm,r),

d

dξ
Er = −γ τIm,r − iωτ

ξ
Er,

d

dξ
A1,r = −iErA2,r,

d

dξ
Ā2,r = iErĀ1,r,

d

dξ
Ā3,r = −iErĀ4,r,

d

dξ
A4,r = iErA3,r,

K0 = e4t/τK(t) = I 2
d,r + 4|Im,r|2.

(36)

When compared to the traveling wave reduction (z, t) → ζ = z − ct, c �= 0,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Im(z, t) = e−iωt Im,r(ζ ), Id(z, t) = Id,r(ζ ), E(z, t) = e−iωtEr(ζ ),

Aj (z, t) = e−iωt/2Aj,r(ζ ), j = 1, 4,

Aj (z, t) = e+iωt/2Aj,r(ζ ), j = 2, 3.

d

dζ
Im,r = −iErId,r,

d

dζ
Id,r = 2i(ErIm,r − ĒrIm,r),

d

dζ
Er = −γ

c
Im,r −

(
iω − 1

τ

)
Er

c
,

d

dζ
A1,r = −iErA2,r,

d

dζ
Ā2,r = iErĀ1,r,

d

dζ
Ā3,r = −iErĀ4,r,

d

dζ
A4,r = iErA3,r.

K0 = K(t) = I 2
d,r + 4|Im,r|2,

(37)

the two reduced systems (36) and (37) only differ by the evolution of the grating Er.

6.1. Dynamical case, purely nonlocal response: general solution

A direct computation of the conditions (32) for both reduced ODE systems (36) and (37)
yields

Re(γ ) = 0 :

⎧⎪⎨
⎪⎩

reduction (2z)1/2 e−t/τ : Q2 ≡ 0, Q3 ≡ ωτξ−3,

reduction z − ct, c �= 0 : Q2 ≡ 1

cτ 3
, Q3 ≡ ω

(
τξ−3 − 1

2
ξ−2 − 1

τ
ξ−1

)
,

(38)

and the enforcement of Qj = 0 makes both systems identical. Let us integrate the system
(36) with Re(γ ) = 0, ω = 0.

8



J. Phys. A: Math. Theor. 42 (2009) 192003 Fast Track Communication

Thanks to the identity of the two systems (36) and (37) when the conditions Qj = 0 are
enforced, the first integrals of the system (36) for (Im,r, Id,r, Er) can be generated systematically
from the reduction X−cT of the Lax pair (34) of the unpumped Maxwell–Bloch; this provides
three first integrals, all real,

⎧⎪⎨
⎪⎩

K ′
0 = (γNLτ)2

(
I 2

d,r + 4|Im,r|2
)
, γ = iγNL, γNL real,

K1 = γNLτ(Im,rEr + Im,rĒr),

3e0 = 1
2γNLτId,r − |Er|2.

(39)

Therefore Id,r obeys a first-order ODE4 obtained by the elimination of Er and Im,r,

I ′
d,r

2 + 2γNLτI 3
d,r − 12e0I

2
d,r − 2(γNLτ)−1K ′

0Id,r + 4
(
K2

1 + 3e0K
′
0

)
(γNLτ)−2 = 0. (40)

The general solution (Im,r, Id,r, Er) of (36.1) is singlevalued and expressible with the classical
functions ℘, ζ, σ of Weierstrass,

℘ ′ 2 = 4℘3 − g2℘ − g3 = 4(℘ − e1)(℘ − e2)(℘ − e3), ℘ = −ζ ′, ζ = (log σ)′. (41)

With the correspondence

K ′
0 = g2 − 12e2

0, K2
1 = −℘ ′(a)2, −2e0 = ℘(a), (42)

the squared moduli and the gradient of their phases are doubly periodic functions,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

|Im,r|2 = ℘ ′2(ξ) − ℘ ′2(a)

4(γNLτ)2(−℘(ξ) + ℘(a))
, Id,r = −2℘(ξ) − ℘(a)

γNLτ
, |Er|2 = −℘(ξ) + ℘(a),

(arg Im,r)
′ =−2K1

(−2℘(ξ) − ℘(a))(−℘(ξ) + ℘(a))

℘ ′2(ξ) − ℘ ′2(a)
, (arg Er)

′ =− K1

2 (−℘(ξ) + ℘(a))
,

ei(arg Im,r−arg Er) = K1 − i℘ ′(ξ)

2γNLτ |ErIm,r| ,
(43)

the five constants of integration being e0, g2, g3 (actions), the origin of ξ and the common
origin of the phase of Im,r and Er (angles).

The complex amplitudes themselves (Im,r, Er, Aj ) are also single-valued functions and
their expression, analogous to the complex amplitude of the traveling wave of the nonlinear
Schrödinger equation, involves the σ function of Weierstrass and is given in the appendix.

An important particular case occurs for ℘ ′(a) = 0, all amplitudes then have constant
phases. It proves convenient to first write this solution in complex form, in the symmetric
notation of the Jacobi functions as introduced by Halphen [16],

hα(x) =
√

℘(x) − eα, α = 1, 2, 3, lim
x→0

xhα(x) = +1, (44)

4 When Re(γ ) = 0, ω �= 0, the ODE for Id,r has second order and is studied in [6, equation (19.6)].
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Er = −e2iϕ0 ihα(ξ), Ēr = −e−2iϕ0 ihα(ξ),

Im,r = − 1

γNLτ
e2iϕ0 hβ(ξ)hγ (ξ), Im,r = 1

γNLτ
e−2iϕ0 hβ(ξ)hγ (ξ),

Id,r = 1

γNLτ

(−2h2
α(ξ) − 3eα

)
, e0 = −eα

2
,

A1,r = i0 e+iϕ0(a12hβ(ξ) + b12hγ (ξ)), A2,r = i0 e−iϕ0(a12hγ (ξ) + b12hβ(ξ)),

Ā3,r = i0 e+iϕ0(a34hβ(ξ) + b34hγ (ξ)), Ā4,r = i0 e−iϕ0(a34hγ (ξ) + b34hβ(ξ)),

Ā1,r = i0 e−iϕ0(A12hβ(ξ) + B12hγ (ξ)), Ā2,r = i0 e+iϕ0(−A12hγ (ξ) − B12hβ(ξ)),

A3,r = i0 e−iϕ0(A34hβ(ξ) + B34hγ (ξ)), A4,r = i0 e+iϕ0(−A34hγ (ξ) − B34hβ(ξ)),

i2
0 = 1

γNLτ
,

(45)

with (α, β, γ ) an arbitrary permutation of (1, 2, 3) and the relations (A.8) for the eight constants
in Aj,r.

In terms of the real Jacobi functions, the complex solution (45) defines four bounded,
physically admissible solutions (i.e., with positive square moduli for the amplitudes), in which
the grating amplitude Er is, respectively, a cn, dn, sd, nd function (with the usual notation
k′2 = 1 − k2),
⎧⎪⎨
⎪⎩

h1(ξ) = irk cn(rξ, k), h2(ξ) = rk sn(rξ, k), h3(ξ) = ir dn(rξ, k),

(α, β, γ ) = (1, 2, 3) : K ′
0 = r4, 6e0 = r2(1 − 2k2),

(α, β, γ ) = (3, 2, 1) : K ′
0 = r4k4, 6e0 = r2(k2 − 2),

(46)

⎧⎪⎨
⎪⎩

h1(ξ) = irkk′ sd(rξ, k), h2(ξ) = rk cd(rξ, k), h3(ξ) = −irk′ nd(rξ, k),

(α, β, γ ) = (1, 2, 3) : K ′
0 = r4, 6e0 = r2(1 − 2k2),

(α, β, γ ) = (3, 2, 1) : K ′
0 = r4k4, 6e0 = r2(k2 − 2).

(47)

In these nine-parameter solutions, r, k are real, and λ12, λ34 must be taken real in (A.8) to
ensure that Aj and Āj are complex conjugate.

A second important case is the degeneracy from doubly periodic to simply periodic. The
subcase ℘ ′(a) �= 0, which would correspond to the dark solitary wave⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Er = i e2iϕ0(k tanh(kξ) − iκ) eiκξ , Ēr = i e−2iϕ0(k tanh(kξ) + iκ) e−iκξ ,

Im,r = − 1

γNLτ
e2iϕ0(k2 + κ2 + ikκ tanh(kξ) − k2 tanh2(kξ)) eiκξ ,

Im,r = 1

γNLτ
e−2iϕ0(k2 + κ2 − ikκ tanh(kξ) − k2 tanh2(kξ)) e−iκξ ,

Id,r = 1

γNLτ
(−2k2 tanh2(kξ) + 2k2 + κ2),

(48)

is unphysical since the square modulus ErĒr is negative. As to the subcase ℘ ′(a) = 0, it defines
the bright solitary wave obtained from the long wave limit k2 = 1 in (46),

h1(ξ) = h3(ξ) = ir sech(rξ), h2(ξ) = r tanh(rξ), K ′
0 = r4, K1 = 0,

6e0 = −r2,
(49)

with r, ξ0, ϕ0 being arbitrary. In this eight-parameter solution, r is real, and λ12, λ34, μ must
be taken real to enforce the complex conjugation between Aj and Āj .
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Remark 2. Despite the similarity with the stationary value (23) for this bright profile of the
grating amplitude, there is no limiting process yielding (23) from (49).

Remark 3. For those solutions displaying constant phases for the amplitudes, there must exist
a value of the damped sine-Gordon variable u, equation (10), able to represent the solution. Up
to the numerous additive and multiplicative constants in (10) and (45), this value is essentially
given by

eiu = hA(ξ), (50)

in which hA and hα are related by the Landen transformation [2, section 16.14.2]

d

dξ
log hA(ξ) = −hB(ξ)hC(ξ)

hA(ξ)
= hα(ξ), (51)

the correspondence between the elliptic invariants (eα, eβ, eγ ) and (eA, eB, eC) being detailed
in [2, section 16.14.1]. For the trigonometric degeneracy (49), the value is

eiu = r tanh rξ, (52)

and the Landen transformation reduces to the doubling of the argument with some shift,

∀ x : tanh x − 1

tanh x
= −2i sech

[
2x + i

π

2

]
, tanh x +

1

tanh x
= 2 tanh

[
2x + i

π

2

]
.

(53)

7. Conclusion

The four-wave mixing has been characterized by a lower-dimensional system of a deformed
Maxwell–Bloch type. Then the three and only three possibly single-valued limits of the
four-wave mixing model have been determined and integrated. These consist of (i) the
stationary case for any τ and γ ; (ii) the limiting case 1/τ = 0, Re(γ ) = 0 which is identified
to the complex unpumped Maxwell–Bloch system; (iii) when Re(γ ) = 0, the reduction
ξ = √

2ze−t/τ to an ODE system. Those solutions which are localized (typically Jacobi
bounded functions sn, cn, dn, cd, nd, sd [2, section 16.2]) should improve both the design of
the physical devices to be manufactured and the confidence in the numerical simulations. As
is often the case with methods based on singularities, the present study cannot rule out possible
closed form but multivalued solutions.

Moreover, the generic case 1/τ �= 0, Re(γ ) �= 0 has been shown to display a structure of
singularities, i.e. of possible closed form solutions, quite similar to that of the cubic complex
Ginzburg–Landau equation. These solutions will be investigated in a forthcoming paper.
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Appendix. Complex amplitudes of the integrable ξ reduction

By elimination from (36), both fields Er and Ēr obey the same equation,(
d2

dξ 2
− 2(℘ (ξ) − e0)

)
ψ = 0, ψ = Er, Ēr. (A.1)
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According to a classical result of Floquet, any linear differential equation with doubly periodic
coefficients admits at least one solution which is doubly periodic of the second kind [16]. The
elementary unit of such doubly periodic functions of the second kind has been introduced by
Hermite under the name élément simple H(ξ, q, k) [16, vol. II, p. 506],

H(ξ, q, k) = σ(ξ + q)

σ (ξ)σ (q)
e(k−ζ(q))ξ , (A.2)

chosen to have as only singularity a simple pole with residue 1 at the origin. Lamé indeed
proved that equation (A.1) admits the two solutions H(ξ,−a, 0) and H(ξ, +a, 0), which are
generically linearly independent. Hence the complex amplitudes⎧⎪⎪⎨
⎪⎪⎩
Er = −i e2iϕ0 H(ξ,−a, 0), Im,r = − i

2γNLτ
e2iϕ0

℘ ′(ξ) − ℘ ′(a)

℘ (ξ) − ℘(a)
H(ξ,−a, 0),

Ēr = −ie−2iϕ0 H(ξ, a, 0), Im,r = − i

2γNLτ
e−2iϕ0

℘ ′(ξ) + ℘ ′(a)

℘ (ξ) − ℘(a)
H(ξ, a, 0),

(A.3)

in which the five constants of integration are e0, g2, g3, ϕ0 and the origin of ξ .
Given the values (A.3) of Er(ξ), Ēr(ξ), each variable X, Y of the linear system (16) also

obeys a second-order linear differential equation with doubly periodic coefficients, e.g.,(
d2

dξ 2
− 1

2

℘ ′(ξ) − ℘ ′(a)

℘ (ξ) − ℘(a)

d

dξ
− (℘ (ξ) − ℘(a))

)
X = 0, X = A1,r. (A.4)

This equation has the same features as (A.1): unique singularity ξ = 0 of the Fuchsian type,
Fuchs indices equal to −1, 1, absence of logarithms in the general solution. A direct search
for solutions of the elementary type (A.2) provides the two solutions, generically linearly
independent,

X = H(ξ, +a/2 ± h, 0), Y = H(ξ,−a/2 ± h, 0), ℘ (h) = ℘(a/2) − 2
℘ ′2(a/2)

℘ ′′(a/2)
.

(A.5)

Taking account of the first integrals

A1,rĀ1,r + A2,rĀ2,r = constant, A3,rĀ3,r + A4,rĀ4,r = constant, (A.6)

the general solution for the complex amplitudes can be parametrized as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1,r = i0 (a12H(ξ, +a/2 + h, 0) + b12H(ξ, +a/2 − h, 0)) e+iϕ0 ,

A2,r = i0 (a12H(ξ,−a/2 + h, 0) + b12H(ξ,−a/2 − h, 0)) e−iϕ0 ,

Ā3,r = i0 (a43H(ξ, +a/2 + h, 0) + b43H(ξ, +a/2 − h, 0)) e+iϕ0 ,

Ā4,r = i0 (a43H(ξ,−a/2 + h, 0) + b43H(ξ,−a/2 − h, 0)) e−iϕ0 ,

Ā1,r = i0 (A12H(ξ,−a/2 − h, 0) + B12H(ξ,−a/2 + h, 0)) e−iϕ0 ,

Ā2,r = i0 (−A12H(ξ, +a/2 − h, 0) − B12H(ξ, +a/2 + h, 0)) e+iϕ0 ,

A3,r = i0 (A34H(ξ,−a/2 − h, 0) + B34H(ξ,−a/2 + h, 0)) e−iϕ0 ,

A4,r = i0 (−A43H(ξ, +a/2 − h, 0) − B43H(ξ, +a/2 + h, 0)) e+iϕ0 ,

i2
0 = 1

γNLτ
,

(A.7)

with ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a12 = cos μ cosh λ12 e+iα12 , A12 = cos μ cosh λ12 e−iα12 ,

b12 = i cos μ sinh λ12 e+iβ12 , B12 = i cos μ sinh λ12 e−iβ12 ,

a34 = sin μ cosh λ34 e+iα34 , A34 = sin μ cosh λ34 e−iα34 ,

b34 = i sin μ sinh λ34 e+iβ34 , B34 = i sin μ sinh λ34 e−iβ34 ,

ei(α12−β12−α34+β34) = ±1, tan2 μ = ± sinh(2λ12)

sinh(2λ34)
.

(A.8)
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The five additional integration constants are three of the four constant real phases
α12, β12, α34, β34, plus the two complex constants λ12, λ34. Finally, the conditions that Āj,r be
the complex conjugate of Aj,r puts on λ12, λ34 some constraints which depend on the choice
for H(ξ,±a/2 ± h, 0), see the text.
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Chaos, Solitons Fractals 11 41–52 (arXiv:solv-int/9803013)

[13] Conte R and Musette M 2008 The Painlevé Handbook (Berlin: Springer) xxiv+256 pp
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[25] Winternitz P 1992 Physical applications of Painlevé type equations quadratic in the highest derivatives Painlevé
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