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Abstract

We consider a quantum particle in an infinite square potential well of R
n, n = 2, 3,

subjected to a control which is a uniform (in space) electric field. Under the dipolar
moment approximation, the wave function solves a PDE of Schrödinger type. We study
the spectral controllability in finite time of the linearized system around the ground
state. We characterize one necessary condition for spectral controllability in finite time:
(Kal) if Ω is the bottom of the well, then for every eigenvalue λ of −∆D

Ω , the projections
of the dipolar moment onto every (normalized) eigenvector associated to λ are linearly
independent in R

n.
In 3D, our main result states that spectral controllability in finite time never holds

for one-directional dipolar moment. The proof uses classical results from trigonometric
moment theory and properties about the set of zeros of entire functions.

In 2D, we first prove the existence of a minimal time Tmin(Ω) > 0 for spectral control-
lability i.e., if T > Tmin(Ω), one has spectral controllability in time T if condition (Kal)
holds true for (Ω) and, if T < Tmin(Ω) and the dipolar moment is one-directional, then
one does not have spectral controllability in time T . We next characterize a necessary
and sufficient condition on the dipolar moment insuring that spectral controllability in
time T > Tmin(Ω) holds generically with respect to the domain. The proof relies on
shape differentiation and a careful study of Dirichlet-to-Neumann operators associated
to certain Helmholtz equations. We also show that one can recover exact controllability
in abstract spaces from this 2D spectral controllability, by adapting a classical variational
argument from control theory.
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‡L2S, Université Paris-Sud XI, CNRS, Supélec, 3 Rue Joliot-Curie, 91192 Gif-sur-Yvette, France, email:

yacine.chitour@lss.supelec.fr
§The work was in part carried out while the second author was working as Marie Curie Fellow at the

Department of Mathematics and Statistics, University of Kuopio, Finland, supported by the European Com-
mission 6th framework program “Transfer of Knowledge” through the project “Parametrization in the Control
of Dynamic Systems” (PARAMCOSYS, MTKD-CT-2004-509223)

¶Centre de Recherche de Royallieu, LMAC, 60020 Compiègne, France, email: dkateb@dma.utc.fr
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1 Introduction

Let us consider a quantum particle in an infinite square potential well of R
n, n ∈ {1, 2, 3}

subjected to a uniform (in space) time dependent electric field u : t 7→ u(t) ∈ Rn. Let Ω be
the domain of Rn corresponding to the bottom of the well. This physical system is modeled
by a wave function

ψ : R+ × Ω → C

(t, q) 7→ ψ(t, q),

such that |ψ(t, q)|2dq represents the probability of the particle to be in the volume dq sur-
rounding the point q at time t. Thus, the wave function ψ lives on the L2(Ω,C)-sphere S
as it is well known that the L2(Ω,C)-norm of the wave function ψ is preserved over time .
Under the dipolar moment approximation, this wave function solves the following Schrödinger
equation

{

i∂ψ
∂t

(t, q) = −∆ψ(t, q) − 〈u(t), µ(q)〉ψ(t, q), (t, q) ∈ R+ × Ω,
ψ(t, q) = 0, (t, q) ∈ R+ × ∂Ω,

(1)

where µ ∈ C0(Ω,Rn) is the dipolar moment and 〈., .〉 denotes the usual scalar product on Rn.
The system (1) is a non linear control system in which

• the state is the wave function ψ with ψ(t) ∈ S, for every t ≥ 0,

• the control is the electric field u : t ∈ R+ 7→ u(t) ∈ Rn.

Studying controllability properties of the control system (1) reveals interesting features.
For instance, Turinici proved in [43] that, the system (1) is not controllable in H2 ∩H1

0 (Ω,C)
with controls u in Lrloc(R+,R

n), r ∈ (1,+∞). This result is a corollary of a more general re-
sult about the controllability of bilinear control systems, due to Ball, Marsden and Slemrod in
[7]. However, it has been proved in [8] that the system (1) in 1D, with Ω = (−1/2, 1/2)
and µ(q) = q is locally controllable around the ground state in H7((−1/2, 1/2),C) with
H1

0 ((0, T ),R) controls, when T is large enough. This system is even controllable between
eigenstates, as proved in [9]. Therefore the non controllability result emphasized in [43] is
essentially due to a choice of functional spaces that do not allow the controllability, but this
controllability holds in other satisfying functional spaces. At the moment, in 2D or 3D, no
positive exact controllability result is known for (1).

We can also consider a similar non linear system. The quantum particle is now placed
in a moving infinite square potential well of Rn, n ∈ {1, 2, 3}. Let Ω be the domain of Rn

corresponding to the bottom of the well. It is proved by Rouchon in [36] that this physical
system is represented by the following Schrödinger equation















i∂ψ
∂t

(t, q) = −∆ψ(t, q) − 〈u(t), µ(q)〉ψ(t, q), (t, q) ∈ R+ × Ω,
ψ(t, q) = 0, (t, q) ∈ R+ × ∂Ω,

ḋ(t) = s(t),
ṡ(t) = u(t),

(2)

where ψ is the wave function of the particle in the moving frame, u := d̈ is the acceleration
of the well, s is the speed of the well, d is the position of the well and µ(q) = q (but in this
article, we will study this system for more general functions µ). The system (2) is a nonlinear
control system with state, the triple (ψ, s, d) with ψ(t) ∈ S, for every t ≥ 0, and control, the
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acceleration of the well u : t ∈ R+ 7→ R
n. In 1D, with Ω = (−1/2, 1/2), the local controllability

around the eigenstates and the controllability between eigenstates of (2) is proved in [9].
A classical approach to prove the local controllability of non linear systems such as (1) and

(2) around a reference trajectory consists in proving first, the controllability of the linearized
system around the reference trajectory and second, the local controllability of the non linear
system around the reference trajectory, with the help of an inverse mapping theorem. If the
linearized system around the reference trajectory is not controllable, one may use the return
method advocated by Coron (cf. [14, 15] and references therein, and [8], [9] for applications
to 1D Schrödinger equations). This method relies on the study of another reference trajectory
of the non linear system admitting a controllable linearized system.

Therefore, it is natural to linearize (1) and (2) along “simple” trajectories, for instance
along the one corresponding to the zero control, u ≡ 0 and to study the controllability of
the resulting linear system. For k ∈ N∗, the eigenstate ψk(t, q) := φk(q)e

−iλkt defines such a
trajectory ((ψ = ψk, u ≡ 0) for (1) and (ψ = ψk, s ≡ 0, d ≡ 0, u ≡ 0) for (2)), where (φk)k∈N∗ is
a complete orthonormal system of eigenfunctions for −∆D

Ω , the Laplacian operator on Ω with
Dirichlet boundary condition, and (λk)k∈N∗ are the corresponding non-decreasing sequence of
eigenvalues counted with their multiplicity. In the particular case k = 1, ψ1 is called the
ground state and the following systems are the linearized systems respectively of (1) around
the ground state,

{

i∂Ψ
∂t

(t, q) = −∆Ψ(t, q) − 〈v(t), µ(q)〉ψ1(t, q), (t, q) ∈ R+ × Ω,
Ψ(t, q) = 0, (t, q) ∈ R+ × ∂Ω,

(3)

and of (2) around the trajectory ((ψ = ψ1, s ≡ 0, d ≡ 0), u ≡ 0),















i∂Ψ
∂t

(t, q) = −∆Ψ(t, q) − 〈v(t), µ(q)〉ψ1(t, q), (t, q) ∈ R+ × Ω,
Ψ(t, q) = 0, (t, q) ∈ R+ × ∂Ω,

ḋ(t) = s(t),
ṡ(t) = v(t).

(4)

In this paper, we only study controllability properties of systems (3) and (4).

Let us recall classical results about the controllability of these two systems in 1D, results
being the starting point of the strategies developed in [8] and [9] for the nonlinear systems (1)
and (2). Their proof will be sketched in Section 2 in order to explain the difficulties arising
in their generalization to the 2D and 3D cases. For system (3), Ω = (0, 1) and, if s is a non
negative real number, let Hs

(0)((0, 1),C) be equal to D(As/2) where D(A) := H2∩H1
0 ((0, 1),C)

and Aϕ := −ϕ′′. Then, up to a condition satisfied by the dipolar moment µ (see Proposition 2.2
for a detailed statement), the system (3) is controllable in H3

(0)((0, 1),C) with control functions

in L2((0, T ),R) for every T > 0. As regards controllability for system (4), we show that it is
not exact controllable in finite time for the 1D problem and we describe the reachable set. The
crucial technical reason for that lies in the fact that the eigenvalues of ∆D

Ω verify a uniform gap
condition, i.e. there exists ρ > 0 such that, for every positive integer, we have λk+1 − λk ≥ ρ.
However, in 2D, the existence of a regular domain Ω of R2 such that the eigenvalues of ∆D

Ω

present a uniform gap is still an open problem and in 3D, no uniform gap is possible because of
the Weyl formula. Therefore, exact controllability of (3) and (4) in 2D and 3D is not a trivial
question and it is thus natural to study a weaker controllability property for this system. This
is why we investigate, in this article, the spectral controllability of systems (3) and (4). To
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define that concept of controllability, let us denote D, the linear span of the eigenvectors φk,
k ∈ N∗, and TSϕ, the tangent space to the sphere S at the point ϕ ∈ S. We say that system (3)
is spectral controllable in time T if, for every Ψ0 ∈ D∩TSψ1(0), Ψf ∈ D∩TSψ1(T ), there exists
v ∈ L2((0, T ),Rn) such that the trajectory Ψ(·) of (3) starting at Ψ0 satisfies Ψ(T ) = Ψf . For
system (4), that definition must be adapted as follows. Let 〈., .〉L2 denote the L2(Ω,C)-scalar
product. Then, system (4) is spectral controllable in time T if, for every Ψ0 ∈ D ∩ TSψ1(0),
Ψf ∈ D ∩ TSψ1(T ) with =〈Ψf , ψ1(T )〉 = =〈Ψ0, ψ1(0)〉 and for every d0 ∈ Rn, there exists
v ∈ L2((0, T ),Rn) such that the trajectory (Ψ, s, d)(·) of (4) starting at (Ψ0, 0, d0) satisfies
(Ψ, s, d)(T ) = (Ψf , 0, 0).

Our main results deal with the spectral controllability of (3) and (4). Before describing
them, let us make a general remark. Since we are dealing with controls only depending on time,
the control systems under consideration can be put into the general form ẋ = Ax + B(x)u
where the state belongs to some C-valued functional space X, the control u is Rn-valued,
the drift A is an (unbounded) linear operator admitting a complete orthonormal system of
eigenfunctions and the controlled vector field B(·) has rank one. Using the classical moment
theory, it is easy to characterize two necessary conditions for spectral controllability in some
finite time T > 0.

The first one corresponds to the Kalman condition for controllability in finite dimension.
In our context, it means that

(Kal) for every eigenvalue λ of A, the projections bkj
:= 〈µ(q)φ1, φkj

〉, 1 ≤ j ≤ m(λ), of the
controlled vector field B(·) on each eigenvector associated to λ are linearly independent
in Rn.

The above condition implies that the multiplicity of every eigenvalue λ of A is less than or
equal to n. Note also that if A has simple spectrum (this will be referred as condition (Simp)),
then condition (Kal) simply reads: the projections bk := 〈µ(q)φ1, φk〉 of the controlled vector
field B(·) on each (normalized) eigenvector is non zero. We refer to the latter condition as
(NonZ).

The second condition is specific to the infinite dimension (for the state space) and it is
related to the minimality of the family (e±i(λk−λ1)t)k∈N in L2((0, T ),C) (see Definition 3.1
below).

By applying a result of Haraux and Jaffard ([18]), we show that minimality never occurs
in 3D for system (4) and also for system (3) if, in addition, the dipolar moment has a constant
direction. In 2D, we show that minimality holds for both systems (3) and (4) if T is larger
than a minimal time Tmin(Ω). In turn, if the dipolar moment has a constant direction, spectral
controllability in time T > 0 for system (4) enables one to define a Hilbert subspace H of
L2(Ω,C) in which (4) is controllable, with L2((0, T ),R)-controls, when T > Tmin(Ω).

In order to get spectral controllability in time T > Tmin(Ω), it therefore amounts, for a
2D domain Ω and a dipolar moment function µ, to check the validity of (Kal). Since the
latter is difficult to verify for a given 2D domain Ω, we rather investigate conditions on the
dipolar moment µ to insure that (Kal) holds true generically with respect to domains Ω with
C3 boundary. There is a trivial necessary condition on µ for (Kal) to hold true generically
with respect to the domain: µ must be nowhere locally constant (NLC) i.e. its level sets are
all of empty interior. (Indeed, simply consider a 2D domain where µ is constant. Then (Kal)
does not hold, because of the L2(Ω,C)-orthogonality of the eigenvectors φk.) One of our main
results says that condition (NLC) for a C1 dipolar moment µ is also sufficient to prove that
condition (Kal) holds true, generically with respect to domains Ω with C3 boundary. To do
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so, we start from the well-known fact that the spectrum of the Laplacian operator on a domain
Ω ⊂ R2 with Dirichlet boundary conditions is generically simple. Therefore, it amounts to
prove that condition (NLC) for a C1 dipolar moment µ is also sufficient for condition (NonZ)
to hold true, generically with respect to domains Ω with C3 boundary. In summary, we can
finally show that, in 2D, spectral controllability in finite time, for both systems (4) and (3)
holds true, generically with respect to domains with C3 boundary, if and only if the C1 dipolar
moment µ is nowhere locally constant.

Before giving the plan of the paper, let us sketch the argument showing that (NLC) implies
(NonZ), generically with respect to the domain. First of all, we must consider a topology
for domains with C3 boundary. Following [40], the latter is defined by taking as base of
neighborhoods the sets V (Ω, ε) defined, for Ω any domain with C3 boundary and ε > 0 small
enough, as the images of Ω by Id2 + u, u ∈ W 4,∞(Ω,R2) and ‖u‖W 4,∞ < ε. We use D3 to
denote the Banach space of domains with C3 boundary equipped with the topology defined
previously. A property is said to be generic in D3 if the subset of domains in D3 verifying that
property is everywhere dense in D3.

We now fix a domain Ω with C3 boundary and a C1 dipolar moment µ verifying (NLC).
Without loss of generality we assume that (Simp) is verified by Ω and we first reduce the
argument to showing, for every positive integer k ≥ 2, the existence of a sequence (Ωn) of
domains with C3 boundary converging to Ω such that (NonZ)k (i.e., bk 6= 0 along the sequence
(Ωn)) holds true along the sequence. We proceed with a contradiction argument and we thus
assume that there exists ε > 0 such that, for every u ∈ W 4,∞(Ω,R2) with ‖u‖W 4,∞ < ε, the
corresponding bk is equal to zero. We compute the shape derivative of the relation bk = 0 at
u ≡ 0 and we can express it as an integral along the boundary of Ω, i.e.,

∫

∂Ω

〈u(q), ν(q)〉M(q)dσ(q) = 0,

where ν denotes the outer unit normal vector field and M(·) is a R2-valued function defined
on ∂Ω. As we will see below, in order to define M , one must introduce ξ1 and ξk, solutions
of inhomogeneous Helmholtz equations (see (31) below). We at once deduce that M(·) ≡ 0
on ∂Ω. Reaching a contradiction in our argument amounts to show that the functions ξ1, ξk
introduced above actually do not exist. Unfortunately, we are not able to do that. By pushing
further the contradiction argument, we compute the shape derivative of bk = 0 at every
u ∈ W 4,∞(Ω,R2) with ‖u‖W 4,∞ < ε. That translates into the following relation: for ε > 0
small enough and for every u, v ∈ W 4,∞(Ω,R2) with ‖u‖W 4,∞ < ε and ‖v‖W 4,∞ < ε, one has

∫

∂(Id2+u)Ω

〈v(q), ν(u)(q)〉M(u)(q)dσ(q) = 0,

where ν(u) denotes the outer unit normal vector field defined on ∂(Id2 + u)(Ω) and M(u)(·)
is an R2-valued function defined on ∂(Id2 + u)(Ω). The expression of M(u)(·) requires to
define ξ1(u), ξk(u), solutions of inhomogeneous Helmholtz equations. Of course, M(0), ξ1(0)
and ξk(0) are equal to M, ξ1 and ξk defined previously and we have that M(u)(·) ≡ 0 on
∂(Id2 + u)(Ω) for ‖u‖W 4,∞ < ε.

At this stage, we are again not able to derive a contradiction. So we again take the shape
derivative of M(u)(·) ≡ 0 on ∂Ω and end up with the relation

M ′(u)(q) = −(u.ν)(q)
∂M(0)

∂ν
(q), q ∈ ∂Ω, (5)
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for ‖u‖W 4,∞ < ε. We now start a strategy first introduced in [11], which consists in defining
M ′(u) for functions u defined on ∂Ω which are continuous except at some point q̄ of ∂Ω.
For instance, we will take u = uq̄ as a Heaviside function H0(q̄) admitting a single jump of
discontinuity at an arbitrary point q ∈ ∂Ω. The key remark is the following: if (u.ν) belongs
to the Sobolev space Hs(∂Ω) for some s > 0 then, by standard elliptic theory arguments,
M ′(u) belongs to Hs−1(∂Ω). In order to take advantage of the gap of regularity between the
two sides of equation (5), we embark in the computation of the singular part of M ′(uq̄)(·) at
q̄ (in the distributional sense) and eventually come up with the following expression,

M ′(uq̄)(σ) = M0 p.v.

(

1

σ

)

+R(σ),

where σ denotes the arclength (with σ = 0 corresponding to q̄) and R(·) belongs to H 1/2−ε(∂Ω)
for every ε > 0. Plugging back the above expression into equation (5), one must necessarily
have M0 = 0. Recalling that q̄ ∈ ∂Ω is arbitrary, we end up with M0(·) ≡ 0 on ∂Ω. In [11],
the previous relation on M0 was providing additional information with respect to the relation
M(u) ≡ 0 on ∂Ω, which allowed to conclude the contradiction argument. However, in the
present situation, it turns out that M0(·) is proportional to M(0)(·) and hence is trivially equal
to zero. One must therefore compute the first non trivial term in the ”singular” expansion
of M ′(uq̄) + (uq̄.ν)

∂M(0)
∂ν

at q̄, in the distributional sense. That procedure requires a detailed
study of Dirichlet-to-Neumann operators associated to several Helmholtz equations. Once the
non trivial term is characterized, we easily conclude.

The rest of the paper is organized as follows. In Section 2, we provide the main notations
and precise definitions of the control systems (3) and (4), complete 1D results with their proofs
and the statements of the main theorems of this article. Then, in Section 3, we give the proofs
for the spectral controllability results in 2D and 3D. As for Section 4, the construction of
some abstract spaces where we have 2D exact controllability is described. Section 5 contains
the proof of the sufficiency of condition (NLC) to get generic controllability in 2D for the
quantum box and Section 6 presents some conjectures. Finally, we gather in Appendix A the
main results on shape differentiation used in the paper and Appendix B contains material on
the Dirichlet-to-Neumann map for the Helmholtz equation with the proof of several technical
lemmas which are needed in Section 5.

Acknowledgments. The authors would like to thank Jean-Michel Coron and Enrique
Zuazua for helpful comments.

2 Definition of the control problem, notations and state-

ment of the results

2.1 Definition of the control problem

Let Ω be a domain of Rn (i.e. a bounded non empty open subset of Rn), n ∈ {1, 2, 3}, with a
C1 boundary. We use −∆D

Ω to denote the Laplacian operator on Ω with Dirichlet boundary
conditions, i.e.

D(∆D
Ω ) = H2 ∩H1

0 (Ω,C),−∆D
Ωφ = −∆φ.

The space L2(Ω,C) has a complete orthonormal system (φk)k∈N∗ of eigenfunctions for −∆D
Ω ,

φk ∈ H2 ∩H1
0 (Ω,C),−∆D

Ωφk = λkφk,
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where (λk)k∈N∗ is a non-decreasing sequence of positive real numbers. With this notation, the
eigenvalues λk are counted as many times as their multiplicity. For t ∈ R and q ∈ Ω, we define
the function ψ1 by

ψ1(t, q) := φ1(q)e
−iλ1t.

We recall that −i∆D
Ω generates a C0-group of isometries of L2(Ω,C) defined by

e−i∆tϕ :=
∑

k∈N∗

〈ϕ, φk〉e−iλktφk, ∀ϕ ∈ L2(Ω,C).

In this paper, we study controllability properties of the linear systems (3) and (4).
In order to consider them as control systems, we first need a concept of trajectories asso-

ciated to these systems. For that purpose, recall that the unit sphere S of L2(Ω,C) is defined
as follows,

S := {ϕ ∈ L2(Ω,C); ‖ϕ‖L2(Ω) = 1},
and, for ϕ ∈ S, the tangent space to the sphere S at the point ϕ is given by

TSϕ :=

{

ξ ∈ L2(Ω,C);<
(
∫

Ω

ξ(q)ϕ(q)dq

)

= 0

}

.

Definition 2.1. (Weak solutions) Let T > 0, µ ∈ C0(Ω,R2), Ψ0 ∈ TSφ1 and v ∈ L1((0, T ),Rn).
A weak solution to the Cauchy problem







i∂Ψ
∂t

(t, q) = −∆Ψ(t, q) − 〈v(t), µ(q)〉ψ1(t, q), (t, q) ∈ R+ × Ω,
Ψ(t, q) = 0, (t, q) ∈ R+ × ∂Ω,
Ψ(0) = Ψ0,

(6)

is a function Ψ ∈ C0([0, T ], L2(Ω,C)) such that for every t ∈ [0, T ],

Ψ(t) = ei∆tΨ0 + i

∫ t

0

ei∆(t−s)[〈v(s), µ〉ψ1(s)]ds in L2(Ω,C). (7)

Then (Ψ, v) is a trajectory of the control system (3) on [0, T ].
Let s0, d0 ∈ Rn. A weak solution to the Cauchy problem























i∂Ψ
∂t

(t, q) = −∆Ψ(t, q) − 〈v(t), µ(q)〉ψ1(t, q), (t, q) ∈ R+ × Ω,
Ψ(t, q) = 0, (t, q) ∈ R+ × ∂Ω,
Ψ(0) = Ψ0,
ṡ(t) = v(t), s(0) = s0,

ḋ(t) = s(t), d(0) = d0,

(8)

is a function (Ψ, s, d) with s ∈ W 1,1((0, T ),Rn), d ∈ W 2,1((0, T ),Rn) solutions of

ṡ(t) = v(t) in L1((0, T ),Rn), s(0) = s0,

ḋ(t) = s(t) in L1((0, T ),Rn), d(0) = d0,

and Ψ ∈ C0([0, T ], L2(Ω,C)) such that for every t ∈ [0, T ], (7) holds. Then ((Ψ, s, d), v) is a
trajectory of the control system (4) on [0, T ].

The following proposition recalls a classical existence and uniqueness result for the solutions
of (6), from which one can deduce the similar result for (8).
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Theorem 2.1. For every T > 0, Ψ0 ∈ TSφ1, v ∈ L1((0, T ),Rn), there exists a unique weak
solution to the Cauchy problem (6) and Ψ(t) ∈ TSψ1(t) for every t ≥ 0.

Then, the system (3) is a control system where

• the state is the function Ψ, with Ψ(t) ∈ TSψ1(t) for every t ∈ R+,

• the control is v : t ∈ R+ 7→ v(t) ∈ Rn, L1
loc(R+,R

n) is the set of admissible controls

and the system (4) is a control system where

• the state is the triple (Ψ, s, d), with Ψ(t) ∈ TSψ1(t) for every t ∈ R+,

• the control is v : t ∈ R+ 7→ v(t) ∈ Rn and L1
loc(R+,R

n) is the set of admissible controls.

More precisely, in this paper, we investigate the following controllability property for (3).

Definition 2.2 (Spectral controllability for (3)). The system (3) is spectral controllable
in time T if, for every Ψ0 ∈ D ∩ TSψ1(0), Ψf ∈ D ∩ TSψ1(T ), there exists v ∈ L2((0, T ),Rn)
such that the solution of (6) satisfies Ψ(T ) = Ψf , where

D := Span{φk; k ∈ N
∗}.

For the system (4), this definition needs to be adapted because of the presence of s and
d in the state variable and because the directions =〈Ψ(t), ψ1(t)〉 and s(t) are linked. Indeed,
any solution of (8) satisfies

=〈Ψ(t), ψ1(t)〉 = =〈Ψ0, ψ1(0)〉 +

n
∑

j=1

〈µ(j)φ1, φ1〉[s(j)(t) − s(j)(0)], ∀t, (9)

where, for x ∈ Rn, x(j) denotes its components, x = (x(1), ..., x(n)) and 〈., .〉 denotes the
L2(Ω,C)-scalar product. Therefore, we study the following controllability property for (4).

Definition 2.3 (Spectral controllability for (4)). The system (4) is spectral controllable
in time T if for every Ψ0 ∈ D∩TSψ1(0), Ψf ∈ D∩TSψ1(T ) with =〈Ψf , ψ1(T )〉 = =〈Ψ0, ψ1(0)〉,
for every d0 ∈ Rn, there exists v ∈ L2((0, T ),Rn) such that the solution of (8) with s0 = 0
satisfies (Ψ, s, d)(T ) = (Ψf , 0, 0).

The notations Ω, n ∈ {1, 2, 3}, φk, ψ1, 〈., .〉, S, TS, D, x = (x(1), ..., x(n)) ∈ Rn introduced
in this section are used all along this article. We also denote (ej)1≤j≤n the canonical basis
of Rn and ωk := λk − λ1, for every k ∈ N∗. We use the same notation for the Rn-scalar
product and the L2(Ω)-scalar product but if a confusion is possible we precise the space in
subscript 〈., .〉L2(Ω) or 〈., .〉Rn. When some confusion is possible, we also precise the domain on
the eigenvalues and eigenfunctions of the Laplacian : λΩ

k , φΩ
k .

2.2 Previous 1D results, difficulties of the 2D and 3D generaliza-
tions

In this section, we recall classical results about the controllability of the systems (3) and (4)
in 1D, that are the starting point of the strategies developed in [8] and [9] for the nonlinear
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systems (1) and (2). We also give their proof in order to explain the difficulties arising in their
generalization to the 2D and 3D cases.

We take Ω = (0, 1), so
φk(q) =

√
2 sin(kπq), λk = (kπ)2

and we use the following notations

Hs
(0)((0, 1),C) := D(As/2) where D(A) := H2 ∩H1

0 ((0, 1),C), Aϕ := −ϕ′′.

2.2.1 1D controllability of (3)

For the control system (3), we have the following result.

Proposition 2.2. Let Ω = (0, 1) and µ ∈ W 3,∞((0, 1),R).
(1) We assume that

∃c1, c2 > 0,
c1
k3

≤ |〈µφ1, φk〉| ≤
c2
k3
, ∀k ∈ N

∗. (10)

Then, for every T > 0, the system (3) is controllable in H3
(0)((0, 1),C) with control functions in

L2((0, T ),R): for every T > 0, Ψ0,Ψf ∈ H3
(0)((0, 1),C) with Ψ0 ∈ TSψ1(0) and Ψf ∈ TSψ1(T ),

there exists v ∈ L2((0, T ),R) such that the solution of (6) satisfies Ψ(T ) = Ψf .
(2) We assume that there exists m ∈ N∗ such that 〈µφ1, φm〉 = 0 and

∃c1, c2 > 0,
c1
k3

≤ |〈µφ1, φk〉| ≤
c2
k3
, ∀k ∈ N

∗ such that 〈µφ1, φk〉 6= 0. (11)

Then, the system (3) is not controllable: for every T > 0, Ψ0 ∈ L2((0, 1),C) and v ∈
L1((0, T ),R) the solution of (6) satisfies

〈Ψ(T ), φk〉 = 〈Ψ0, φk〉e−iλkT , ∀k ∈ N
∗ such that 〈µφ1, φk〉 = 0.

But one can characterize the reachable set: for every T > 0, Ψ0,Ψf ∈ H3
(0)((0, 1),C) with Ψ0 ∈

TSψ1(0), Ψf ∈ TSψ1(T ), 〈Ψf , φk〉 = 〈Ψ0, φk〉e−iλkT for every k ∈ N∗ such that 〈µφ1, φk〉 = 0,
there exists v ∈ L2((0, T ),R) such that the solution of (6) satisfies Ψ(T ) = Ψf .

Remark 2.1. Let us emphasize that the assumption (10) is generic with respect to µ ∈
W 3,∞((0, 1),R). Indeed, thanks to Baire’s Lemma, it is easy to prove that the property
“〈µφ1, φk〉 6= 0, ∀k ∈ N∗”holds generically with respect to µ ∈ W 3,∞((0, 1),R). Moreover,
for such a function µ, integrations by parts lead to

〈µφ1, φk〉 = 2

∫ 1

0

µ(q) sin(πq) sin(kπq)dq =
4k[(−1)k+1µ′(1) − µ′(0)]

(k2 − 1)2
+ o

(

1

k3

)

.

Thus, the asymptotic behavior in 1/k3 of these coefficients is equivalent to the property “µ′(1)±
µ′(0) 6= 0”, that is also generic in W 3,∞((0, 1),R).

The key ingredient for the proof of Proposition 2.2 is the following theorem due to Kahane
[25, Theorem III.6.1, p. 114].
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Theorem 2.3. Let (µk)k∈N∗ ⊂ R such that µ1 = 0 and

µk+1 − µk ≥ ρ > 0, ∀k ∈ N
∗. (12)

Let T > 0 be such that

lim
x→+∞

N(x)

x
<

T

2π
,

where, for x > 0, N(x) is the largest number of µk’s contained in an interval of length x.
Then, there exists C > 0 such that, for every c = (ck)k∈N∗ ∈ l2(N∗,C) with c1 ∈ R, there exists
w ∈ L2((0, T ),R) such that ‖w‖L2((0,T ),R) ≤ C‖c‖l2(N∗,C) and

∫ T

0

w(t)eiµktdt = ck, ∀k ∈ N
∗.

Remark 2.2. The proof of Theorem 2.3 relies on an Ingham inequality for the family

{1, eiµkt, e−iµkt; k ∈ N
∗, k ≥ 2},

which corresponds to the Riesz basis property of this family in L2((0, T ),C). For the proof of
Theorem 2.3, see, for example Krabs [28, Section 1.2.2], Komornik and Loreti [27, Chapter 9],
or Avdonin and Ivanov [5, Chapter II Section 4]. For the proof of similar results, we also refer
to the prior works by Ingham [21], and to Beurling [10, p. 341-365], Haraux [17], Redheffer
[35], Russel [37, Section 3], Schwartz [38]. Improvements of Theorem 2.3 have been obtained
by Jaffard, Tucsnak and Zuazua [23], [24], Jaffard and Micu [22], Baiocchi, Komornik and
Loreti [6], Komornik and Loreti [26], [27, Theorem 9.4, p. 177].

Proof of Proposition 2.2 : We assume (10). Let T > 0 and Ψ0 ∈ TSψ1(0). By definition,
the weak solution of (6) with some control v ∈ L2((0, T ),R) is

Ψ(t, q) =

∞
∑

k=1

xk(t)φk(q) where xk(t) =
(

〈Ψ0, φk〉 + i〈µφ1, φk〉
∫ t

0

v(τ)eiωkτdτ
)

e−iλkt, ∀k ∈ N
∗,

with convergence in L2((0, 1),C) for every t ∈ [0, T ], where ωk := λk − λ1, for every k ∈ N∗.
Since 〈µφ1, φk〉 6= 0, for every k ∈ N∗, the equality Ψ(T ) = Ψf in L2((0, 1),C) is equivalent to
the following trigonometric moment problem on the control v,

∫ T

0

v(t)eiωktdt = dk, ∀k ∈ N
∗, (13)

where

dk :=
〈Ψf , φk〉eiλkT − 〈Ψ0, φk〉

i〈µφ1, φk〉
, ∀k ∈ N

∗. (14)

Thanks to (10), the right-hand side (dk)k∈N∗ belongs to l2(N∗,C) if and only if Ψf−e−iATΨ0 ∈
H3

(0)((0, 1),C), and in that case, (13) has a solution v ∈ L2((0, T ),R) for every T > 0, thanks

to Theorem 2.3. The proof of the statement (2) is similar.�
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Now, let us discuss the generalization of Proposition 2.2 to the 2D and 3D cases. In 2D
and 3D, the equality Ψ(T ) = Ψf for a solution of (6) is equivalent to

i
〈

〈µφ1, φk〉L2(Ω),

∫ T

0

v(t)eiωktdt
〉

Rn
= 〈Ψf , φk〉eiλkT − 〈Ψ0, φk〉, ∀k ∈ N

∗. (15)

Thus, the property
〈µφ1, φk〉 6= 0, ∀k ∈ N

∗

is still a necessary condition for the controllability of (3). Let us assume that this property
holds, then (15) is satisfied in particular when

∫ T

0

v(t)eiωktdt = −i 〈µφ1, φk〉
|〈µφ1, φk〉|2

(

〈Ψf , φk〉eiλkT − 〈Ψ0, φk〉
)

, ∀k ∈ N
∗.

Thus, the controllability of (3) can be reduced to the solvability of n trigonometric moment
problems on the real valued functions v(1),...,v(n).

In 2D, the existence of a regular domain Ω of R2 such that the eigenvalues of ∆D
Ω present

a uniform gap (which corresponds to the assumption (12)) is an open problem. For general
2D regular domains, we only have Weyl’s Formula,

∃c = c(Ω) > 0, ∃α = α(Ω) ∈ (0, 1), ]{k ∈ N
∗;λk ∈ [0, t]} = ct +O(tα) when t→ +∞.

This formula is not sufficient to ensure the existence of a uniform gap between the frequencies
ωk. Therefore the classical result given in Theorem 2.3 cannot be applied : the controllability
of (3) is a more difficult problem in 2D than in 1D.

In 3D, with Weyl’s formula,

∃c = c(Ω) > 0, ∃α = α(Ω) ∈ (0, 3/2), ]{k ∈ N
∗;λk ∈ [0, t]} = ct3/2 +O(tα) when t→ +∞,

no uniform gap is possible. Thus, the non controllability of (3) is expected.
The exact controllability of (3) in 2D and 3D being a difficult problem, it is natural to

study a weaker controllability property for this system. This is why we investigate its spectral
controllability in this article. Notice that the spectral controllability in time T of (3) is
equivalent to the existence of a solution v ∈ L2((0, T ),Rn) of (15) for any right hand side with
finite support. This remark will be used in the study of the spectral controllability of (3) (see
Section 3.2).

2.2.2 1D controllability of (4)

For the control system (4), we have the following result.

Proposition 2.4. Let Ω = (0, 1) and µ ∈ W 3,∞((0, 1),R).
(1) The system (4) is not controllable: for every Ψ0 ∈ TSψ1(0), s0, d0 ∈ R, v ∈ L1

loc(R+,R),
the solution of (8) satisfies (9).

(2) If (11) holds, then, one can characterize the reachable set for (4): for every T > 0,
Ψ0,Ψf ∈ H3

(0)((0, 1),C), s0, sf , d0, df ∈ R with 〈Ψf , ψ1(T )〉 = 〈Ψ0, ψ1(0)〉+ i〈µφ1, φ1〉(sf − s0)
and

〈Ψ(T ), φk〉 = 〈Ψ0, φk〉e−iλkT , ∀k ≥ 2 such that 〈µφ1, φk〉 = 0, (16)

there exists v ∈ L2((0, T ),R) such that the solution of (8) satisfies (Ψ, s, d)(T ) = (Ψf , sf , df).
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The proof of this proposition is similar to the one of Proposition 2.2.

Notice that, in 2D and 3D, the equality (Ψ, s, d)(T ) = (Ψf , 0, 0) for the solution of (8) with
s0 = 0, Ψ0 ∈ TSψ1(0), Ψf ∈ TSψ1(T ) such that =〈Ψ0, ψ1(0)〉 = =〈Ψf , ψ1(T )〉 is equivalent to











i
〈

〈µφ1, φk〉L2(Ω),
∫ T

0
v(t)eiωktdt

〉

Rn
= 〈Ψf , φk〉eiλkT − 〈Ψ0, φk〉, ∀k ≥ 2,

∫ T

0
v(t)dt = 0,

∫ T

0
tv(t)dt = d0.

(17)

Thus, the spectral controllability in time T of (4) is equivalent to the existence of a solution
v ∈ L2((0, T ),Rn) of (17), for any right hand side with finite support. This remark will be
used in the study of the spectral controllability of (4) (see Section 3.3).

2.3 Statement of the main results

In order to state our results, we first give several definitions relative to the domain and the
dipolar moment.

Definition 2.4 (Kalman condition, (Kal)). Let Ω be a domain of Rn, n = 2, 3 with C1

boundary. Then Ω verifies Property (Kal) if

(Kal) any eigenvalue λ of −∆D
Ω has a multiplicity m ≤ n and the vectors 〈µφ1, φk1〉, ..., 〈µφ1, φkm

〉
are linearly independant in Rn, where k1 < ... < km and φk1 , ..., φkm

are the eigenvectors asso-
ciated to λ.

Definition 2.5 (Simplicity of the spectrum, (Simp)). Let Ω be a domain of Rn, n = 2, 3
with C1 boundary. Then Ω verifies Property (Simp) if

(Simp) the eigenvalues of − ∆D
Ω are simple.

Definition 2.6 (Non zero projection, (NonZ)). Consider µ ∈ C0(Ω,Rn), n = 2, 3 and
(φk)k∈N∗ the complete orthonormal system of eigenvectors of −∆D

Ω . Then µφ1 has a non zero
projection on (φk)k∈N∗ if, for every integer k ≥ 2, we have

(NonZ)k 〈µφ1, φk〉 6= 0.

In that case, we say that µ verifies Property (NonZ).

Remark that if a domain Ω satisfies (Simp), then condition (Kal) reduces to condition
(NonZ). The next theorem gathers our result regarding the spectral controllability properties
for system (3).

Theorem 2.5. (1) Let Ω be a domain of R2 with C1 boundary and µ ∈ C0(Ω,R2) verifying
(Kal). Then, there exists Tmin = Tmin(Ω) > 0 such that

(1.a) for every T > Tmin, system (3) is spectral controllable in time T ;
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(1.b) for every T < Tmin, system (3) is not spectral controllable in time T , under the addi-
tional assumption

µ(x) = µ̃(x)e1 where µ̃ ∈ C0(Ω,R). (18)

(2) Let Ω be a domain of Rn, n = 2, 3, with C1 boundary and µ ∈ C0(Ω,Rn) such that
(Kal) is not verified. Then, system (3) is not spectral controllable.

(3) Let Ω be a domain of R
3 with C1 boundary and µ ∈ C0(Ω,R3) of the form (18). Then,

system (3) is not spectral controllable.

Remark 2.3. Let us emphasize that (Kal) holds true generically with respect to the pair (Ω, µ)
because conditions (Simp) and (NonZ) hold true simultaneously generically with respect to
the pair (Ω, µ), where Ω is a domain of R

2 with C1 boundary and µ ∈ C0(Ω,R2). Indeed, the
genericity of (Simp) with respect to the domain Ω is a classical result (see for instance [20]).
Moreover, for a domain Ω of R2 with C1 boundary verifying (Simp), the set

{µ ∈ C0(Ω,R2); 〈µφ1, φk〉 6= 0, ∀k ∈ N
∗}

is dense in C0(Ω,R2) (it can be proved thanks to Baire’s Lemma).

As for system (4), we prove the following result.

Theorem 2.6. (1) Let Ω be a domain of R2 with C1 boundary and µ ∈ C0(Ω,R2) verifying
(Kal). Let Tmin = Tmin(Ω) be as in Theorem 2.5. Then, system (4) is spectral controllable in
time T > Tmin.

(2) Let Ω be a domain of Rn, n = 2, 3, with C1 boundary and µ ∈ C0(Ω,Rn) such that
(Kal) is not verified. Then, system (4) is not spectral controllable.

(3) Let Ω be a domain of R3 with C1 boundary and µ ∈ C0(Ω,R3). Then system (4) is not
spectral controllable : for every T > 0 and m ∈ N∗, there exists d0 ∈ R3 such that (iφm, 0, d0)
is not zero controllable in time T .

Remark 2.4. Notice that in Item (3) of Theorem 2.6, the dipolar moment µ is not necessarily
one dimensional. Thus, we prove a stronger non controllability result for this 3D system, than
the one given in Theorem 2.5 (3). This improvement is due to the presence of s and d in the
state variable.

The proofs of Theorems 2.5 and 2.6 are given in Section 3.
In Section 4, we prove that, one can recover the exact controllability, in some abstract

spaces, for the system (3) in 2D with µ of the form (18) thanks to the previous spectral con-
trollability result. Such abstract spaces may be used for the study of the nonlinear system.
This is an open problem.

According to Theorem 2.6, one knows that, in 2D, property (Kal) is a necessary and
sufficient condition for the spectral controllability of (3) and (4) in time T > Tmin(Ω). We
next use that characterization to prove that spectral controllability of (3) and (4) in large time
holds true generically with respect to the 2D domain Ω. For that purpose, let us first precise
the topology on domains we are using, then define genericity and finally state the condition
on the dipolar moment µ that ensures the genericity.

For l ≥ 1, the set Dl of domains Ω of R2 with C l boundary. Following [40], we define next a
topology on Dl. Consider the Banach space W l+1,∞(Ω,R2) equipped with its standard norm.
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For Ω ∈ Dl, u ∈ W l+1,∞(Ω,R2), let Ω + u := (Id + u)(Ω) be the subset of points y ∈ R
2 such

that y = x + u(x) for some x ∈ Ω and ∂Ω + u := (Id + u)(∂Ω) its boundary. For ε > 0, let
V (Ω, ε) be the set of all Ω + u with u ∈ W l+1,∞(Ω,R2) and ‖u‖W l+1,∞ ≤ ε. The topology of
Dl is defined by taking the sets V (Ω, ε) with ε small enough as a base of neighborhoods of Ω.
Then, Dl is a Banach space.

Definition 2.7. We say that a property (P ) is generic in Dl if the set of domains of Dl

on which this property holds true is dense in Dl : for every Ω ∈ Dl, there exists ρ > 0
such that the set {u ∈ Eρ(Ω); Ω + u satisfies (P )} is dense in Eρ(Ω), where Eρ(Ω) := {u ∈
W l+1,∞(Ω,R2); ‖u‖W l+1,∞ < ρ}.

Definition 2.8 (Non locally constant, (NLC)). A map µ ∈ C0(R2,R2) is said to be
nowhere locally constant if, for every µ0 ∈ R2, the level set {q ∈ R2 µ(q) = µ0} has an empty
interior.

Note that if µ is (NLC) and continuously differentiable, then the subset of Rn, n = 2, 3,
where the differential of µ is not zero, must be open and dense.

We now state one of the main results of the paper.

Theorem 2.7. Let µ ∈ C1(R2,R2). The spectral controllability in large time for system (4)
is generic in D3 if and only if µ is nowhere locally constant.

According to Item (2) of Theorem 2.6, the proof of the previous theorem reduces to
establishing the next proposition, since (Simp) and (NonZ) both verified imply that (Kal)
holds true.

Proposition 2.8. Let µ ∈ C1(R2,R2). If Ω ∈ D1, we say that Ω has property (A) if (Simp)
and (NonZ) hold true for Ω. Then, property (A) is generic in D3 if and only if µ is nowhere
locally constant.

Section 5 is devoted to the proof of the above proposition.

3 Spectral controllability in 2D and 3D

The goal of this Section is the proof of Theorems 2.5 and 2.6. This section is organized as
follows.

In Subsection 3.1, we state a sufficient condition for the minimality in L2((0, T ),C) of
a family of complex exponentials. This condition, due to Haraux and Jaffard [18], involves
Weyl’s formula.

In Subsection 3.2, we prove Theorem 2.5, thanks to Haraux and Jaffard ’s result.
In Subsection 3.3, we prove Theorem 2.6. The proofs of the two first statements also rely

on Haraux and Jaffard’s result. The proof of the third statement involves different ideas,
about the set of zeros of holomorphic functions.

3.1 Haraux and Jaffard ’s result

First, let us recall the definition of the minimality of a family of vectors.
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Definition 3.1. Let X be a Banach space over K = R or C. A family (zk)k∈Z of vectors of
X is minimal in X if, for every m ∈ Z, zm does not belong to the closure in X of the vector
space generated by {zk; k ∈ Z − {m}},

zm /∈ ClX

(

Span{zk; k ∈ Z − {m}}
)

, ∀m ∈ Z.

When X is an Hilbert space, we have the following classical equivalent definitions.

Proposition 3.1. Let (X, 〈., .〉X) be a Hilbert space and (zk)k∈Z be a family of vectors of X.
The following statements are equivalent.

(1) (zk)k∈Z is minimal in X.
(2) For every m ∈ Z, there exists Cm > 0 such that, for every f ∈ X of the form

f =
∑

k∈K fkzk where K ⊂ Z is finite,

Cm|fm| ≤ ‖f‖X .
(3) There exists a family (Zk)k∈Z of vectors of X bi-orthogonal to (zk)k∈Z, i.e.

〈zm, Zk〉X = δm,k, ∀k,m ∈ Z.

(4) For every (dk)k∈Z ⊂ K with finite support, there exists v ∈ X solution of the moment
problem

〈v, zk〉X = dk, ∀k ∈ Z. (19)

Proof of Proposition 3.1 : For (1) ⇒ (2), the largest value for the constant Cm is

Cm := dist
(

zm, Span{zk; k ∈ Z − {m}}
)

.

The implications (2) ⇒ (1), no (1) ⇒ no (3) and (3) ⇔ (4) are easy. For (1) ⇒ (3), one
can take

Zm := Pm

( zm
‖zm‖2

X

)

where Pm is the orthogonal projection from X to V ⊥
m , the orthogonal supplementary of Vm :=

ClX(Span{zk; k ∈ Z − {m}}) in X, which is a closed vector subspace of X. �

Remark 3.1. The statement (4) is particularly important in this article. Indeed, as seen
in Section 2.2, the spectral controllability in time T of (3) is equivalent to the solvability
of a moment problem of the form (19) with X = L2((0, T ),Rn), z0 := 〈µφ1, φ1〉, zk :=
〈µφ1, φk+1〉 cos(ωk+1t), z−k := 〈µφ1, φk+1〉 sin(ωk+1t), ∀k ∈ N∗. Thus, the spectral control-
lability in time T of (3) is equivalent to the minimality of the familly (zk)k∈Z in L2((0, T ),Rn).

The following theorem is the key point of Section 3. It has been proved by Haraux and
Jaffard in [18, Corollary 2.3.5], as a consequence of the Beurling Malliavin Theorem, thanks to
the computation of the Beurling-Malliavin density of a sequence that satisfies Weyl’s formula.

Theorem 3.2. Let (µk)k∈Z be a sequence of real numbers such that

]{k ∈ Z; 0 ≤ µk ≤ t} = dt+ O(tα), ]{k ∈ Z;−t ≤ µk ≤ 0} = dt+O(tα),

for some d ≥ 0 and α ∈ (0, 1). Then,
(1) for every T > 2πd, the family {eiµkt; k ∈ Z} is minimal in L2((0, T ),C),
(2) for every T < 2πd, the family {eiµkt; k ∈ Z} is not minimal in L2((0, T ),C).

Remark 3.2. Notice that, when µ0 = 0 and µk = −µ−k > 0, for every k ∈ N∗, then the
minimality of the family {eiµkt; k ∈ Z} in L2((0, T ),C) is equivalent to the minimality of the
family {1, cos(µkt), sin(µkt); k ≥ 0} in L2((0, T ),R).
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3.2 Proof of Theorem 2.5

The goal of this section is the proof of Theorem 2.5. thanks to Theorem 3.2.

Proof Theorem 2.5 : (1) Let Ω be a domain of R2 with C1 boundary and µ ∈ C0(Ω,R2)
be such that (Kal) holds. Thanks to Weyl’s formula, there exists d = d(Ω) ∈ (0,+∞) and
α = α(Ω) ∈ (0, 1) such that

]{k ∈ N
∗;ωk ∈ [0, t]} = dt+O(tα) when t→ +∞. (20)

Let Tmin = Tmin(Ω) := 2πd.

(1.a) Let T > Tmin, Ψ0 ∈ D ∩ TSψ1(0), Ψf ∈ D ∩ TSψ1(T ) and let us prove that there
exists v ∈ L2((0, T ),R2) solution of (15). We introduce

Λ1 := {k ∈ N∗;λk is a simple eigenvalue of ∆D
Ω}, Λ2 := {k ∈ N∗;λk = λk+1}.

For every k ∈ Λ2, the vectors 〈µφ1, φk〉 and 〈µφ1, φk+1〉 are linearly independent in R2, thus
there exists a unique Zk ∈ C

2 such that

〈

〈µφ1, φk〉L2(Ω), Zk

〉

R2
= −idk,

〈

〈µφ1, φk+1〉L2(Ω), Zk

〉

R2
= −idk+1,

where dj := 〈Ψf , φj〉eiλjT − 〈Ψ0, φj〉, for every j ∈ N∗. For a function v ∈ L2((0, T ),R2), (15)
is satisfied in particular when

∫ T

0
v(t)eiωktdt = −idk 〈µφ1 ,φk〉

|〈µφ1 ,φk〉|2
, ∀k ∈ Λ1,

∫ T

0
v(t)eiωktdt = Zk, ∀k ∈ Λ2,

(21)

i.e. when v(1) and v(2) solve a trigonometric moment problem with a finite supported right
hand side. The solvability of (21) is equivalent to the minimality of the family

{1, cos(ωkt), sin(ωkt); k ≥ 2}

in L2((0, T ),R) (see Proposition 3.1), which holds true thanks to Theorem 3.2.

For the proof of (1.b) and (3), let us first emphasize that, when (18) and (Kal) hold,
then the spectral controllability in time T of (3) is equivalent to (and not only implied by) the
minimality of the family {1, cos(ωkt), sin(ωkt); k ≥ 2} in L2((0, T ),R).

(1.b) Let T < Tmin and let us assume (18). Theorem 3.2 ensures that the family
{1, cos(ωkt), sin(ωkt); k ≥ 2} is not minimal in L2((0, T ),R), thus (4) is not spectral con-
trollable in time T .

(2) Let Ω be a domain of Rn with C1 boundary, n = 2, 3, and µ ∈ C0(Ω,Rn). We assume
that (Kal) does not hold. There exists k ∈ N∗ such that λk has multiplicity m and there
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exists (α1, ..., αm) ∈ R
m−{0} such that α1〈µφ1, φk1〉+ ...+αm〈µφ1, φkm

〉 = 0, where k1, ..., km
are all the integers such that λk = λk1 = ... = λkm

. Let Ψ0 ∈ D ∩ TSψ1(T ) of the form
Ψ0 = β1φk1 + ...+ βmφkm

where β1, ..., βm ∈ C and α1β1 + ...+αmβm 6= 0. Any solution of (6)
satisfies, for j ∈ {1, ..., m},

〈Ψ(T ), φkj
〉 =

(

〈Ψ0, φkj
〉 + i

〈

〈µφ1, φkj
〉,
∫ T

0

v(t)eiωktdt
〉

Rn

)

e−iλkT .

We then have

α1〈Ψ(T ), φk1〉 + ... + αm〈Ψ(T ), φkm
〉 = (α1β1 + ...+ αmβm)e−iλkT 6= 0,

implying that Ψ0 is not zero controllable in time T .
(3) Let Ω be a domain of R3 with C1 boundary and µ ∈ C0(Ω,R3) of the form (18) be

such that (Kal) holds true (otherwise, we already know that (3) is not spectral controllable
thanks to (2)). Let T > 0. Thanks to Weyl’s formula, we have

]{ωk ∈ [0, t]} = dt3/2 +O(tα), when t→ +∞,

where d ∈ (0,+∞) and α ∈ (0, 3/2). Thus, there exists a subsequence (ωσ(k))k∈N∗ of (ωk)k∈N∗

such that
]{k ∈ N

∗;ωσ(k) ∈ [0, t]} = d′t+O(tα
′

) when t→ +∞,

for some d′ > T/2π and some α′ ∈ (0, 1). Theorem 3.2 ensures that the family

{eiωσ(k)t, e−iωσ(k)t; k ∈ N
∗}

is not minimal in L2((0, T ),C). Thus, the family {1, eiωkt, e−iωkt; k ≥ 2} is not minimal in
L2((0, T ),C). Therefore, (3) is not spectral controllable. �

Remark 3.3. When a domain Ω of R2 with C1 boundary and µ ∈ C0(Ω,R2) are such that
(Kal) holds but (18) does not hold, then Tmin(Ω) := 2πd(Ω) may not be the minimal time for
the spectral controllability of (3). Indeed, let us consider µ = (µ(1), µ(2)) such that

〈µ(1)φ1, φk〉 6= 0 if and only if k ∈ N
∗ is odd and 〈µ(2)φ1, φk〉 6= 0 if and only if k ∈ N

∗ is even.

Then, the minimal time for the spectral controllability of (3) is Tmin(Ω, µ) = πd(Ω).

Remark 3.4. In order to remove the assumption (18), one could try to adapt Haraux and
Jaffard’s result to families of vector exponentials of the form

{bkeiωkt; k ∈ Z}

where bk ∈ Rn − {0}. Indeed, the spectral controllability of (3) is equivalent to the minimality
in L2((0, T ),Cn) of this family with bk = 〈µφ1, φk〉. This generalization is an open problem.

3.3 Proof of Theorem 2.6

The goal of this section is the proof of Theorem 2.6. The proof of the statement (1) can be
deduced from the following lemma in the same way as the proof of Theorem 2.5 (1.a) was
deduced from Theorem 3.2 (1).
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Lemma 3.3. Let (µk)k∈Z be a sequence of real numbers such that µ0 = 0 and

]{k ∈ Z; 0 ≤ µk ≤ t} = dt+O(tα),
]{k ∈ Z;−t ≤ µk ≤ 0} = dt+O(tα),

for some d > 0 and α ∈ (0, 1). Then, for every T > 2πd, the family {t, eiµkt; k ∈ Z} is minimal
in L2((0, T ),C).

Proof of Lemma 3.3 : Let T > 2πd and let us assume that the family {t, eiµkt; k ∈ Z} is
not minimal in L2((0, T ),C). Thanks to Theorem 3.2, the family {eiµkt; k ∈ Z} is minimal in
L2((0, T ),C) thus, necessarily,

t ∈ ClL2((0,T ),C)

(

Span{eiµkt; k ∈ Z}
)

. (22)

With successive integrations, we see that

tk ∈ ClC0([0,T ],C)

(

Span{t, eiµkt; k ∈ Z}
)

, ∀k ∈ N, k ≥ 2.

The Stone Weirstrass theorem ensures that Span{1, tk; k ∈ N, k ≥ 2} is dense in C0([0, T ],C),
thus it is also dense in L2((0, T ),C). From (22), we deduce that the vector space Span{eiµkt; k ∈
Z} is dense in L2((0, T ),C). This is a contradiction, because, thanks to Theorem 3.2, for every
α ∈ R − {µk; k ∈ Z}, the family {eiαt, eiµkt; k ∈ Z} is minimal in L2((0, T ),C) i.e.

eiαt /∈ ClL2((0,T ),C)

(

Span{eiµkt; k ∈ Z}
)

.�

Item (2) of Theorem 2.6 is a direct consequence of Theorem 2.5 (2). The proof of the
statement (3) of Theorem 2.6 involves different ideas. A useful preliminary result is stated in
the next Lemma, (see [31, Lecture 2, section 2.3, p.10-11]) that has already been used in [11,
Lemma 16] for similar purposes.

Lemma 3.4. Let f : C → C be a holomorphic function such that

∃C0 > 0, such that , ∀s ∈ C, |f(s)| ≤ C0e
C0|s|.

Assume that f 6= 0. Let n : [0,+∞) → N be defined by

n(R) := ]{s ∈ C; f(s) = 0 and |s| ≤ R}.

Then,

∃C1 > 0, ∀R ∈ (1,+∞),

∫ R

1

n(t)

t
dt ≤ C1R.

Proof of Item (3) of Theorem 2.6 : Let Ω be a regular domain of R
3 such that (Kal) holds

(otherwise, the system (4) is already known to be non spectral controllable thanks to (2)).
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Let T > 0 and m ∈ N
∗. We assume (iφm, 0, el) is zero controllable in time T for l = 1, 2, 3 :

there exists vl ∈ L2((0, T ),R3) such that











〈

〈µφ1, φk〉L2(Ω),
∫ T

0
vl(t)e

iωktdt
〉

R3
= −δk,m, ∀k ≥ 2,

∫ T

0
vl(t)dt = 0,

∫ T

0
tvl(t)dt = el,

(23)

for l = 1, 2, 3. In particular, for every k ∈ N∗ − {1, m}, the vector 〈µφ1, φk〉L2(Ω) ∈ R3 − {0}
belongs to the kernel of the matrix C(iωk), where

C(λ) :=







∫ T

0
v

(1)
1 (t)eλtdt

∫ T

0
v

(2)
1 (t)eλtdt

∫ T

0
v

(3)
1 (t)eλtdt

∫ T

0
v

(1)
2 (t)eλtdt

∫ T

0
v

(2)
2 (t)eλtdt

∫ T

0
v

(3)
2 (t)eλtdt

∫ T

0
v

(1)
3 (t)eλtdt

∫ T

0
v

(2)
3 (t)eλtdt

∫ T

0
v

(3)
3 (t)eλtdt






.

Thus G(λ) := det[C(λ)] satisfies G(iωk) = 0, for every k ∈ N∗ − {1, m}. It is easy to see that
G is a holomorphic function verifying the growth condition of Lemma 3.4. Then using Weyl’s
formula and Lemma 3.4, we deduce that G ≡ 0. However, thanks to the last two equalities in
(23), we have

C(λ) =





λ+ o(λ) o(λ) o(λ)
o(λ) λ+ o(λ) o(λ)
o(λ) o(λ) λ+ o(λ)



 when λ→ 0,

so G(λ) = λ3 + o(λ3) 6= 0 when λ→ 0, which is a contradiction. �

4 2D exact controllability in abstract spaces

The goal of this section is the proof of the following result.

Theorem 4.1. Let Ω be a domain of R2 with C1 boundary and µ ∈ C0(Ω,R2) be of the form
(18) such that condition (Kal) holds true. Let d ∈ (0,+∞) and α ∈ (0, 1) be such that (20)
holds, T > 2πd and (xm)m∈N∗ ⊂ R∗

+ be such that
∑∞

m=1 xm = 1.
For every m ∈ N∗, there exists Cm > 0 such that, for every ϕT ∈ TSψ1(T ), the solution of







i∂ϕ
∂t

= −∆ϕ, (t, q) ∈ R+ × Ω,
ϕ(t, q) = 0, (t, q) ∈ R × ∂Ω,
ϕ(T ) = ϕT ,

(24)

satisfies

Cm|〈ϕT , φm〉|2 ≤
∫ T

0

|=〈µ̃ψ1(t), ϕ(t)〉|2dt, ∀m ∈ N
∗. (25)

We introduce the Hilbert spaces

H∗ := {ϕ : Ω → C;<〈ϕ, ψ1(T )〉 = 0 and
∑∞

m=1 Cmxm|〈ϕ, φm〉|2 < +∞},
H := {ϕ : Ω → C;<〈ϕ, ψ1(T )〉 = 0 and

∑∞
m=1

1
Cmxm

|〈ϕ, φm〉|2 < +∞}.

Then, for every Ψf ∈ H, there exists ṽ ∈ L2((0, T ),R) such that the solution of (6) with
Ψ0 = 0 and v(t) = ṽ(t)e1 satisfies Ψ(T ) = Ψf .

20



Remark 4.1. Notice that TSψ1(T ) ⊂ H∗ and H ⊂ TSψ1(T ) because Cmxm → 0 when m →
+∞. The space H is a regular space, its regularity depends on the asymptotic behavior of the
sequence (Cmxm)m∈N∗.

Remark 4.2. The spaces H and H∗ are defined in order to have an observability inequality in
H∗. Indeed, considering the product of the inequality (25) with xm and summing over m ∈ N∗,
we get

‖ϕT‖2
H∗ ≤

∫ T

0

|=〈µ̃ψ1(t), ϕ(t)〉|2dt , ∀ϕT ∈ H∗. (26)

Remark 4.3. Trying to apply the classical approach in order to get the controllability thanks
to (26), we introduce the functional

J : H∗ → R

ϕT 7→ 1
2

∫ T

0
|=〈µ̃ψ1(t), ϕ(t)〉|2dt + <〈ϕT ,Ψf〉.

In the classical situation, J is continuous, convex and coercive on H ∗, thus inf{J(ϕT );ϕT ∈
H∗} is achieved at some point ϕT . Writing dJ(ϕT ) = 0, we get a control ṽ(t) := =〈µ̃ψ1(t), ϕ(t)〉
that steers (3) from Ψ(0) = 0 to Ψ(T ) = Ψf .

In our situation, this classical approach does not work because the functional J may not be
well defined on H∗. Thus, an adaptation of this approach is needed.

Proof of Theorem 4.1 : First, let us prove (25). For ϕT ∈ TSψ1(T ), the solution of (24) is

ϕ(t) =
∞
∑

k=1

〈ϕT , φk〉e−iλk(t−T )φk

so

=〈µ̃ψ1(t), ϕ(t)〉 =

∞
∑

k=2

〈µ̃φ1, φk〉
2i

(

〈ϕT , φk〉eiλk(t−T ) − 〈ϕT , φk〉e−iλk(t−T )
)

.

Applying Theorem 3.2 and Proposition 3.1, there exists a constant C̃m > 0 such that, for
every ϕT ∈ TSψ1(T ),

C̃m|〈µ̃φ1, φm〉|2|〈ϕT , φm〉|2 ≤
∫ T

0

|=〈µ̃ψ1(t), ϕ(t)〉|2dt.

We get (25) with Cm := C̃m|〈µ̃φ1, φm〉|2.

Now, let us prove the controllability result. Let Ψf ∈ H. For ε > 0 we introduce the
functional Jε : TSψ1(T ) → R,

Jε(ϕT ) :=
1

2

∫ T

0

|=〈µ̃ψ1(t), ϕ(t)〉|2dt+ <〈Ψf , ϕT 〉 + ε‖ϕT‖2
L2(Ω),

where ϕ is the solution of (24). The functional Jε is convex, continuous and coercive because

Jε(ϕT ) ≥ ε‖ϕT‖2
L2 − ‖Ψf‖L2‖ϕT‖L2 .

Thus, there exists ϕεT ∈ TSψ1(T ) such that

Jε(ϕ
ε
T ) = min{Jε(ϕT );ϕT ∈ TSψ1(T )}.

21



Then, ϕεT solves the Euler equation associated to this optimization problem,
∫ T

0

ṽε(t)=〈µ̃ψ1(t), ξ(t)〉dt+ <〈Ψf , ξT 〉 + 2ε<〈ϕεT , ξT 〉 = 0, ∀ξT ∈ TSψ1(T ), (27)

where
ṽε(t) := =〈µ̃ψ1(t), ϕ

ε(t)〉,
ϕε (resp. ξ) is the solution of (24) with ϕT = ϕεT (resp. ϕT = ξT ).

For 0 < ε1 < ε2, we have Jε1 ≤ Jε2 thus the sequence (Jε(ϕ
ε
T ))ε>0 decreases when ε decreases

to zero. Thus,
Jε(ϕ

ε
T ) ≤M1 := J1(ϕ

1
T ), ∀ε ∈ (0, 1).

There exists M2 > 0 such that,

‖ϕεT‖H∗ ≤M2, ∀ε ∈ (0, 1).

Indeed, thanks to (26), we have,

M1 ≥ Jε(ϕ
ε
T ) ≥ 1

2
‖ϕεT‖2

H∗ − ‖Ψf‖H‖ϕεT‖H∗.

The sequence (ṽε)ε∈(0,1) is bounded in L2((0, T ),R). Indeed, we have

M1 ≥ Jε(ϕ
ε
T ) ≥ 1

2
‖ṽε‖2

L2 − ‖Ψf‖H‖ϕεT‖H∗,

thus
‖ṽε‖2

L2(0,T ) ≤ 2(M1 +M2‖Ψf‖H).

Therefore, there exists ṽ ∈ L2((0, T ),R) such that ṽε → ṽ weakly in L2((0, T ),R). Passing to
the limit ε → 0 in (27) with ξT ∈ H, we get

∫ T

0

ṽ(t)=〈µ̃ψ1(t), ξ(t)〉dt+ <〈Ψf , ξT 〉 = 0, ∀ξT ∈ H,

because
|2ε<〈ϕεT , ξT 〉| ≤ 2ε‖ϕεT‖H∗‖ξT‖H ≤ 2εM2‖ξT‖H .

Since H is dense in TSψ1(T ), we have
∫ T

0

ṽ(t)=〈µ̃ψ1(t), ξ(t)〉dt+ <〈Ψf , ξT 〉 = 0, ∀ξT ∈ TSψ1(T ). (28)

Let Ψ be the solution of (6) with Ψ0 = 0. Using the fact that ξ solves (24) and Ψ solves (6)
with Ψ0 = 0, we deduce from (28) that

<〈Ψ(T ), ξT 〉 = <〈Ψf , ξT 〉 , ∀ξT ∈ TSψ1(T ).

Thus Ψ(T ) = Ψf . �

Remark 4.4. A uniform gap condition for the eigenvalues of −∆D
Ω , cf. (12), would imply

that the constants Cm, m ∈ N
∗ admit a uniform positive lower bound and, in that case, H

can be taken as the subset of TSψ1(T ) made of the functions φ with H1+ε finite norm. As we
mentioned before, the existence of a planar domain verifying (12) is not even known. One
could maybe define weaker gaps conditions in order to relate H to some Sobolev spaces.
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5 Generic spectral controllability for the quantum box

The goal of this Section is the proof of Proposition 2.8.
Consider µ ∈ C1(R2,R2). If µ is not nowhere constant, then there exists an open ball B

where µ is constant. Taking an open neighborhood of domains of D3 included in B, condition
(NonZ) will never be satisfied for those domains, thus Property (A) is not generic in D3.

For the rest of the section, we fix µ ∈ C1(R2,R2) which is nowhere constant.

In Subsection 5.1, we reduce the proof of the genericity of Property (A) (Proposition 2.8)
to the proof of the genericity of a weaker property (Bk). In Subsection 5.2, we present the
strategy for the proof of the genericity of Property (Bk) : it is sufficient to prove a weaker
result, stated in Proposition 5.4. In subsection 5.3, we present the strategy for the proof
of Proposition 5.4. In Subsection 5.4, we perform some preliminary results for the proof of
Proposition 5.4, which is achieved in Subsection 5.5.

5.1 Reduction of the problem

The goal of this section is to reduce the proof of the genericity of the property (A), (Proposition
2.8) to the proof of the genericity of a weaker property (Bk). For that purpose, we introduce
the properties (Ak) and (Bk).

For the rest of the paper, the notations λΩ0
j and φΩ0

j are used to denote respectively the
jth eigenvalue and one corresponding normalized eigenvector associated to −∆D

Ω0
. If, in the

course of a definition or an argument, one domain under consideration is denoted Ω, then we
simply use λj and φj instead of λΩ

j and φΩ
j .

Definition 5.1. Let k ∈ N∗, k ≥ 2 and Ω ∈ D3. We say that Ω satisfies Property (Ak) if

∫

Ω

µ(q)φ1(q)φk(q)dq 6= 0.

Definition 5.2. Let k ∈ N∗, k ≥ 2 and Ω ∈ D3. We say that Ω satisfies Property (Bk) if

either
∫

Ω

µ(q)φ1(q)φk(q)dq 6= 0,

or
∫

Ω

µ(q)φ1(q)φk(q)dq = 0 and M(·) is not identically equal to zero, (29)

where M : ∂Ω → R2 is given by

M(q) :=
∂φ1

∂ν
(q)

∂ξk
∂ν

(q) +
∂φk
∂ν

(q)
∂ξ1
∂ν

(q), (30)

ν is the unit outward normal to ∂Ω and ξ1, ξk are the solutions of the following systems,







−(∆ + λ1)ξk = µφk, in Ω,
ξk = 0, on ∂Ω,
∫

Ω
ξkφ1 = 0,







−(∆ + λk)ξ1 = µφ1, in Ω,
ξ1 = 0, on ∂Ω,
∫

Ω
ξ1φk = 0.

(31)
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A first reduction is given in the next proposition. Its proof is standard and relies on Baire
Lemma, we write it for sake of completeness.

Proposition 5.1. If (Ak) is generic in D3 for every k ≥ 2, then (A) is generic in D3.

Proof of Proposition 5.1 : Let Ω ∈ D3. We want to prove that the set

G := {u ∈ W 4,∞(Ω,R2); Ω + u satisfies (A)}

is dense in W 4,∞(Ω,R2). For k ∈ N∗, we introduce the set Gk of functions u ∈ W 4,∞(Ω,R2)
such that

λΩ+u
1 < ... < λΩ+u

k ≤ λΩ+u
k+1 ≤ ... and

∫

Ω+u
µ(q)φΩ+u

1 (q)φΩ+u
j (q)dq 6= 0, ∀j ∈ {2, ..., k}.

Then, G1 = W 4,∞(Ω,R2), Gk+1 is an open subset of Gk for every k ∈ N∗ (thanks to the
continuity of u 7→ λΩ+u

j and u 7→ φΩ+u
j for j = 2, ..., k+ 1) and G = ∩k∈N∗Gk. Thanks to Baire

Lemma, it is sufficient to prove that, for every k ∈ N∗, Gk+1 is a dense in Gk.
Let k ∈ N∗, u0 ∈ Gk − Gk+1 and ε > 0. We have

λΩ0
1 < ... < λΩ0

k ≤ λΩ0

k+1 ≤ ...,
∫

Ω0
µ(q)φΩ0

1 (q)φΩ0
j (q)dq 6= 0, ∀j ∈ {2, ..., k},

and λΩ0
k = λΩ0

k+1 or
∫

Ω0

µ(q)φΩ0
1 (q)φΩ0

k+1(q)dq = 0,

where Ω0 := Ω + u0. Thanks to the generic simplicity of the eigenvalues of the Laplacian and
the continuity of u 7→ φΩ0+u

j for 2 ≤ j ≤ k (see [20]), there exists u1 ∈ W 4,∞(Ω0,R
2) with

‖u1‖W 4,∞ < ε such that

λΩ1
1 < ... < λΩ1

k < λΩ1
k+1 ≤ ... and

∫

Ω1
µ(q)φΩ1

1 (q)φΩ1
j (q)dq 6= 0, ∀j ∈ {2, ..., k},

where Ω1 := Ω0 + u1. Thanks to the genericity of (Ak+1) and the continuity of u 7→ λΩ1+u
j for

2 ≤ j ≤ k + 1, u 7→ φΩ1+u
j for 2 ≤ j ≤ k there exists u2 ∈ W 4,∞(Ω1,R

2) with ‖u2‖W 4,∞ < ε,
such that

λΩ2
1 < ... < λΩ2

k < λΩ2
k+1 ≤ ... and

∫

Ω2
µ(q)φΩ2

1 (q)φΩ2
j (q)dq 6= 0, ∀j ∈ {2, ..., k + 1},

Then, u := (I + u2) ◦ (I + u1) ◦ (I + u0) − I is arbitrarily close to u0 in W 4,∞(Ω,R2) and
u ∈ Gk+1. �

A second reduction is given in the next proposition. Its proof is also standard. The
argument goes by contradiction and relies on shape differentiation with respect to the domain
Ω. It has been introduced by Albert [3] and recently used in [11]. We gathered in Appendix
A well-known facts about shape differentiation which will be used in the proof.

Proposition 5.2. Let k ≥ 2. If (Bk) is generic in D3, then (Ak) is generic in D3.

Proof of Proposition 5.2 : Let Ω0 ∈ D3, k ∈ N∗, k ≥ 2. We want to prove that the set

G := {u ∈ W 4,∞(Ω0,R
2); Ω0 + u satisfies (Ak)}

24



is dense in W 4,∞(Ω0,R
2). We argue by contradiction. Let us assume the existence of u0 ∈

W 4,∞(Ω0,R
2) and ρ0 > 0 such that, for every u ∈ W 4,∞(Ω0,R

2) with ‖u0 − u‖W 4,∞ < ρ0, we
have u /∈ G. Thanks to the genericity of (Bk), we can assume that Ω := Ω0 +u0 satisfies (Bk).
Then, there exists ρ > 0 such that, for every u ∈ Eρ(Ω) := {v ∈ W 4,∞(Ω,R2); ‖v‖W 4,∞ < ρ},
we have

∫

Ω+u

µ(q)φΩ+u
1 (q)φΩ+u

k (q)dq = 0, ∀u ∈ Eρ(Ω). (32)

Thus, the directional derivative of the integral appearing in (32) in the direction u is equal to
zero, for every u ∈ Eρ(Ω). By classical results on shape differentiation (cf. [40] or Appendix
A below), we get

∫

Ω

µ
(

φ′
1(u)φk + φ1φ

′
k(u)

)

dq = 0, ∀u ∈ Eρ(Ω), (33)

where φ′
1(u) et φ′

k(u) are solutions of







−(∆ + λ1)φ
′
1(u) = λ′1(u)φ1, in Ω,

φ′
1(u) = −〈u,∇φ1〉, on ∂Ω,
∫

Ω
φ1φ

′
1(u) = 0,







−(∆ + λk)φ
′
k(u) = λ′k(u)φk, in Ω,

φ′
k(u) = −〈u,∇φk〉, on ∂Ω,
∫

Ω
φkφ

′
k(u) = 0.

(34)

In order to transform (33) in a linear form in u, we introduce the dual systems (31). Note
that these systems have unique solutions, thanks to (32). Using Green’s second formula and
systems (34), we have

−
∫

Ω

µ
(

φ′
1(u)φk + φ1φ

′
k(u)

)

dq

=

∫

Ω

φ′
1(u)(∆ + λ1)ξkdq +

∫

Ω

φ′
k(u)(∆ + λk)ξ1dq

=

∫

Ω

(∆ + λ1)φ
′
1(u)ξkdq +

∫

∂Ω

(

φ′
1(u)

∂ξk
∂ν

− ξk
∂φ′

1(u)

∂ν

)

dσ(q)

+

∫

Ω

(∆ + λk)φ
′
k(u)ξ1dq +

∫

∂Ω

(

φ′
k(u)

∂ξ1
∂ν

− ξ1
∂φ′

k(u)

∂ν

)

dσ(q)

=

∫

∂Ω

(

φ′
1(u)

∂ξk
∂ν

+ φ′
k(u)

∂ξ1
∂ν

)

dσ(q).

Then, (33) is equivalent to

∫

∂Ω

〈u, ν〉
(

∂φ1

∂ν

∂ξk
∂ν

+
∂φk
∂ν

∂ξ1
∂ν

)

dσ(q) = 0, ∀u ∈ Eρ(Ω). (35)

This implies that M ≡ 0 which is a contradiction because Ω satisfies (Bk). �

5.2 Proof strategy for the genericity of (Bk)

According to Propositions 5.1 and 5.2, it remains to show that the Property (Bk) is generic
in D3 for every k ≥ 2. To proceed in that direction, fix k ≥ 2 and Ω ∈ D3. Without loss of
generality, we assume from now that

1. the spectrum of −∆D is simple on Ω;
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2. there exists q̄ ∈ ∂Ω such that
dµ(q̄) · τq̄ 6= 0, (36)

where τq̄ is the unit tangent vector on ∂Ω at the point q̄.

Indeed, the second condition is generic and open. Therefore, for a given domain Ω ∈ D3, one
can choose an arbitrarily close domain Ω′ ∈ D3 verifying condition 2. The latter holding in an
open neighborhood of Ω′, one can pick a domain Ω′′ ∈ D3 arbitrarily close to Ω veryfing both
conditions 1 and 2.

Arguing by contradiction, we assume there exists ρ > 0 such that
∫

Ω+u

µ(q)φΩ+u
1 (q)φΩ+u

k (q)dq = 0, ∀u ∈ Eρ(Ω), (37)

and
M(u) ≡ 0 on ∂Ω + u, ∀u ∈ Eρ(Ω), (38)

where Eρ(Ω) := {v ∈ W 4,∞(Ω,R2); ‖v‖W 4,∞ < ρ} and M(u) : ∂(Ω + u) → R2 is defined by

M(u)(q) =
∂φk(u)

∂ν
(q)

∂ξ1(u)

∂ν
(q) +

∂φ1(u)

∂ν
(q)

∂ξk(u)

∂ν
(q), (39)

where φ1(u), and φk(u) are normalized eigenvectors of ∆D
Ω+u associated to λ1(u) and λk(u)

respectively and ξ1(u) and ξk(u) are the solutions of (31) associated to Ω + u. (Such systems
have solutions since (37) holds true.) In the sequel, we (sometimes) drop the variable (u) when
it corresponds to u = 0.

The next step consists in shape differentiating the condition M(u) ≡ 0 for u ∈ Eρ(Ω).
Applying the classical shape differentiation formula regarding Dirichlet boundary condition
(see Theorem A.2), we get

M ′(u) = −〈u, ν〉∂M(0)

∂ν
on ∂Ω. (40)

Remark 5.1. For technical details on regular extension of outward normal vector, we refer
to [40, Théorème 4.1, Chapitre IV, page 69].

After computations, we get
(∂φk
∂ν

)′

(u)
∂ξ1
∂ν

+
∂φk
∂ν

(∂ξ1
∂ν

)′

(u) +
(∂φ1

∂ν

)′

(u)
∂ξk
∂ν

+
∂φ1

∂ν

(∂ξk
∂ν

)′

(u)

= −〈u, ν〉
(

∂

∂ν

(

∂φk
∂ν

)

∂ξ1
∂ν

+
∂φk
∂ν

∂

∂ν

(

∂ξ1
∂ν

)

+
∂

∂ν

(

∂φ1

∂ν

)

∂ξk
∂ν

+
∂φ1

∂ν

∂

∂ν

(

∂ξk
∂ν

))

on ∂Ω. (41)

The relation between the first shape derivative of a normal derivative ( ∂φ
∂ν

)′(u) and the normal

derivative of a first shape derivative ∂φ′

∂ν
is given in [19, Théorème 5.5.2, formula (5.74) of page

205] and reads as follows.

Lemma 5.3. With the notations above, We have
(

∂φ

∂ν

)′

=
∂φ′

∂ν
− 〈u, ν〉

(

∂

∂ν

(

∂φ

∂ν

)

− ∂2φ

∂ν2

)

− 〈∇φ,∇Γ(〈u, ν〉)〉 on ∂Ω, (42)

where ∇Γ is the tangential gradient and ∂2φ
∂ν2 is understood as the image of the second derivative

of φ (a bilinear form) applied to (ν, ν).
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Using the above lemma and the fact that the involved functions vanish on ∂Ω, (41) is
rewritten as follows

∂φ′
k(u)

∂ν

∂ξ1
∂ν

+
∂φk
∂ν

∂ξ′1(u)

∂ν
+
∂φ′

1(u)

∂ν

∂ξk
∂ν

+
∂φ1

∂ν

∂ξ′k(u)

∂ν

= −〈u, ν〉
(

∂2φk
∂ν2

∂ξ1
∂ν

+
∂φk
∂ν

∂2ξ1
∂ν2

+
∂2φ1

∂ν2

∂ξk
∂ν

+
∂φ1

∂ν

∂2ξk
∂ν2

)

on ∂Ω, (43)

where φ′
1(u) and φ′

k(u) are defined in (34) and ξ ′1(u) and ξ′k(u) are solutions of











−(∆ + λ1)ξ
′
k(u) = λ′1(u)ξk + µφ′

k(u), in Ω,

ξ′k(u) = −〈u, ν〉∂ξk
∂ν
, on ∂Ω,

∫

Ω

(

φ1ξ
′
k(u) + φ′

1(u)ξk

)

dq = 0,

and










−(∆ + λk)ξ
′
1(u) = λ′k(u)ξ1 + µφ′

1(u), in Ω,

ξ′1(u) = −〈u, ν〉∂ξ1
∂ν
, on ∂Ω,

∫

Ω

(

φkξ
′
1(u) + φ′

k(u)ξ1

)

dq = 0.
(44)

As a consequence of the previous computations, the genericity of (Bk) in D3 results from
the next proposition.

Proposition 5.4. Let k ≥ 2 and Ω ∈ D3. Assume that (37) and (38) hold true. Then,
there does not exist ρ′ > 0 such that (34) and (44) admit solutions satisfying (43) for every
u ∈ Eρ′(Ω).

Remark 5.2. Let J(Ω) be a smooth functional depending on the domain Ω and u a variation
belonging to W k,∞(Ω,R2). As pointed out in [40], we have

J ′′(Ω)(u, u) = (J ′)′(Ω)(u, u) − J ′(Ω)(u · ∇u). (45)

This equation says that J ′′(Ω), the second derivative with respect to the domain at the point Ω,
applied to the function u is not in general equal to the first derivative of the function J ′(Ω)(u)
at the point Ω applied to u. The difference between them is equal to the first shape derivative
of the function J(Ω) applied to u · ∇u. However, in our case, they are equal because the first
shape derivative is equal to zero by assumption. Thus, (43) exactly corresponds to the second
shape derivative of (37).

5.3 Proof strategy for Proposition 5.4

To prove Proposition 5.4, our strategy is similar to that developed in [11] and, in order to
describe it, we first need information on the regularity of the solutions of (34) and (44). For
that purpose, we consider the following standard definitions of Sobolev spaces and distributions
on Ω (cf. [33]). If m is a positive integer, we use Hm(Ω) to denote the Sobolev space of order
m on Ω defined by

Hm(Ω) := {Ψ |DαΨ ∈ L2(Ω), |α| ≤ m},
where Dα = ∂α1+α2

∂x
α1
1 ∂x

α2
2
, and |α| = α1 + α2. Here the differential operators Dα are defined in

the distributional sense on Ω, with D′(Ω) the space of distributions on Ω being dual to D(Ω),
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the set of smooth functions with compact support in Ω (cf. [33]). Let ρ : Ω → R
+ be a

function of class C2(Ω̄) equal to the distance function to ∂Ω (ρ(x) = d(x, ∂Ω)) for d(x, ∂Ω)
small enough. Such a function exists as noted in [33, Chap.1, paragraph 11.2, page 62].

According to [33], for s ∈ N, we set

Ξs(Ω) := {Ψ | ρ|α|DαΨ ∈ L2(Ω), |α| ≤ s},

equipped with the norm

‖Ψ‖Ξs(Ω) =





∑

|α|≤s

‖ρ|α|DαΨ‖2
L2(Ω)





1/2

.

Then Ξs(Ω) is a Hilbert space so that Hs(Ω) ⊂ Ξs(Ω) ⊂ Ξ0(Ω) = L2(Ω) with a continuous
embedding. Let Ξ−s(Ω) := (Ξs(Ω))′ be the dual space of Ξs(Ω) for the L2(Ω) scalar-product.
Then, Ξ−s(Ω) is a distribution space as proved in [33].

Remark 5.3. By interpolations techniques, we can also define the spaces Ξs(Ω) for all real
positive number s. Then, we have Hs(Ω) ⊂ Ξs(Ω) ⊂ Ξs

′

(Ω) ⊂ L2(Ω) if 0 < s′ < s (see [33, p.
184] for more details).

We can now apply the general theorems stated in [33] to the present situation. Let A :=
∆ + λ and B0 be the Dirichlet trace operator. We set

Ds
A(Ω) = {Ψ |Ψ ∈ Hs(Ω), AΨ ∈ Ξs−2m(Ω)}, 0 < s < 2m,

with the norm defined by ‖Ψ‖ = (‖Ψ‖2
Hs(Ω) + ‖AΨ‖2

Ξs−2m)1/2. Then, Ds
A(Ω) is a Hilbert space.

We write system (34) with new notations,

AΨ = f in Ω and B0Ψ = g on ∂Ω, (46)

where

f = −λ′(u)φj and g = −〈u, ν〉∂φj
∂ν

, with j = 1, k. (47)

We apply [33, Theorem 7.4 p. 202] for m = 1 (one boundary condition) and m0 = 0 (there
is not derivation in the trace operator). As φ1 is an eigenfunction, f is in every distribution
space, in particular it is an element of every Ξs′(Ω) for s′ < 0. Then, if 0 < s < 2, we have
f ∈ Ξs−2(Ω). If g ∈ Hs−1/2(Ω), by [33, Theorem 7.4 p. 202], Ψ ∈ Ds

A(Ω). We now apply [33,
Theorem 7.3 p.201] with B1 = ∂

∂ν
and m1 = 1. Then, we have ∂Ψ

∂ν
∈ Hs−3/2(Ω). We summarize

these results in the following lemma.

Lemma 5.5. Let s ∈ (0, 2) and j ∈ {1, k}. With the notations above, if the Dirichlet boundary

condition g = 〈u, ν〉∂φj

∂ν
∈ Hs−1/2(∂Ω), then we have φ′

j(u) ∈ Hs(Ω) and
∂φ′j(u)

∂ν
∈ Hs−3/2(∂Ω).

As already mentioned in the introduction, the starting remark for the argument of Propo-
sition 5.4 goes as follows. By taking into account Lemma 5.5, the right-hand side of (43) is in
Hs−1/2(∂Ω) and, at the same time, the left-hand side in Hs−3/2(∂Ω), for s ∈ (0, 2). To take
advantage of that gap of regularity between the two sides of (43), we first consider variations
exhibiting just one jump of discontinuity on Ω, let say at some point q∗ ∈ ∂Ω, so that, for all
the quantities involved in (43), an irregular part only occurs at the point q∗. If we are able
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to compute exactly this irregular part, we would infer that it has to be equal to zero by using
(43). It would provide some extra information at the point q∗, of the type F (q∗) = 0 where
F is an R2-valued map defined on ∂Ω. Since the point q∗ is arbitrary, we would end with the
relation F ≡ 0 on ∂Ω, similar to (38). Using this new information together with M(0) ≡ 0,
one hopes to derive a contradiction.

Let us provide more details. Fix q∗ ∈ ∂Ω and a parametrization σ of C1, the connected
component of ∂Ω containing q∗, so that σ ∈ [−L, L) and q∗ corresponds to σ = 0. Fix an open
neighborhood Vα of q∗ in C1 parameterized by (−α, α) with α < L. We consider an admissible
variation uq∗ (see Definition 5.3 below) defined as follows: on (−α, 0), 〈uq∗, ν〉 = 0, on (0, α),
〈uq∗, ν〉 = 1 and 〈uq∗, ν〉 is smooth in C1 except at σ = 0. According to Remark 5.4 below,
we can extend the definition of M ′(u) to functions u which are not regular enough to perform
shape differentiation (such as uq∗). We then show that M ′(uq∗) admits, in the distributional
sense, the following Taylor expansion valid in (−α, α),

M ′(uq∗)(σ) = M0p.v.

(

1

σ

)

+M1 ln(|σ|) +M3σ ln(|σ|) + R(σ), (48)

and we also have, according to (40),

M ′(uq∗)(σ) = M2H0(σ) + R(σ).

In the above equations, the coefficients Mi, 0 ≤ i ≤ 3, are R2-valued, R denotes a (generic)
C1 function over (−α, α) and H0 belongs to H1/2−ε(∂Ω) for every ε > 0.

We will then prove that Mi, 0 ≤ i ≤ 2, are always equal to zero and, from the relation
M ≡ 0 on ∂Ω, we will therefore be left with the relation

M3σ ln(|σ|) + R(σ) = 0 on (−α, α). (49)

It would immediately yield M3 = 0. Moreover, we will compute M3 as a function of the values
of φ1, φk, ξ1, ξk and their normal derivatives at σ = 0 (i.e., at q∗). Therefore, M3 can be seen
as a function defined on ∂Ω and, since q∗ is arbitrary, we will get from (49) that M3(·) ≡ 0
on ∂Ω. It will provide us with a new non trivial relationship between φ1, φk, ξ1, ξk and their
normal derivatives and we will reach shortly after a contradiction, hence concluding the proof
of Proposition 5.4.

In order now to access to (48) and get a hold on the Mi’s, we split M ′(uq∗) as follows,

M ′(uq∗) = M ′
b(uq∗) +M ′

d(uq∗), (50)

where

M ′
b(uq∗) =

∂φ′
k(uq∗)

∂ν

∂ξ1
∂ν

+
∂φk
∂ν

∂ξ′1,b(uq∗)

∂ν
+
∂φ′

1(uq∗)

∂ν

∂ξk
∂ν

+
∂φ1

∂ν

∂ξ′k,b(uq∗)

∂ν
, (51)

M ′
d(uq∗) =

∂φk
∂ν

∂ξ′1,d(uq∗)

∂ν
+
∂φ1

∂ν

∂ξ′k,d(uq∗)

∂ν
, (52)

where M ′
b(uq∗) and M ′

d(uq∗) are the contributions of respectively the boundary ∂Ω and the
domain Ω to M ′(uq∗). In (51) and (52), we choose the variation uq∗ (see Definition 5.3) such
that φ′

1(uq∗) and φ′
k(uq∗) are solutions of







−(∆ + λ1)φ
′
1(uq∗) = λ′1(uq∗)φ1, in Ω,

φ′
1(uq∗) = −〈uq∗, ν〉∂φ1

∂ν
, on ∂Ω,

∫

Ω
φ1φ

′
1(uq∗) = 0,







−(∆ + λk)φ
′
k(uq∗) = λ′k(uq∗)φk, in Ω,

φ′
k(uq∗) = −〈uq∗, ν〉∂φk

∂ν
, on ∂Ω,

∫

Ω
φkφ

′
k(uq∗) = 0,

(53)
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and the ξ′1,b(uq∗), ξ
′
1,d(uq∗), ξ

′
k,b(uq∗) and ξ′k,d are defined as the solutions of the following

Helmholtz equations,






−(∆ + λ1)ξ
′
k,b(uq∗) = 0, in Ω,

ξ′k,b(uq∗) = −〈uq∗, ν〉∂ξk∂ν , on ∂Ω,
∫

Ω
φ1ξ

′
k,b(uq∗) = 0,







−(∆ + λk)ξ
′
1,b(uq∗) = 0, in Ω,

ξ′1,b(uq∗) = −〈uq∗, ν〉∂ξ1∂ν , on ∂Ω,
∫

Ω
φkξ

′
1,b(uq∗) = 0,

(54)







−(∆ + λ1)ξ
′
k,d(uq∗) = λ′1(u)ξk + µφ′

k(uq∗), in Ω,
ξ′k,d(uq∗) = 0, on ∂Ω,
∫

Ω
φ1ξ

′
k,d(uq∗) = 0,

(55)







−(∆ + λk)ξ
′
1,d(uq∗) = λ′k(u)ξ1 + µφ′

1(uq∗), in Ω,
ξ′1,d(uq∗) = 0, on ∂Ω,
∫

Ω
φkξ

′
1,d(uq∗) = 0.

(56)

By linearity, ξ′1(uq∗) = ξ′1,b(uq∗) + ξ′1,d(uq∗) + c1φk and ξ′k(uq∗) = ξ′k,b(uq∗) + ξ′k,d(uq∗) + c2φ1,
where c1 = −

∫

Ω
φ′
k(u)ξ1dq and c2 = −

∫

Ω
φ′

1(u)ξkdq. We simply intend here to compute
ξ′j(uq∗), j = 1, k, as the sum of two terms, one coming from the boundary condition and the
second from the inhomogeneous part of the PDE. Each of these terms requires the study of
a Dirichlet-to-Neumann operator associated to a Helmholtz equation. In the next section, we
develop in details these computations.

5.4 Evaluations of the singular parts of M ′
b(uq∗) and M ′

d(uq∗)

In what follows, p and q denote points of R2 and x, y denotes respectively the first and second
coordinates of a point in R2.

For the rest of the paper, we fix a point q∗ ∈ ∂Ω and, with no loss of generality, we assume
that ∂Ω has only one connected component.

We next choose a parametrization of ∂Ω by arc-length σ ∈ [−L, L) so that q∗ corresponds
to (x(0), y(0)). The initial control problem (4) is clearly invariant by rotation and thus we
can assume that the tangent vector at σ = 0 is equal to (−1, 0)T . We finally proceed to a
translation of vector q∗ which implies that (x(0), y(0)) = (0, 0). That transformation only
modifies the PDEs governing ξj, ξ

′
j,d and ξ′j,b, j = 1, k, replacing q by q + q∗ in (32), (31), (54)

and (55).
Since Ω is of class C3, there exists a neighborhood N0 of 0 ∈ R such that for every σ ∈ N0,

we have

x(σ) = −σ +O(σ3), (57)

y(σ) =
κ(0)

2
σ2 +O(σ3), (58)

where κ is the curvature function of ∂Ω. Let Na be the subset of ∂Ω made of points q(σ) =
(x(σ), y(σ)) with σ ∈ N0 and ν(·) be the unit outward normal along ∂Ω, which is of class C2,
and has direction (y′(·),−x′(·)).

We now consider a variation uq∗ which exhibits a unique jump of discontinuity at q∗, i.e.
uq∗ is only defined through its normal part 〈uq∗, ν〉 given next

〈uq∗, ν〉(σ) =







0, σ ∈ [−α, 0),
1, σ ∈ [0, α),
η(σ), σ ∈ [−L,−α) ∪ [α, L),

(59)
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where 0 < α is small enough so that [−α, α] ⊂ N0 and η is smooth so that 〈uq∗, ν〉 is 2L-
periodic and smooth except at σ = 0. We sometimes refer to 〈uq∗, ν〉 as the Heaviside function
on ∂Ω and use H0 to denote it.

Remark 5.4. Strictly speaking, uq∗ cannot be considered as a variation of domain since it is
not in W 4,∞(Ω,R2). However, it is rather easy to see that solutions of the differential systems
obtained after shape differentiation can be defined by standard density arguments for function
spaces containing W 4,∞(Ω,R2). For instance, M ′(u) is first defined by shape differentiation
for u ∈ Eρ(Ω), and that requires to consider the functions φ′

j(u) and ξ′j(u), j = 1, k verifying
(34) and (44). On the other hand, these functions only need 〈u, ν〉, the normal component of
the variation, to be defined. Thus, for 〈u, ν〉 ∈ H s(∂Ω), s ≤ 1, one still can define by density
(unique) solutions of (34) and (44) associated to u and thus traces on ∂Ω of these elements.
Finally, using Lemma 5.5, the function defined in the left-hand side of (43) is well defined and,
by an obvious abuse of notation, we use M ′(u) to denote it. We now have defined M ′(uq∗)
and we refer to it as the shape differential of M for the variation uq∗.

Remark 5.5. For presentation ease, we use the arc-length σ for parameterizing all points q
in a neighborhood of the fixed point q∗ ∈ ∂Ω.

Definition 5.3. Let Ω be a domain of D3 not verifying condition (Bk). A variation u (defined
with 〈u, ν〉 ∈ Hs(∂Ω), s ∈ (0, 2)) is said to be admissible if

∫

∂Ω

〈u, ν〉∂φ1

∂ν

∂ξk
∂ν

dσ(q) = 0. (60)

By applying Green’s second formula and using (33) and (38), one sees that condition (60)
is necessary (and sufficient) for the existence of solutions of the PDEs given in (53), (54) and
then (55) after an appropriate choice of c1 and c2. Moreover, remark that if ∂ξk

∂ν
≡ 0 on ∂Ω

(and thus ∂ξ1
∂ν

≡ 0), then every variation is admissible.

Lemma 5.6. For every q∗ ∈ ∂Ω, one can choose the smooth function η and the parameter α
introduced in (59) such that uq∗ is an admissible variation.

Proof of Lemma 5.6. We may assume that ∂ξk
∂ν

(and thus ∂ξ1
∂ν

) is not identically equal to 0 on

∂Ω. Assume first that ∂ξk
∂ν

(q∗) 6= 0. Equation (60) can clearly be stated as an affine relation

L(η) = l, where L is a linear form and l ∈ R. Notice that L is not null. Indeed, ∂ξk
∂ν

(q) is

not equal to zero in an open neighborhood of q∗. Then, by choosing α small enough, ∂ξk
∂ν

(q(σ)
is not equal to zero for some σ in (−L,−α) ∪ (α, L). It is therefore always possible to select
η so that uq∗ is an admissible variation. It is immediate to extend the above construction to
the case where ∂ξk

∂ν
(q∗) = 0 and there exists a sequence of points q ∈ ∂Ω converging to q∗ such

that ∂ξk
∂ν

(q) 6= 0.

It remains to treat the case where ∂ξk
∂ν

≡ 0 on an open neighborhood N of q∗ ∈ ∂Ω. It is
then possible to choose α > 0 small enough so that q(σ) ∈ N for σ ∈ (−2α, 2α) and η ≡ 0 on
(2α, L) ∪ (−L,−α). Then, the corresponding uq∗ is admissible.

Definition 5.4. We say that a function g defined on ∂Ω is 2-regular if there exists two smooth
(i.e., C∞) functions h, h̃ defined on ∂Ω such that g(σ) = σ2 ln(|σ|)h(σ)+ h̃(σ) for σ in an open
neighborhood of zero. We will use sometimes the symbol R2 to denote an arbitrary 2-regular
function. In addition, we use the symbol R1 to denote an arbitrary C1 function in an open
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neighborhood of zero. Note that a 2-regular function is necessarily of class C 1. Finally, we
use the notation O(σ) to denote an arbitrary C1 function equal to zero at σ = 0 and with
uniformly bounded derivative over some open neighborhood of zero.

In the next paragraph, we will prove that the irregular parts of
∂φ′1
∂ν

(uq∗),
∂φ′

k

∂ν
(uq∗),

∂ξ′1,b

∂ν
(uq∗),

∂ξ′1,d

∂ν
(uq∗),

∂ξ′
k,b

∂ν
(uq∗) and

∂ξ′
k,d

∂ν
(uq∗) involved in M ′(uq∗) = M ′

b(uq∗) +M ′
d(uq∗) only occur at the

point q∗ and we intend to calculate them exactly.

5.4.1 Expression of M ′
b(uq∗)

The main result of this section is the following theorem.

Theorem 5.7. There exists an open neighborhood of zero N1 ⊂ N0 such that, if σ ∈ N1, one
has

M ′
b(uq∗)(σ) =

1

π

{

λ1
∂φ1(0)

∂ν

∂ξk(0)

∂ν
+ λk

∂φk(0)

∂ν

∂ξ1(0)

∂ν

}

σ ln |σ| + R1. (61)

For the rest of the paper, we set

a1 := − 1

2π
, a2 :=

1

8π
. (62)

Note that the constant 1/π appearing in the right-hand side of (61) is equal to −4(a1+2a2).
The proof of this theorem is based on the following proposition.
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Proposition 5.8. We have

∂φ′
1(uq∗)

∂ν
(σ) = −2

{

a1
∂φ1

∂ν
(0)p.v.

(

1

σ

)

+ a1
∂

∂τ

(

∂φ1

∂ν

)

(0) ln |σ|

+

{

a1
∂2

∂τ 2

(

∂φ1

∂ν

)

+ (a1 + 2a2)λ1
∂φ1

∂ν

}

(0)σ ln |σ|
}

−a1
∂φ1

∂ν
(0)L1(σ) − a1

∂

∂τ

(

∂φ1

∂ν

)

(0)L2(σ) + R1, (63)

∂φ′
k(uq∗)

∂ν
(σ) = −2

{

a1
∂φk
∂ν

(0)p.v.

(

1

σ

)

+ a1
∂

∂τ

(

∂φk
∂ν

)

(0) ln |σ|

+

{

a1
∂2

∂τ 2

(

∂φk
∂ν

)

+ (a1 + 2a2)λk
∂φk
∂ν

}

(0)σ ln |σ|
}

−a1
∂φk
∂ν

(0)L1(σ) − a1
∂

∂τ

(

∂φk
∂ν

)

(0)L2(σ) + R1, (64)

∂ξ′1,b(uq∗)

∂ν
(σ) = −2

{

a1
∂ξ1
∂ν

(0)p.v.

(

1

σ

)

+ a1
∂

∂τ

(

∂ξ1
∂ν

)

(0) ln |σ|

+

{

a1
∂2

∂τ 2

(

∂ξ1
∂ν

)

+ (a1 + 2a2)λk
∂ξ1
∂ν

}

(0)σ ln |σ|
}

−a1
∂ξ1
∂ν

(0)L1(σ) − a1
∂

∂τ

(

∂ξ1
∂ν

)

(0)L2(σ) + R1, (65)

∂ξ′k,b(uq∗)

∂ν
(σ) = −2

{

a1
∂ξk
∂ν

(0)p.v.

(

1

σ

)

+ a1
∂

∂τ

(

∂ξk
∂ν

)

(0) ln |σ|

+

{

a1
∂2

∂τ 2

(

∂ξk
∂ν

)

+ (a1 + 2a2)λ1
∂ξk
∂ν

}

(0)σ ln |σ|
}

−a1
∂ξk
∂ν

(0)L1(σ) − a1
∂

∂τ

(

∂ξk
∂ν

)

(0)L2(σ) + R1, (66)

where L1(σ) := T0(p.v.
(

1
σ

)

), L2(σ) := T0(ln |σ|), with T0 the linear operator defined in (111).
Recall that R1 is used to denote an arbitrary C1 function of ∂Ω.

Proof of Proposition 5.8. Explicit computation is only provided for (63) since expressions for
∂φ′

k
(uq∗)

∂ν
,
∂ξ′1,b

(uq∗)

∂ν
and

∂ξ′
k,b

(uq∗ )

∂ν
are derived in a similar way. From (107), we first easily get that

the contribution of λ′
1(uq∗)φ1 to

∂φ′1
∂ν

(q∗) is a term of class C2 and thus of type R2. We next

apply Proposition B.8 with g = ∂φ1

∂ν
. It yields

E1

(

H0
∂φ1

∂ν

)

(σ) =
∂φ1(0)

∂ν
a1p.v.

(

1

σ

)

+
∂

∂τ

(

∂φ1

∂ν

)

(0)a1 ln |σ|

+

{

a1
∂2

∂τ 2

(

∂φ1

∂ν

)

+ (a1 + 2a2)λ1
∂φ1

∂ν

}

(0)σ ln |σ| + R2. (67)
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According to Theorem B.4, we get

∂φ′
1

∂ν
(σ) = −2

{

∂φ1(0)

∂ν
a1p.v.

(

1

σ

)

+
∂

∂τ

(

∂φ1

∂ν

)

(0)a1 ln |σ|

+

{

a1
∂2

∂τ 2

(

∂φ1

∂ν

)

+ (a1 + 2a2)λ1
∂φ1

∂ν

}

(0)σ ln |σ|
}

−∂φ1(0)

∂ν
a1L1(σ) − ∂

∂τ

(

∂φ1

∂ν

)

(0)a1L2(σ)

−
(

a1
∂2

∂τ 2

(

∂φ1

∂ν

)

+ (a1 + 2a2)λ1
∂φ1

∂ν

)

(0)L3(σ) + R1,

where L3(σ) := T0(σ ln |σ|). Recalling that ln |σ| belongs to H1/2−ε(∂Ω) for every ε > 0 and
the regularizing effect of the operator T0, one immediately gets that σ ln |σ| ∈ H3/2−ε(∂Ω) and
L3(σ) ∈ H5/2−ε(∂Ω) for every ε > 0. It implies that L3(·) is a C1 function of ∂Ω.

Remark 5.6. For the rest of the paper, we will need information about the regularity of Lj(σ),
j = 1, 2. As done in the above argument, we have that p.v.

(

1
σ

)

∈ H−1/2−ε(∂Ω) for every ε > 0

and, thanks to the regularizing effect of the operator T0, we get that L1(·) ∈ H1/2−ε(∂Ω) for
every ε > 0. Similarly, we get that L2(·) ∈ H3/2−ε(∂Ω) and T0(H

3/2−ε(∂Ω)) ⊂ R1 for every
ε > 0.

We are now able to prove Theorem 5.7.

Proof of Theorem 5.7. Let σ ∈ N0 and we eventually reduce the size of the neighborhood
later on. Our first goal consists in computing explicitly the coefficient associated to p.v.( 1

σ
) in

M ′
b(uq∗). Using Proposition 5.8 and Remark 5.6, we have

M ′
b(uq∗)(σ) =

∂φ′
k(uq∗)

∂ν
(σ)

∂ξ1
∂ν

(σ) +
∂φk
∂ν

(σ)
∂ξ′1,b(uq∗)

∂ν
(σ)

+
∂φ′

1(uq∗)

∂ν
(σ)

∂ξk
∂ν

(σ) +
∂φ1

∂ν
(σ)

∂ξ′k,b(uq∗)

∂ν
(σ)

= −2

(

∂φk
∂ν

(0)a1p.v.

(

1

σ

)

+ P0(σ)

)(

∂ξ1
∂ν

(0) +O(σ)

)

−2

(

∂ξ1
∂ν

(0)a1p.v.

(

1

σ

)

+ P0(σ)

)(

∂φk
∂ν

(0) +O(σ)

)

−2

(

∂φ1

∂ν
(0)a1p.v.

(

1

σ

)

+ P0(σ)

)(

∂ξk
∂ν

(0) +O(σ)

)

−2

(

∂ξk
∂ν

(0)a1p.v.

(

1

σ

)

+ P0(σ)

)(

∂φ1

∂ν
(0) +O(σ)

)

= −4a1

(

∂φk
∂ν

(0)
∂ξ1
∂ν

(0) +
∂φ1

∂ν
(0)

∂ξk
∂ν

(0)

)

p.v.

(

1

σ

)

+ P0(σ).

where P0(σ) denotes any function belonging to H1/2−ε(∂Ω) for every ε > 0 in some open
neighborhood of zero. Then, we have

M ′
b(uq∗)(σ) = −4a1M(0)p.v

(

1

σ

)

+ P0(σ). (68)
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Since M ≡ 0 on ∂Ω, we have in particular M(0) = 0. In consequence, there is not any term
in p.v( 1

σ
) in M ′

b(uq∗).
The next step consists in identifying the least regular term of P0. We begin by writing

that

M ′
b(uq∗)(σ)

= −
(

2a1
∂

∂τ

(

∂φk
∂ν

)

(0) ln |σ| + 2

{

a1
∂2

∂τ 2

(

∂φk
∂ν

)

+ (a1 + 2a2)λk
∂φk
∂ν

}

(0)σ ln |σ|

− a1
∂φk
∂ν

(0)L1(σ) − a1
∂

∂τ

(

∂φk
∂ν

)

(0)L2(σ) + R1(σ)

)(

∂ξ1
∂ν

(0) +
∂

∂τ

(

∂ξ1
∂ν

)

(0)σ +O(σ2)

)

−
(

2a1
∂

∂τ

(

∂ξ1
∂ν

)

(0) ln |σ| + 2

{

a1
∂2

∂τ 2

(

∂ξ1
∂ν

)

+ (a1 + 2a2)λk
∂ξ1
∂ν

)

}

(0)σ ln |σ|

− a1
∂ξ1
∂ν

(0)L1(σ) − a1
∂

∂τ

(

∂ξ1
∂ν

)

(0)L2(σ) + R1(σ)

)(

∂φk
∂ν

(0) +
∂

∂τ

(

∂φk
∂ν

)

(0)σ +O(σ2)

)

−
(

2a1
∂

∂τ

(

∂φ1

∂ν

)

(0) ln |σ| + 2

{

a1
∂2

∂τ 2

(

∂φ1

∂ν

)

+ (a1 + 2a2)λ1
∂φ1

∂ν

}

(0)σ ln |σ|

− a1
∂φ1

∂ν
(0)L1(σ) − a1

∂

∂τ

(

∂φ1

∂ν

)

(0)L2(σ) + R1(σ)

)(

∂ξk
∂ν

(0) +
∂

∂τ

(

∂ξk
∂ν

)

(0)σ +O(σ2)

)

−
(

2a1
∂

∂τ

(

∂ξk
∂ν

)

(0) ln |σ| + 2

{

a1
∂2

∂τ 2

(

∂ξk
∂ν

)

+ (a1 + 2a2)λ1
∂ξk
∂ν

}

(0)σ ln |σ|

− a1
∂ξk
∂ν

(0)L1(σ) − a1
∂

∂τ

(

∂ξk
∂ν

)

(0)L2(σ) + R1(σ)

)(

∂φ1

∂ν
(0) +

∂

∂τ

(

∂φ1

∂ν

)

(0)σ +O(σ2)

)

.

Rearranging the terms and using Remark 5.6, we get

M ′
b(uq∗)(σ) = −a1

(∂M

∂τ
(0)(2 ln |σ| + σL1(σ) + L2(σ)) +M(0)L1(σ) + 2

∂2M

∂τ 2
(0)σ ln |σ|

)

−(4a1 + 8a2)

{

λ1
∂φ1(0)

∂ν

∂ξk(0)

∂ν
+ λk

∂φk(0)

∂ν

∂ξ1(0)

∂ν

}

σ ln |σ| + R1(σ).

Since M(0) ≡ 0 on ∂Ω, we have ∂M
∂τ

(0) ≡ 0 and ∂2M
∂τ2 (0) = 0 on ∂Ω. As a consequence, the

above equation reduces equation (61).

5.4.2 Contribution of M ′
d(uq∗)

We prove in this section the following theorem regarding the Taylor expansion of M ′
d(uq∗) in

an open neighborhood of zero.

Theorem 5.9. There exists an open neighborhood of zero N2 ⊂ N0 such that, if σ ∈ N2, one
has

M ′
d(uq∗)(σ) =

1

π
µ(q∗)

∂φ1

∂ν
(0)

∂φk
∂ν

(0)σ ln |σ| + R1. (69)

The proof of this theorem is based on the following proposition.

Proposition 5.10. We keep the notations above, then we have

∂ξ′1,d(uq∗)

∂ν
(σ) = −(2a1 + 4a2)µ(q∗)

∂φ1

∂ν
(0)σ ln |σ| + R1, (70)

∂ξ′k,d(uq∗)

∂ν
(σ) = −(2a1 + 4a2)µ(q∗)

∂φk
∂ν

(0)σ ln |σ| + R1. (71)

35



Proof of Theorem 5.9. We note that 2a1 + 4a2 = − 1
2π

. Assuming Proposition 5.10. We have

M ′
d(uq∗)(σ) =

∂φk
∂ν

∂ξ′1,d(uq∗)

∂ν
+
∂φ1

∂ν

∂ξ′k,d(uq∗)

∂ν

=

(

∂φk
∂ν

(0) +O(σ)

)(

1

2π
µ(q∗)

∂φ1

∂ν
(0)σ ln |σ| + R1

)

+

(

∂φ1

∂ν
(0) +O(σ)

)(

1

2π
µ(q∗)

∂φk
∂ν

(0)σ ln |σ| + R1

)

=
1

π
µ(q∗)

∂φ1

∂ν
(0)

∂φk
∂ν

(0)σ ln |σ| + R1.

Recall now the system verified by ξ ′1,d.







−(∆ + λk)ξ
′
1,d(uq∗) = λ′k(uq∗)ξ1 + µ(q + q∗)φ

′
1(uq∗) in Ω,

ξ′1,d(uq∗) = 0 on ∂Ω,
∫

Ω
φkξ

′
1,d(uq∗) = 0.

(72)

The function ξ′k,d verifies a similar system by exchanging the indices 1 and k and we will omit
the corresponding argument.

Remark 5.7. By classical elliptic regularity theory presented in [33], we know that φ′
1 ∈

H1−ε(Ω), and then ξ′1,d ∈ H3−ε(Ω). By taking the trace, we have
∂ξ′1,d

∂ν
∈ H3/2−ε(∂Ω). A

straightforward computation shows that the last term σ ln |σ| in our expansion of M ′
b(uq∗) is

in H3/2−ε(∂Ω). Hence, it is necessary to compute exactly the first singular term of
∂ξ′1,d

∂ν
.

Remark 5.8. The term M ′
d(uq∗) cannot be treated by a direct functional analysis argument:

if there were a family of functional spaces X s with a well established theory of elliptic equa-
tions such as that for Sobolev spaces and if there would exist s1 6= s2 such that H0 ∈ Xs1

and ln |σ| ∈ Xs2, then
∂ξ′1,d

∂ν
and σ ln |σ| would not be in the same Xs. However, we cannot

distinguish these two functions even in the family of Besov spaces. We can also note that H0

is a bounded variation function and ln |σ| is not, but elliptic theory in the space of bounded
variation functions is not easy. For these reasons, it seems that an exact computation of the

first term of
∂ξ′1,d

∂ν
is necessary.

Let us first prove the following technical lemma, which expresses integrals over Ω by means
of boundary integrals over ∂Ω.

Lemma 5.11. Let k,m be two distinct positive integers. Assume that a function h verifies
(∆ + λk)h = 0 in Ω. Then we have

∂

∂νp

∫

Ω

h(q)Gm(p, q)dq =
−1

λm − λk

(

(Em − Ek)(h|∂Ω) + (K∗
k −K∗

m)

(

∂h

∂ν

))

, (73)

where Gm(·, ·) is the fundamental solution of the Helmhotz equation corresponding to λm and
verifying the Sommerfeld condition and the operators Ek, Em, K

∗
k , K

∗
m are defined in Subsec-

tion B.1.
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Proof of Lemma 5.11. Green’s second formula says that
∫

Ω

(g1∆(g2) − g2∆(g1)) =

∫

∂Ω

(

g1
∂g2

∂ν
− g2

∂g1

∂ν

)

dσ(q),

where g1, g2 are arbitrary functions such that the above integrals exist. Choose g1 = h and
g2 = cGk where c is a real number to be determined later. We have

c

∫

Ω

h(q)[(∆ + λk)Gm(p, q)]dq = c

∫

∂Ω

(

h(q)
∂Gm

∂νq
(p, q) −Gm(p, q)

∂h

∂νq

)

dσ(q). (74)

Since (∆ + λm)Gm(p, q) = δp, we then get

ch(p) + c(λk − λm)

∫

Ω

h(q)Gm(p, q)dq = c

∫

∂Ω

(

h(q)
∂Gm

∂νq
(p, q) −Gm(p, q)

∂h

∂νq

)

dσ(q). (75)

Setting c := 1
λm−λk

, we then get, for p ∈ Ω,

∫

Ω

h(q)Gm(p, q)dq =
1

λm − λk

(

−Dm(h)(p) + Sm

(

∂h

∂ν

)

(p) + h(p)

)

, (76)

where Sm, Dm are respectively the single-layer and double-layer potentials associated to Gm

(cf. Subsection B.1).
By applying the normal derivative operator to the two side terms of equation (76) and

then taking into account the jump relations (103) and
(

1
2
I +K∗

k

)

∂
∂ν
h = Ek(h), we get that

∂

∂ν

∫

Ω

h(q)Gm(p, q)dq =
1

λm − λk

∂

∂ν

(

−Dm(h)(p) + Sm

(

∂h

∂ν

)

(p) + h(p)

)

=
1

λm − λk

(

−Em(h|∂Ω) +

(−1

2
+K∗

m

)(

∂h

∂ν

)

+
∂h

∂ν

)

(p)

=
1

λm − λk

(

−Em(h|∂Ω) +K∗
m

(

∂h

∂ν

)

+
1

2

∂h

∂ν

)

(p)

=
1

λm − λk

(

−Em(h|∂Ω) +K∗
m

(

∂h

∂ν

)

+
[

Ek(h|∂Ω) −K∗
k

∂h

∂ν

]

)

(p)

=
1

λm − λk

(

(Ek − Em) (h|∂Ω) + (K∗
m −K∗

k)

(

∂h

∂ν

))

(p).

We are now able to provide an argument for Proposition 5.10.

Proof of Proposition 5.10. According to (107), we first easily get that the contribution of

λ′k(uq∗)ξ1 to
∂ξ′1,d

∂ν
(q∗) is a term of class C2 and that

(

1

2
I +K∗

k

)

∂ξ′1,d
∂ν

(p) =
∂

∂νp

∫

Ω

µ(q + q∗)φ
′
1(q)Gk(p, q)dq + R1. (77)

We need the Taylor expansion of the right-hand side of (77) when a boundary point p belongs
to an open neighborhood (in ∂Ω) of q∗ (i.e. (0, 0)). For that purpose, we perform the following
decomposition.

∂
∂νp

∫

Ω
µ(q + q∗)φ

′
1(q)Gk(p, q)dq =

∫

Ω
µ(q + q∗)φ

′
1(q)

∂Gk

∂νp
(p, q)dq

= µ(p+ q∗)I1(p) + I2(p),
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where

I1(p) =

∫

Ω

φ′
1(q)

∂Gk

∂νp
(p, q)dq =

∂

∂νp

∫

Ω

φ′
1(q)Gk(p, q)dq,

and

I2 =

∫

Ω

[µ(q + q∗) − µ(p+ q∗)]φ
′
1(q)

∂Gk

∂νp
(p, q)dq.

We first treat I1(p). Since φ′
1 verifies (∆ + λ1)φ

′
1 = 0, we can apply Lemma 5.11 and we

get

I1(p) =
−1

λk − λ1

(

(Ek − E1) (φ′
1|∂Ω) + (K∗

1 −K∗
k)

(

∂φ′
1

∂ν

))

. (78)

Using the arc-length σ, recall that p = O(σ). Thus, we have p + q∗ = q∗ + O(σ) and we
write I1(σ) for I1(p(σ)). According to (116), we first deduce that

1

λk − λ1
(Ek − E1)(φ

′
1) =

1

λk − λ1
(a1 + 2a2)(λk − λ1)

∂φ1

∂ν
(0)σ ln |σ| + R2

= (a1 + 2a2)
∂φ1

∂ν
(0)σ ln |σ| + R2. (79)

As K∗
k and K∗

1 have the same principal part, by Lemma B.5, we know that (K∗
k −K∗

1)
∂φ′1
∂ν

is
a 2-regular term. Then,

I1(σ) = −(a1 + 2a2)
∂φ1

∂ν
(0)σ ln |σ| + R2. (80)

We now treat I2(p). Taking into account the Taylor expansion of µ at p + q∗, we can
rewrite I2(p) = dµ(p+ q∗)J2(p) +R(p) where

J2(p) =

∫

Ω

(q − p)
∂Gk

∂νp
(p, q)φ′

1(q)dq,

and

R(p) =

∫

Ω

O(‖q − p‖2)
∂Gk

∂νp
(p, q)φ′

1(q)dq.

Since R(·) is a more regular term than J2(·), it is enough to prove that J2 is of class C1.
Note that J2 =

∫

Ω
H(p, q)φ′(q)dq with H(·, ·) the convolution kernel given by H(p, q) :=

(q − p)∂Gk

∂νp
(p, q), p 6= q. The kernel H is no longer singular (it is actually uniformly bounded

on its domain of definition) and straightforward computations yield that H defines a pseu-
dodifferential operator of class −3/2. Recall that H0 ∈ H1/2−ε(∂Ω) for every ε > 0, we
deduce that φ′

1 ∈ H1−ε(Ω) for every ε > 0, then I2 ∈ H5/2−ε(∂Ω) for every ε > 0. Then
σ 7→ J2(p(σ)) admits a continuous derivative in an open neighborhood of zero. We conclude

that the contribution of J2 to
∂ξ′1,d

∂ν
(σ) yields an R1 term.

By Theorem B.4, we finally get

∂ξ′1,d
∂ν

(σ) = −(2a1 + 4a2)µ(q∗)
∂φ1

∂ν
(0)σ ln |σ| + R1. (81)
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5.5 Proof of Proposition 5.4

Collecting the results of Theorems 5.7 and 5.9 in (43), we get that, for σ in some open
neighborhood of zero, one has

M ′(uq∗)(σ) =
1

π

{

λ1
∂φ1(0)

∂ν

∂ξk(0)

∂ν
+ λk

∂φk(0)

∂ν

∂ξ1(0)

∂ν
+ µ(q∗)

∂φ1(0)

∂ν

∂φk(0)

∂ν

}

σ ln |σ| + R1

= −H0
∂M

∂ν
(0). (82)

The left-hand side of (82) is continuous at σ = 0, which implies that ∂M
∂ν

(0) = 0. Then the
left-hand side of (82) must be of class C1 at σ = 0, implying that the coefficient of σ ln |σ|
must also be equal to zero. We finally get that

λ1
∂φ1(0)

∂ν

∂ξk(0)

∂ν
+ λk

∂φk(0)

∂ν

∂ξ1(0)

∂ν
+ µ(q∗)

∂φ1(0)

∂ν

∂φk(0)

∂ν
= 0, (83)

and, since q∗ is an arbitrary point of ∂Ω, we get

λ1
∂φ1

∂ν
(q)

∂ξk
∂ν

(q) + λk
∂φk
∂ν

(q)
∂ξ1
∂ν

(q) + µ(q)
∂φ1

∂ν
(q)

∂φk
∂ν

(q) = 0 on ∂Ω. (84)

Consider now equations (38) and (84) as a linear system with ∂ξ1
∂ν

(q) and ∂ξk
∂ν

(q) as un-
knowns. After an elementary algebraic manipulation, we have, for every q ∈ ∂Ω,

∂φk
∂ν

(q)

{

∂ξ1
∂ν

(q) − 1

λ1 − λk
µ(q)

∂φ1

∂ν
(q)

}

= 0, (85)

∂φ1

∂ν
(q)

{

∂ξk
∂ν

− 1

λk − λ1
µ(q)

∂φk
∂ν

(q)

}

= 0 . (86)

As φ1 and φk are eigenfunctions of −∆D
Ω , by Holmgren uniqueness theorem (see [41, Proposition

4.3, page 433]), their normal derivatives cannot be equal to zero on a subset of ∂Ω with non
null measure. Then, by a simple density argument, we get

∂ξ1
∂ν

(q) − 1

λ1 − λk
µ(q)

∂φ1

∂ν
(q) = 0 on ∂Ω, (87)

∂ξk
∂ν

(q) − 1

λk − λ1

µ(q)
∂φk
∂ν

(q) = 0 on ∂Ω. (88)

What we have proved so far is that, if Property (Bk), k > 1, is not generic then a certain
property (Ck) is not as well, where the latter property is defined exactly as in Definition 5.2
except that the function M defined in (30) is replaced by the function S : ∂Ω → R2 defined
by

S(q) :=
∂ξ1
∂ν

(q) − 1

λ1 − λk
µ(q)

∂φ1

∂ν
(q) for q ∈ ∂Ω. (89)

As in Proposition 5.4, it now amounts to prove that the function S defined in (89) cannot
be identically equal to zero on any Eρ(Ω) with ρ > 0. We can follow the same strategy
developed in Subsection 5.2 and use the computations made in Section 5.4.
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Reasoning by contradiction, we assume that S ≡ 0 on ∂Ω. Taking the shape differentiation
of that equation and using a variation uq∗ for an arbitrary q∗ ∈ ∂Ω, we get

∂ξ′1(uq∗)

∂ν
(q) − 1

λ1 − λk
µ(q)

∂φ′
1(uq∗)

∂ν
(q) = −H0

∂

∂ν

{

∂ξ1
∂ν

(q) − 1

λ1 − λk
µ(q)

∂φ1

∂ν
(q)

}

. (90)

Using Propositions 5.8 and 5.10, we have at σ = 0

−2

(

∂ξ1
∂ν

(0) − 1

λ1 − λk

∂φ1

∂ν
(0)µ(q∗)

)

a1p.v.

(

1

σ

)

+ 2

(

∂

∂τ

(

∂ξ1
∂ν

)

(0) − 1

λ1 − λk

∂

∂τ

(

∂φ1

∂ν

)

(0)µ(q∗)

)

a1 ln |σ| +O(σ ln |σ|)

= −H0
∂

∂ν

{

∂ξ1
∂ν

− 1

λ1 − λk

∂φ1

∂ν
µ(q)

}

(0).

By (87), we simplify the previous equation and get

2

(

∂

∂τ

(

∂ξ1
∂ν

)

(0) − 1

λ1 − λk

∂

∂τ

(

∂φ1

∂ν

)

(0)µ(q∗)

)

a1 ln |σ| +O(σ ln |σ|)

= H0
∂

∂ν

{

∂ξ1
∂ν

− 1

λ1 − λk

∂φ1

∂ν
µ(q(σ))

}

Since the right-hand side remains bounded in in neighborhood of σ = 0, it is necessary that

∂

∂τ

(

∂ξ1
∂ν

)

(0) − 1

λ1 − λk

∂

∂τ

(

∂φ1

∂ν

)

(0)µ(q∗) = 0. (91)

On the other hand, by taking the tangent derivative of (87) at q = q∗, we have

∂S

∂τ
(q(τ)) =

∂

∂τ

(

∂ξ1
∂ν

)

(0) − 1

λ1 − λk

(

∂

∂τ

(

∂φ1

∂ν

)

(0)µ(q∗) +
∂φ1

∂ν
(0)dµ(q∗) · τ0

)

= 0, (92)

where τ0 is the unit tangent vector on ∂Ω at the point q∗. From (91) and (92), we end up with

∂φ1

∂ν
(0)dµ(q∗) · τ0 = 0. (93)

As the previous reasoning is valid almost everywhere on ∂Ω, we have

∂φ1

∂ν
(q)dµ(q) · τq = 0, for q ∈ ∂Ω. (94)

By condition (36) and by continuity of the map q 7→ dµ(q) · τq for q ∈ ∂Ω, we get that ∂φ1

∂ν

is equal to zero on an open neighborhood of q̄ on ∂Ω (defined in (36)). This is not possible by
Holmgren uniqueness theorem. We finally derived a contradiction and Proposition 5.4 is now
proved.
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6 Conclusion, conjectures, perspectives

We recapitulate all the controllability results known for (3) in the following array.

Spectral controllability in time T of (3) Exact controllability in time T of (3)
1D yes under (H1) yes under (H2)

Ω = (0, 1) ∀T > 0 (i.e. generically with respect to µ)
in H3

(0)((0, 1),C) with L2((0, T ),R)-controls ,

∀T > 0

no under no(H1) no under no(H1)
2D yes under (H3) yes under (H3) and (H4)

(i.e. generically with respect to (Ω, µ)) in abstract spaces
with T > Tmin(Ω) with T > Tmin(Ω)

no under (H3) and (H4)
with T < Tmin(Ω)

no under no (H3) no under no (H3)
3D no under (H4) no under (H4)

In this array, we have used the notation

Tmin(Ω) := 2πd(Ω)

where d(Ω) > 0 is such that

]{k ∈ N
∗;λk − λ1 ∈ [0, t]} ∼ d(Ω)t, when t→ +∞.

and the assumptions
(H1) : 〈µϕ1, ϕk〉L2(Ω) 6= 0, for every k ∈ N∗,

(H2) : there exists c1, c2 > 0 such that,

c1
k3

≤ |〈µϕ1, ϕk〉| ≤
c2
k3
, ∀k ∈ N

∗,

(H3) : any eigenvalue λ of −∆D
Ω has multiplicity m ≤ n (n = 2, 3 is the space dimen-

sion : Ω ⊂ Rn) and the vectors 〈µφ1, φk1〉,...,〈µφ1, φkm
〉 are linearly independant in Rn, where

k1 < ... < km and φk1, ..., φkm
are the eigenvectors associated to λ.

(H4) : there exists µ̃ ∈ C0(Ω,R) such that µ(q) = µ̃(q)e1.

The assumption (H4) is not necessary for the non spectral controllability of (3) in small
time in 2D (see Remark 3.3). We conjecture that, in 2D, the system (3) is not spectral
controllable in small time under (H3). This is an open problem.

Similarly, the assumption (H4) is not necessary for the non spectral controllability of (3)
in any time T > 0 in 3D. We conjecture that, in 3D, and with any time T > 0, the system (3)
is not spectral controllable in time T under (H3). This is an open problem.
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A strategy to prove these conjectures could be the adaptation of Haraux and Jaffard’s
result (Theorem 3.2) to vector exponential families.

A Shape differentiation

The material presented here is borrowed from [40] and [45].

A.1 Main definitions

Let Ω be a domain in D3. For a positive integer l, we consider perturbations u in the space
W l,∞(Ω,R2) with norm

‖u‖l,∞ := supess{|Dαu(x)|; 0 ≤ α ≤ l, x ∈ Ω}.

Then, the domain Ω + u is defined by

Ω + u := (Id + u)(Ω) = {x+ u(x), x ∈ Ω}.

Lemma A.1 (cf. [40]). Let l ∈ N∗ and u ∈ W l,∞(Ω,R2) be such that ‖u‖l,∞ ≤ 1/2.
Then, the map Id + u is invertible. Furthermore, there exits w ∈ W l,∞(Ω + u,R2) such that
(Id + u)−1 = Id + w and ‖w‖l,∞ ≤ Cl‖u‖l,∞ where Cl is a constant independent on u.

Remark A.1. According to this result, if Ω is of class C j, we can choose l = j + 1 so that
the new domain Ω + u is also of class Cj. In particular, if we need domains of class C3, we
can choose W 4,∞(Ω,R2) as the perturbation space.

We now consider a function

v : u ∈ W l,∞(Ω,R2) → v(u) ∈ Wm,r(Ω + u)

where 1 ≤ r < ∞ and m ≤ l are integers. In practice, v(u) is solution of a suitable problem,
which depends on the perturbation function u. We are interested in the study of the regularity
of the function v(u) with respect to the perturbation function u.

Definition A.1 (First order local variation). Let k ≥ m ≥ 1 and 1 ≤ r < ∞. We
say that the function v(u) has a first order local variation at u = 0 on Wm, r(Ω + u) for all
u ∈ W l,∞(Ω,R2) if there exists a linear map v′(u) from u ∈ W l,∞(Ω,R2) to v′(u) ∈ Wm−1, r

loc
(Ω)

such that, for every open set ω ⊂⊂ Ω,

v(u) = v(0) + v′(u) + θ(u) in ω,

when ‖u‖l,∞ is small enough and

‖θ(u)‖m−1,r

‖u‖l,∞
→ 0 as ‖u‖l,∞ → 0.
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Remark A.2. The first order local variation can also be defined as

v′(u) = lim
t→0

v(tu)|ω − v(0)|ω
t

in Wm−1,r(ω),

where ω ⊂⊂ Ω.

The following theorem provides sufficient conditions for the existence of the first order local
variation.

Theorem A.2 (cf. [40]). Let Ω be a C0,1 domain. Consider the map u→ v(u) ∈ Wm,r(Ω+u)
defined on a neighborhood of u = 0 in W k,∞(Ω,R2), with k ≥ m ≥ 1 and 1 ≤ r <∞. Assume
that there exists a linear continuous map u ∈ W k,∞(Ω) → v̇(u) ∈ Wm, r(Ω) such that

v(u) ◦ (Id + u) = v(0) + v̇(u) + θ(u) in Wm, r(Ω),

for all u ∈ W k,∞(Ω,R2) small enough, where

‖θ(u)‖m−1,r

‖u‖k,∞
→ 0 as ‖u‖k,∞ → 0.

Furthermore, we assume that for every u ∈ W k,∞(Ω,R2) small enough,

v(u) = 0 on ∂Ω + u.

Then, for each ω ⊂⊂ Ω, the function u → v(u)|ω ∈ Wm−1,r(ω) defined on a neighborhood of
u = 0 in W k,∞(Ω,R2) is differentiable at u = 0.

Moreover, the map u→ v(u)|ω has a first order local variation and this variation at u = 0
in the direction u1 denoted by v′(u1) verifies v′(u1) ∈ Wm−1,r(Ω) and

v′(u1) = − < u1, ν >
∂v(0)

∂ν
on ∂Ω. (95)

A.2 Regularity of the eigenvalues and eigenfunctions

By applying [46, Theorem 3] in the same way as in [45], we get the following result.

Theorem A.3. Let Ω ⊂ R3 be an open bounded domain of class C1. Let λ be an eigenvalue
of multiplicity h of −∆D

Ω , with associated orthonormal eigenfunctions y1, ..., yh. Then, there
exist h real-valued continuous functions, u 7→ λΩ+u

i , and h continuous functions with values in
H2∩H1

0 (Ω,R), u 7→ yi(u), for i = 1, ..., h, defined in a neighborhood U of u = 0 in W 4,∞(Ω,R3)
such that the following properties hold,

• λΩ
i = λ for i = 1, ..., h,

• for every u ∈ U , ϕΩ+u
i := yi(u) ◦ (I + u)−1 is an eigenfunction of −∆D

Ω+u associated to
the eigenvalue λΩ+u

i ,

• for every u ∈ U , the family (ϕΩ+u
1 ..., ϕΩ+u

h ) is orthonormal in L2(Ω + u,R),
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• for each open interval I ⊂ R, such that the intersection of I with the set of eigenvalues
of −∆D

Ω contains only λ, there exists a neighborhood UI ⊂ U such that, for every u ∈ UI ,
there exist exactly h eigenvalues (counting the multiplicity), λΩ+u

i , 1 ≤ i ≤ h, of −∆D
Ω+u

contained in I,

• for each u ∈ W 2,∞(Ω,C) and 1 ≤ i ≤ h, the map

R → R × H2 ∩H1
0 (Ω,R)

t 7→ (λΩ+tu
i , yi(tu))

is analytic in a neighborhood of t = 0.

A.3 Local variations of the eigenvalues and eigenfunctions

Let Ω ⊂ R2 be an open bounded domain of class C1. Let λ be an eigenvalue of multiplicity h
of −∆D

Ω , with associated orthonormal eigenfunctions y1, ..., yh. Let ϕi(u) ∈ H2∩H1
0 (Ω+u,R),

i = 1, ..., h be the eigenfunctions of −∆D
Ω+u associated to the eigenvalues λi(u), i = 1, ..., h,

where λi(0) = λ for i = 1, ..., h.
According to the result of the previous section, the functions t 7→ λi(tu) and t 7→ ϕi(tu)

are analytic in a neighborhood of 0. Let us denote by

λ′i(u0) (resp.
dϕi
du

]

u0

)

the value of the directional derivative of λi (resp. ϕi) at u = 0 in the direction u0,

λ′i(u0) := lim
t→0

λi(tu0) − λi(0)

t
.

For i = 1, ..., h, dϕi

du
]u0 ∈ H2(Ω,R) and, for every open subset ω ⊂⊂ Ω,

dϕi
du

]

u0

:= lim
t→0

ϕi(tu0)|ω − ϕi(0)|ω
t

, in H2(ω,R3).

We have, for every t ∈ R,







−∆ϕi(tu0) = λi(tu0)ϕi(tu0) in Ω + tu0,
ϕi(tu0) = 0 on ∂(Ω + tu0),
∫

Ω+tu0
|ϕi(tu0)(q)|2dq = 1.

Thus, using classical results on shape differentiation (see [40]), we get











−(∆ + λi)
dϕi

du

]

u0
= λ′i(u0)ϕi in Ω,

dϕi

du

]

u0
= −u0.∇ϕi on ∂Ω,

∫

Ω
ϕi(q)

dϕi

du

]

u0
(q)dq = 0.

(96)

Remark A.3. We note that all results stated above can be easily extended for C 3 domains
and variations u ∈ W 4,∞(Ω,R2).
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B The Dirichlet to Neumann map for the Helmholtz

equation

Let Ω ⊂ R2 be a bounded domain with a connected boundary ∂Ω of class C3 and outward
unit normal ν. For k > 0, we consider the following problem

{

(∆ + k2)u = F, in Ω,
u = f, on ∂Ω.

(97)

The goal of this section is to study the Dirichlet-to-Neumann map associated to (97) when
−k2 is an eigenvalue of the interior Dirichlet problem. In subsection B.1, we recall some useful
background results (see for instance [4, 12, 34, 42]). In subsection B.2, we study precisely the
Dirichlet to Neumann map associated to (97).

B.1 Preliminary results on Helmholtz equation

A standard approach for studying the Helmholtz equations consists in the representation of
the solution using the single and double layer potentials respectively defined by

Sk(f)(p) :=

∫

∂Ω

Gk(p, q)f(q)dσ(q), ∀p ∈ R
2\∂Ω, (98)

and

Dk(f)(p) :=

∫

∂Ω

∂Gk(p, q)

∂νq
f(q)dσ(q), ∀p ∈ R

2\∂Ω, (99)

where Gk(., .) is the fundamental solution of the Helmholtz equation that satisfies the Som-
merfeld condition and f ∈ L2(∂Ω). Here the notation ∂

∂νq
stands for the outward unit normal

to ∂Ω at the point q. Then the solution of (97) is given by the third Green formula,

u = −Sk
(

∂u

∂ν

)

+Dk(f) + F ∗Gk, (100)

where

F ∗Gk(p) :=

∫

Ω

F (q)Gk(p, q) dq, ∀p ∈ Ω.

For the reader’s convenience, we recall the following useful standard result which highlights
the difference between the fundamental solution G0 of the Laplace equation and Gk (see [2]
and [29]).

B.1.1 Fundamental solution

Proposition B.1. Let k > 0. The fundamental solution for the Helmholtz equation is

Gk(p, q) = − i

4
H1

0 (k | p− q |) (101)

where H1
0 denotes the Hankel function of the first kind of order 0. If G0(p, q) := 1

2π
ln | p− q |

is the fundamental solution of the Laplace equation, then we have

Gk(p, q) = G0(p, q) + gk(p, q), (102)
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where gk = g
(1)
k + g

(2)
k with

g
(1)
k (p, q) := − 1

2π
ln

(

k

2

)

+
1

2π
ln

(

k | p− q |
2

) ∞
∑

j=1

(−1)j

(j!)2

(

k | p− q |
2

)2j

,

and

g
(2)
k (p, q) := − i

4
J0(k | p− q |) +

∞
∑

j=1

(−1)j

(j!)2
ψ(j + 1)

(

k|p− q|
2

)2j

,

with ψ, the digamma function and J0, the Bessel function of first kind.

B.1.2 Jump relations

Now, let us state jump relations satisfied by the layer potentials and their normal derivative.
We recall the standard notations

f |±(p) = lim
t→0+

f(x± tνp), p ∈ ∂Ω,

and
∂

νp
f |±(p) = lim

t→0+
〈∇f(p± tνp), νp〉, p ∈ ∂Ω.

We quote from [4, Lemma 11.1, page 186] the following result.

Theorem B.2. Let Ω be a C3 domain in R2 and let f ∈ L2(∂Ω). We have

(Sk(f))|+(p) = (Sk(f))|−(p) = Sk(f)(p), a.e p ∈ ∂Ω,
(

∂

∂νp
Sk(f)

)

∣

∣

∣

±
(p) =

(

±1
2
I +K∗

k

)

f(p), a.e p ∈ ∂Ω,

Dk(f)|±(p) =
(

∓1
2
I +Kk

)

f(p), a.e p ∈ ∂Ω,

(103)

where Kk is the operator defined by

Kkφ(p) := p.v

∫

∂Ω

∂Gk(p, q)

∂νq
φ(q)dσ(q), p ∈ ∂Ω, (104)

and where K∗
k is its L2(∂Ω)-adjoint.

An other operator will be of interest and will play a major role in our computations. It is
the normal derivative of Dk(f),

Ek(f)(p) :=
∂

∂νp

(
∫

∂Ω

∂Gk

∂νq
(p, q)f(q) dσ(q)

)

, p ∈ ∂Ω. (105)

Remark B.1. There is not a jump relation for the normal derivative of the double-layer
potential across the boundary ∂Ω.
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B.1.3 Mapping properties in Sobolev spaces

The following results are also needed (see [42, Chapter 7] and [12, Chapter 3]).

Theorem B.3. Let Ω be a C3 domain and s ∈ R. Then,

(i) the operator Sk is bounded from Hs(∂Ω) into Hs+1(∂Ω),

(ii) the operators Kk and its adjoint K∗
k are bounded from Hs(∂Ω) into Hs+1(∂Ω),

(iii) the operators I
2
±K∗

k and I
2
±Kk are bounded from : Hs(∂Ω) into Hs(∂Ω),

(iv) the operator K∗
k −K∗

0 is continuous from Hs(∂Ω) into Hs+3(∂Ω).

(v) the operator Ek is bounded from Hs(∂Ω) into Hs−1(∂Ω).

Proof. The results concerning the single and double layer potential are developed in (cf. [34,
Chapter 4 paragraph 2])) where are studied the boundedness properties of singular integral
operators whose kernels are the restriction to ∂Ω of kernels defined in R2.
In R2, the layer potential kernel associated to Helmholtz equation is K(x) = H

(1)
0 (k | x |)

where H
(1)
0 is the Hankel function of order 0. A Taylor expansion shows that the kernel is

pseudo-homogeneous of classe −1. Thanks to [34, Theorem 4.3.1], we conclude that Sk is
bounded from Hs(∂Ω) into Hs+1(∂Ω),
Concerning the double layer potential, its regularity property is due to the fact that its kernel
is pseudo-homogeneous of class −1. From [34, Theorem 4.3.1], Kk and K∗

k are bounded
from Hs(∂Ω) into Hs+1(∂Ω) for every real s. We point out that one can find the detailed
computations in [34, Example 4.5, section 4.3.3 ].
A Taylor expansion shows that the kernel of the operator K∗

k −K∗
0 has the same property as

E(x, y), the kernel of the single layer potential corresponding to the biharmonic equation (cf.
[16]). We recall that

∂E(x, y)

∂νy
=

1

8π
〈νy, x− y〉 (2 ln | x− y | + 1) .

The factor 〈νy, x− y〉 is regular on ∂Ω × ∂Ω and furthermore for small | x− y | it satisfies

〈νy, x− y〉 = O(| x− y |2). (106)

Thus, for an element (x, y) living near the diagonal ∂Ω × ∂Ω , we have

∂E(x, y)

∂νy
= O(| x− y |2 ln | x− y |).

It follows that E(x, y) and the kernel ofK∗
k−K∗

0 have the same smoothing effects. Furthermore,
from [34, Example 4.3, page 216], we get that the kernel of K∗

k −K∗
0 is pseudo-homogeneous

of class −3. Thanks to [34, Theorem 4.3.1], it comes that K∗
k−K∗

0 is continuous from Hs(∂Ω)
into Hs+3(∂Ω), for every real s.
To finish, we see Ek as a pseudodifferential operator on ∂Ω whose leading symbol is of the form

p(ξ) = −1

2
| ξ |. Consequently, the operator Ek is continuous from Hs(∂Ω) into Hs−1(∂Ω).
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B.2 Dirichlet-to-Neumann map

The goal of this section is the study of the singularities of the normal derivative of the solution
of (97). From (100), (103) and (105), we deduce

(

1

2
I +K∗

k

)

∂u

∂ν
= Ek(f) +

∂

∂ν
(F ∗Gk). (107)

In subsection B.2.1, we study the inverse of the operator ( 1
2
I + K∗

k), thanks to the reduced
resolvent theory. In subsection B.2.2, we study the normal derivative of the double-layer
potential, Ek(f).

B.2.1 Singular perturbation problem and reduced resolvent

Notice that, when −k2 is an eigenvalue of the interior Dirichlet problem for the Laplacian, the
integral equation (107) is not invertible. The associated operator ( 1

2
I+K∗

k) is in fact invertible
except for these critical values.

In this subsection, we show how to solve (107) in an efficient manner. More precisely, we
consider a general right-hand side v, which is assumed to belong to the range of 1

2
I +K∗

k and
whose Taylor expansion in an open neighborhood of zero takes the following form,

v(σ) = α1p.v

(

1

σ

)

+ α2 ln |σ| + α3σ ln |σ| + R2. (108)

where α1, α2 and α3 are arbitrary real numbers and where σ denotes the oriented counter-
clockwise arc-length of the boundary ∂Ω and R2 is an error term defined in Definition 5.4.

The main idea is to break up the explicit formula of ∂u
∂ν

into two parts. The first part reflects
the singular behavior of ∂u

∂ν
and it will not depend on the eigenvalue −k2 of the Laplacian.

The second part is a regular remainder of the type R2. Precisely, the goal of this subsection
is the proof of the following result.

Theorem B.4. Assume that ∂u
∂ν

satisfies the equation

(

1

2
I +K∗

k

)

∂u

∂ν
= v, (109)

where v is given by (108). Then, we have

∂u

∂ν
= 2v + T0v + R2, (110)

where the linear operator T0 given by

T0 := −2

(

1

2
I +K∗

0

)−1

K∗
0 . (111)

defines a bounded operator from Hs(∂Ω) into Hs+1(∂Ω), for every s ∈ R.

For the proof of the result, precise information on (Kk
∗ −K∗

0 )p.v.( 1
σ
) is needed. Although

we know the higher smoothing effect of K∗
k −K∗

0 the operator, we have to show the following
result.

48



Lemma B.5. Let k > 0. The distribution (Kk
∗ −K∗

0)p.v.(
1
σ
) is of the type R2.

Note that the above distribution makes sense thanks to Remark 5.5.

Proof. We are led to study the Taylor expansion of

I(σ0) =

∫ L

−L

(σ − σ0)
2 ln |σ − σ0|p.v.

(

1

σ

)

dσ, (112)

for σ0 in an open neighborhood of zero. We may assume σ0 > 0 and we fix α > 0 small
enough. We have to evaluate the following limit.

lim
ε→0

(∫ −ε

−α

(σ − σ0)
2 ln |σ − σ0|

1

σ
dσ +

∫ α

ε

(σ − σ0)
2 ln |σ − σ0|

1

σ
dσ

)

= lim
ε→0

∫ α

ε

dσ

σ
[(σ − σ0)

2 ln |σ − σ0| − (σ + σ0)
2 ln |σ + σ0|]

= I1(σ0) + I2(σ0) + I3(σ0),

where we set

I1(σ0) := lim
ε→0

∫ α

ε

σ ln
|σ − σ0|
σ0 + σ

dσ,

I2(σ0) := −2σ0 lim
ε→0

∫ α

ε

(ln |σ − σ0| + ln |σ + σ0|)dσ

I3(σ0) := σ2
0 lim
ε→0

∫ α

ε

ln
|σ − σ0|
σ0 + σ

dσ

σ
.

We first estimate I1(σ0). The function in the integral is integrable at σ = 0, then I1(σ0) =
∫ α

0
σ ln |σ−σ0 |

σ0+σ
dσ. We first make the change of variable t = σ/σ0. We get I1(σ0) = σ2

0(C0 +

J1(α/σ0)), where C0 =
∫ 1

0
t ln |t−1|

t+1
dt and J1(X) =

∫ X

1
t ln |t−1|

t+1
dt for X ≥ 1. By integrating by

part J1, we obtain

I1(σ0) = C0σ
2
0 +

α2 − σ2
0

2
ln
(α− σ0

α + σ0

)

− σ0(α− σ0).

Then I1 is of class C2 in a neighborhood of zero.
We next consider I2(σ0). We have

I2(σ0) = −2σ0

{
∫ α−σ0

−σ0

ln |s|ds+

∫ α+σ0

σ0

ln |s|ds
}

= −2σ0 {(α− σ0) ln |α− σ0| + (α + σ0) ln |α + σ0| − 2α} ,

which show that I2 is real analytic in an open neighborhood of zero.
Finally, we estimate I3(σ0). We have

I3(σ0) = σ2
0 lim
ε→0

∫ α

ε

ln
|σ − σ0|
σ0 + σ

dσ

σ
= σ2

0 lim
ε→0

∫ α/σ0

ε/σ0

ln
|1 − t|
1 + t

dt

t

= σ2
0C1 + σ2

0H1(α/σ0),
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where C1 =
∫ 1

0
ln 1−t

1+t
dt
t

and H1(X) =
∫ X

1
ln t−1

t+1
dt
t

for X ≥ 1. Making the change of variable

v = t−1
t+1

in H1, we have H1(α/σ0) = 2
∫ β

0
ln v

1−v2
dv, where β = α−σ0

α+σ0
. We note that β < 1. Then,

∫ β

0

ln v

1 − v2
dv =

∫ β

0

ln v
∑

n≥0

v2ndv =
∑

n≥0

∫ β

0

(ln v)v2ndv

=
∑

n≥0

β2n+1 ln β

2n+ 1
−
∑

n≥0

β2n+1

(2n+ 1)2
= S1 + S2

For S1, we have

S1 =
1

2
ln(β)

(

∑

n≥1

βn

n
−
∑

n≥1

(−β)n

n

)

=
1

2
ln(β)

(

− ln(1 − β) + ln(1 + β)
)

=
1

2
ln

1 + β

1 − β
ln β

=
1

2
ln

(

1 − 2σ0

α + σ0

)

ln
α

σ0
.

For S2, we begin by computing dS2

dσ0
.

dS2

dσ0

= −
∑

n≥0

β2n

2n+ 1

dβ

dσ0

=
1

β

∑

n≥0

β2n+1

2n+ 1

2α

(α + σ0)2

=
α

α2 − σ2
0

ln
α

σ0
=

1

α(1 − σ2
0

α2 )
ln
α

σ0
.

Recall that I3(σ0) = σ2
0C1+σ2

0(S1+S2), the computations above show that I3 is a 2-regular
term.

We are now ready to prove Theorem B.4

Proof of Theorem B.4. We subdivide the proof in several steps.
Step 1 : We begin to recall some results on the reduced resolvent theory (cf. [30, Chapter
I paragraph 5]). Since λ = 0 is an eigenvalue of

(

1
2
I +K∗

k

)

, the resolvent

R(λ) =

((

1

2
− λ

)

I +K∗
k

)−1

has a singularity at λ = 0. Since the dimension of the eigenspace associated to λ = 0 is equal
to one, the resolvent is expanded as a Laurent series

((

1

2
− λ

)

I +K∗
k

)−1

=
A−1,k

λ
+

∞
∑

n=0

λnAn+1
0,k
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in a neighbourhood of λ = 0. The notations A−1,k and A0,k stand for

A−1,k :=
1

2iπ

∫

Γ

((

1

2
− λ

)

I +K∗
k

)−1

dλ,

and

A0,k :=
1

2iπ

∫

Γ

1

λ

((

1

2
− λ

)

I +K∗
k

)−1

dλ,

where Γ is a small positively oriented circle enclosing 0 in C. According to [30], the operator
P0 := −A−1,k is a projector on the null space associated to λ = 0 and moreover

A0,kP0 = P0A0,k = 0,
(

1
2
I +K∗

k

)

A0,k = A0,k

(

1
2
I +K∗

k

)

= I − P0.

The last equalities show that A0,k is the ” inversé’ of
(

1
2
I +K∗

k

)

restrained to the complemen-
tary subspace to the null space associated to λ = 0.
Step 2 : Using the reduced resolvent method, one gets

∂u

∂ν
= A0,kv + U(v), (113)

where U(v) is an arbitrary element belonging to Ker
(

1
2
I +K∗

k

)

.
Recall that Ker

(

1
2
I +K∗

k

)

coincides with the span of the traces of all normal derivatives
on ∂Ω of Dirichlet eigenfunctions of the Laplacian with eigenvalue −k2 (see [32, page 684]).
We then deduce that U(v) is of type R2.

We can now rewrite Equation (113) as follows

∂u

∂ν
=

(

1
2
I +K∗

0

)−1
v +

[

A0,k −
(

1

2
I +K∗

0

)−1
]

v + U(v)

=
(

1
2
I +K∗

0

)−1
v +

1

2iπ

∫

Γ

dλ

λ

[

((

1

2
− λ

)

I +K∗
k

)−1

−
(

1

2
I +K∗

0

)−1
]

v + U(v)

=
(

1
2
I +K∗

0

)−1
v

+
1

2iπ

∫

Γ

dλ

λ

[

((

1

2
− λ

)

I +K∗
k

)−1

(K∗
0 −K∗

k + λI)

(

1

2
I +K∗

0

)−1
]

v + U(v)

=
(

1
2
I +K∗

0

)−1
v + A0,k

[

(K∗
0 −K∗

k)

(

1

2
I +K∗

0

)−1
]

v

+A−1,k

[

(

1
2
I +K∗

0

)−1
v
]

+ U(v).

(114)
Writing

(

1

2
I +K∗

0

)−1

= 2I − 2

(

1

2
I +K∗

0

)−1

K∗
0 ,

it follows that
∂u

∂ν
= 2v − 2

(

1

2
I +K∗

0

)−1

K∗
0v + V(v) + W(v),
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where

V(v) := A0,k

[

(K∗
0 −K∗

k)

(

1

2
I +K∗

0

)−1
]

v,

and

W(v) := A−1,k

[

(

1

2
I +K∗

0

)−1
]

v + U(v).

Since −A−1,k is a projector on the null eigenspace associated to the zero eigenvalue, the
remainder W(v) belongs to R2. The smoothing effects of K∗

k − K∗
0 described in Lemma

B.5 and Theorem B.3(iv) show that V(v) belongs also to R2. Concerning the term T0v, its
regularity is deduced from the fact that

1

2
I +K∗

0 : Hs(∂Ω) → Hs(∂Ω)

is an isomorphism and that K∗
0 is a bounded operator from Hs(∂Ω) → Hs+1(∂Ω) for every

real s.

B.2.2 Normal derivative of the double-layer potential

In [32], the normal derivative of a double-layer potential is investigated in dimension three.
For our purpose, we adapt their computations in dimension two.

Lemma B.6. Let k ∈ C with Im k ≥ 0 and f ∈ D′(∂Ω). We have

〈Ek(f), ψ〉 = −〈Gk ∗
∂f

∂τ
,
∂ψ

∂τ
〉 + k2

∫

∂Ω

ψ(p)

∫

∂Ω

f(q)Gk(p, q)〈νq, νp〉dσ(q)dσ(p), ∀ψ ∈ D(∂Ω),

where 〈., .〉 refers to the D′(∂Ω)/D(∂Ω)-duality, and ∗ is the convolution product on ∂Ω.

Remark B.2. For details about the convolution product defined on ∂Ω, we can refer to [39,
Chapitre IV, page 166-168].

Lemma B.7. Let f := H0g where H0 is the Heaviside function with a jump at zero and
g : ∂Ω → R is smooth. We have

Ek(f)(p(σ)) = g(0)
∂Gk

∂τ
(p(σ)) +

∂g

∂τ
(0)Gk +Gk ∗ H0

(

∂2g

∂τ 2
+ k2g

)

+O(σ2), (115)

in the space of distributions D′(∂Ω).

Proof of Lemma B.7. We apply Lemma B.6 to f = H0g. On the one hand, we have

−〈Gk ∗
∂f

∂τ
,
∂ψ

∂τ
〉 = −〈Gk ∗

(

δ0g(0) + H0
∂g

∂τ

)

,
∂ψ

∂τ
〉

= g(0)〈∂Gk

∂τ
, ψ〉 +

∂g

∂τ
(0)〈Gk, ψ〉 + 〈Gk ∗

(

H0
∂2g

∂τ 2

)

, ψ〉.

On the other hand, using 〈νp(0), νq(σ)〉 = 1 +O(σ3) in a neighborhood of σ = 0, we get

k2

∫

∂Ω

ψ(p)

∫

∂Ω

f(q)Gk(p, q)〈νq, νp〉dσ(q)dσ(p) = k2

∫

∂Ω

ψ(p)

∫

∂Ω

f(q)Gk(p, q)[1 +O(σ2)]dσ(q)dσ(p)

= 〈k2Gk ∗ f, ψ〉 + 〈O(σ2), ψ〉.
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Then, we have the following result.

Proposition B.8. Let f = H0g, with H0 the Heaviside function with jump at zero and
g : ∂Ω → R a smooth function. We have

Ek(f)(p(σ)) = g(0)a1p.v.

(

1

σ

)

+
∂g

∂τ
(0)a1 ln |σ| +

{

a1
∂2g

∂τ 2
+ (a1 + 2a2)k

2g

}

(0)σ ln |σ| + R2,

(116)
where a1 and a2 are defined in (62)

Proof. According to Proposition B.1, we get

Gk(p, 0) = a1 ln |p| + ck + a2k
2|p|2 ln |p| +O(|p|2) when p→ 0 (117)

where ck is a constant depending on k2. Thus, using (57) and (58) we get

Gk(p(σ), 0) = a1 ln |σ| + ck + a2k
2σ2 ln |σ| +O(σ2). (118)

Similar computations show that

∂Gk

∂τ
(p(σ), 0) = a1p.v.

(

1

σ

)

+ 2a2k
2σ ln |σ| +O(σ). (119)

Consider g̃ = ∂2g
∂τ2 + k2g and calculate now Gk ∗ H0g̃. Since Gk is a compactly supported

distribution, then Gk ∗ H0 is a primitive of Gk (see for example [39, Chapitre IV, page 168]).
Thanks to the fact that g̃ is a smooth function, we conclude that

Gk ∗ H0g̃ = g̃(0)a1σ ln |σ| + αk +O(σ), (120)

where αk is a constant of integration. This ends the proof of the proposition.
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