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Abstract

We propose a model based on the coupling of two Boltzmann-like
equations for the study of the evolution of dust particles in a rarefied
atmosphere, such as it can be found in the context of safety studies for
the ITER project of nuclear fusion.

When the typical size of a dust speck becomes too large, the numerical
simulation of the system under study becomes too expensive and one
needs to introduce an asymptotic model in which the mass ratio between
molecules and dust speck tends to 0. This model is constituted of a
coupling (by a drag force term) between a Boltzmann equation and a
Vlasov equation.

A rigorous proof of the passage to the limit is given in the spatially
homogeneous setting. It includes a new variant of Povzner’s inequality in
which the vanishing mass ratio is taken into account.
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1 Introduction

In the case of a loss of vacuum accident (LOVA) in the future nuclear fusion
reactor ITER, the particles of dust produced by the abrasion of the wall by the
plasma might be dispersed in the reactor and one needs to study their evolution.

This study can be performed by the use of macroscopic models (of Euler or
Navier-Stokes type), Cf. [T]. However, those models are known to be inaccurate
in a rarefied context, which occurs at the very beginning of the LOVA (later
on, the pressure rapidly increases and the macroscopic models recover their
validity).

Our proposition of modeling for the beginning of the LOVA consists in writ-
ing a kinetic-like system for the density of molecules and dust specks. The
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model that we present can be compared to related models used for example in
the study of cometary flows (Cf. [F]).

The unknowns are the density fo := fa(t, z,v) > 0 of molecules (of radius ro
and mass ms) which at time ¢ and point  move with velocity v, and the density
f1:= fi(t,z,v,7) > 0 of specks of dust (assumed to be spherical for the sake of
simplicity) which at time ¢, point z, have velocity v and radius r. Here t € R,
x € Q an open bounded and regular subset of R?, v € R3 and r € [Pmin, Tmaz)
with 0 < 7min < Tmaz- The equations write

of1

2 T Vi fi = Ri(f1, f2), (1.1)

an? +v-Vafa = Ra(fi1, f2) + Q(f2, f2), (1.2)

where Ry, Ra, @ are collision kernels defined by

Ri(f1, fo)(v1,7) = /R3 . [f1(v],7) f2(vg) — fi(v1,7) f2(v2)]

x(rg +7)? |w - (v2 — v1)| dwdvs,

Rl = [ [ [ (G808 - Al o)

min

X(ra +7)%|w - (v — v1)| drdwduvy,

with 26 (r)
e(r
Vi = v+ [w- (v2 —v1)]
! 1+2a( ) (1.3)
Ué = 2 1+ E(T)[ (UQ vl)]wa
and
Qaf)@) = [ [ 1008 - o) fa(e)
RN JSN -1 I (1.4)
xB (|v—vy|, ——= - 0 | dodv.,
=k
with N | |
v+ =
v = * 4 “o,
, ’U—E’U* |v —20*| (1.5)
T Ty T T

In relations (1.3), e(r) represents the ratio of mass between a molecule and a
dust speck of radius r (that is, (1) = (Tymin/7)> €(rmin)). We have assumed that
the collision kernels Rq, Re corresponding to the interaction between molecules



and specks of dust are of hard sphere type. This assumption is however not
typical for collisions between molecules, and we consider instead that the cross
section B is of variable hard sphere (VHS) type:

B(y,Z) = Oeff yav (16)

with Ceyy > 0 and a € [0,1]. This cross section is widely used in DSMC
methods. Note that the rest of our paper would still hold if C. sy were a (smooth)
function of z (that is, in the case of smoothly cutoff hard potentials).

The modeling assumptions underlying eq. (1.1), (1.2) include the absence
of collisions between the dust specks. This is related to the value of the typical
collision time (Cf. [B]) t1,1 between two particles of dust, which is, in our
context, much larger than the other time scales. Note also that the collision
kernels R;, R could be modeled differently, since collisions between molecules
and particles of dust are not necessarily conservative (that is, some kinetic
energy can be lost). For more details about this possibility of modeling, we
refer to [C2] and [C1].

The mathematical study of spatially homogeneous solutions to eq. (1.1)
— (1.2) can be done in the same spirit as in [Ar]. It leads to the following
Proposition. Its Proof is briefly sketched in Section 2.

Proposition 1.1 : Let f1 i := f1,in(v,r) > 0 be an initial datum such that

/ / frin(v,r) (1 + [v]* + | log f1,in(v,7)]) drdv < +o0,
R3 Jr

min

and fain = fo.in(v) >0 be an initial datum such that

[ Fain@) (14 1o + 108 o)) o < +oc.
R3

Then for all Cepr > 0, a €]0,1[, 0 < Tpmin < Tmaz (constants appearing in
the definition of Ry, R2, @), there exists a spatially homogeneous weak solution
(f1:(t,7,v) € Ry X R® X [Fonin, Tmaz) — f1(t,v,7) >0, fo: (t,0) € Ry x R3 —
fa(t,v) >0) to eq. (1.1) — (1.2) such that for all T >0,

sm>/‘/ Fult,0,r) (1 + ol + | log 1 (£, v, 7)) drdv < +oc,
tel0,T] JR3 Jr

min

sup fa(t,v) (1 4 |v]? + |log fa(t,v)|) dv < +oo0.
t€[0,T] JR3

It satisfies moreover (for all t € Ry.), the conservation of mass

for a.e v € [Tomin, Tmaz), fi(t,v,r)dv = / J1,in(v,7) dv, (1.7)
R3 R3

fa(t,v)dv = f2.in(v) dv, (1.8)
R3 R3



and the following entropy inequality

/ /Tm‘” fi(t, v, ) In(fi(t, v1,7)) drdos +/ fa(t,v2) In (fa(t; v2)) dvs
R3 Jr R3

min

< /R3 /T”mw frin(vr,7) In (f1,im(v1,7)) drdv +/R3 f2,in(v2) In (f2,in (v2)) dva.

min

(1.9)
Finally, if for some s > 1,
L7 0 P (o) + fasne)) drde < 4
R3 Jrmin
then one can find f1, fo in such a way that (for all T > 0)
sup [ [ P (o) + b drdo < oo, (110
t€[0,T] JR3 J 1y,

and the following relation of conservation of energy holds:

Tmax 3
/ / fl(t,v,r)|v|2( T_ ) drdv—l—am/ fa(t, ) v dv
&3 Jr Tmin R® (1.11)

min

Tmaz 3
:/ / Frin(v,7) |v|2( " ) drdv—i—sm/ fa.in(v) 0] dv,
R3 Jr Tmin R3

min

where ey = &(Tmin). By a weak solution, we mean here that for all T > 0,
(f1, f2) € Lip ([0, T],L" (R® X [Fyin, 'mas))) % Lip ([0, 7], L' (R?)), (1.12)

and (f1, f2) satifies for all t € [0,T], and a.e. v € R, 7 € [Fomin, "max),

t

fit,v,7) = frin(v,7) —|—/0 Ri(f1, f2)(s,v,7)ds, (1.13)

f2(t,v) = fa,in(v) +/0 (Q(fg,fg)(s,v) + Ra(f1, fg)(S,’U)) ds. (1.14)

The set of (spatially inhomogeneous) eq. (1.1), (1.2) can be simulated at
the numerical level by a DSMC method (Cf. [B], [N] for example). We refer to
[C1] for numerical results in the context of an experiment related to a LOVA.

However, when the mass ratio between the molecules and the specks of dust
becomes too small, the simulation becomes too expensive. Indeed, because of
the intrisically explicit character of the DSMC method, the time step of the
simulation must be at most of the same order of magnitude as the lowest of
the time scales defined by the different types of collision. Here, it corresponds
to the typical collision time ¢; 2 between molecules and particles of dust (from
the point of view of particles) which is related to the collision time between two
molecules ¢ 5 by the formula

tLQ ~ \/E(’I”) t272. (115)



In order to perform computations on a time scale of the order of t3 9, it is
therefore necessary when the dust specks are “too big” (in practice, for the
applications that we have in mind, when their typical radius is bigger than 10~3
m) to write down a model in which the mass ratio £(r) vanishes.

In order to do so, we perform a dimensional analysis leading to a non-
dimensional form of the equations, in which appears a parameter p which is
related to the mass ratio and which tends to infinity when this ratio vanishes.
These equations write (in a spatially homogeneous context)

0
s — pe RYP(frps o), (1.16)
2w _ gov(f, ) fo) + Q% (faps o), (117)

ot
where Q%, R{"", Ry" are defined by

@ (Rt 0) = [ [ 1)) = o) ato.)]
R3 2
xCgp v — ve|*dodv™,
where C¢;; is an adimensional constant [and v', v} satisfy (1.5)],

/

R fonn) =[] R 0,) = fien ) o)

(’1)2 — E) -w’ dwdvs,
&p
and

Rt = [ [ [ (A0 A0,) - A e
1

1 2
x (2,/7Tpc —|—r>

2
U1
X — — | - w|drdwd
<2 ch—l-r) <vz fp) w| drdwdvy,
where ¢, { are adimensional constants, ro = =22z and
RN s G )
Vip = Ut ——=|w |- ||lw
+r
(€p) &p (1.18)

0, - U_M{w(v_v_l)]w
SN IRl N T

This dimensional analysis is briefly explained in Section 2, and fully detailed in
[C2].

We rigorously show in this paper that in the limit p — oo, the solutions to
eq. (1.16) — (1.17) given by Proposition 1.1 converge towards the solution of the
following Vlasov-Boltzmann coupling:

Sy K1) Vusi =0, (1.19)



0f2 _

5 = ML) L(f2) + Q°(f2, fo), (1.20)
where o
m(fiin) =c in(v1,T r2drdv ,
(ha=c [ [ funtorr)riarao,
LU0 = [ 1260 =20 0)e) = b, o) Jo- ol do
and

2me
K(f2)(t,r) = —/ |va| v2 fa(t, v2)dva. (1.21)
'I"g R3
More precisely, we shall prove the

Theorem 1.1 Let ¢ >0,£>0,C%, >0, ac [0,1], ro > 1 be the parameters
appearing in Q%, RYY, RyP. Let also fiin := frin(r,v) >0, foin = fain(v) >
0 be initial data such that

ro
l/(/ Frin(0,7) (1 + [o]* + [log frin (v, 7)) drdv < +oo,
R3 J1

/Rg Foin(®) (1 + [0]* + | 10g fa.in(0)]) dv < +o0. (1.22)

Then, if (fi,p, fo,p) denotes a family (indexed by p) of weak solutions to eq.
(1.16) — (1.17) given by Proposition 1.1 (with fi1,(0,:) = fin, f2p(0,:) =
fo,in), one can extract a subsequence (still denoted by (f1p, fop)) which con-
verges for all T > 0 in L>([0,T]; M1 (R? x [1,79]) x L*(R?)) weak * towards a
weak solution (f1, fa) € L>=([0,T]; MY (R3 x [1,70]) x LY(R3)) to eq. (1.19) -
(1.21).

By a weak solution, we here mean that for all 1y € C? (R+ x R3 x [1, TO]), we
have

/ /R/ filtv,r) (t,v,r) drdvdt:/RS /1 Fr om0, 7)(0, 0, ) dird

OK , 1) - Vub(t, v, ,v1, 1) drdudt, 1.23
[ [ RGen Vatenneo dava (129
and for all ¢ € C2 (Ry x R?), we have
/ fg(t v)— 5 (t,v) dvdt
in(V)p(0,v) dv +m in v V) dvd 1.24
/fé Yo +m (i, / [, Bttt ot (124
[T @t Rttt dude

Note that in the formulas above, we have used the notation f(-,v,r)drdv instead
of df (-,v,r). This is justified in particular by the fact that this measure has a
density, as stated in the Remark at the end of this paper.



Small ratio of mass limits in the context of kinetic equations are described in
[D], in particular in the context of plasmas. Among the many references in this
work, we wish to quote [DL1] and [DL2], in which some of the computations
are close to the computations that we present here.

Our method of proof is based on uniform w.r.t. p a priori estimates including
in particular moments estimates based on a new variant of Povzner’s inequality,
especially suited for collisions of particles with disparate masses. We refer for
previous versions of this inequality (including inequalities devised for non cutoff
or energy-dissipating kernels) to [P], [Bo], [L], [De], [MW], [DeM], [W], [GPV].

Unfortunately, the entropy estimate for fi, is not uniform w.r.t. p (this
uniformity holds only for f;,) so that the passage to the limit when p — oo is
done only in the sense of weak measures. Note that measure-valued solutions to
the Boltzmann equation have been introduced in the context of steady solutions,
(Cf. for example [Ce2]). Our own context is somehow more favorable, since
when the initial datum is smooth enough, the equation obtained at the limit
preserves in the evolution this smoothness.

The second section of this work is devoted to a brief Proof of Proposition 1.1
and to the exposition of the dimensional analysis leading to eq. (1.16) — (1.17).
Then, in section 3, Theorem 1.1 is proven.

2 Preliminaries: Proof of Proposition 1.1 and
Dimensional Analysis

We begin this section with a brief sketch of the Proof of Proposition 1.1. It
mainly uses classical tools, and can be found in detail in [C2].

Sketch of the Proof of Proposition 1.1 : We first introduce the following
approximation of eq. (1.1) — (1.2) (in the spatially homogeneous case),

oft _ Ry (ST 13)

ot 1+ L[ [frdrdv+2 [ frdv’ @1)
ofy _  Ry(S1 f3) + Q" (S5, f3) , (2.2)
ot 141 [frdv+ 2L [ [ frdrd
f110,0,7) = frin(v,7) L{joj<ny + % e 1v*/2) (2.3)
f3(0,v) = f2,in(v) 1{jo|<ny + %6_‘1"2/27 (2.4)

with RT, Ry, Q™ defined by [eq. (1.3), (1.5) and]



RY(f1, fo)(v1,m) = /}R3 /S2 [f1(v],7) fa(vy) — fi(vi,7)fa(va)]

1
X min {—, (1+7r)?|w- (v — v2)|} dwdvs,
n

Ry = [ [ [ 00500 - A g

min

1
X min {—, (1+7)?|w- (va — vl)|} drdwdvy,
n

and

@ Unt0) = [ [ 100800 = o) a0

1 (2.5)
X min {—, Cerrlv— v*|°‘}dadv*.
n

We first observe that the operators in the r.h.s. of (2.1) — (2.2) are Lipschitz-
continuous w.r.t. L (R® X [Fynin, Pmaz]) X LY (R?) so that one can find a solution
in CY(Ry; LY(R3 X [Fimin, Tmaz]) X LH(R3)) to system (2.1) — (2.4).

Moreover, it is easy to prove (thanks to some variant of the minimum prin-
ciple) that f7*, f3 > 0, and one can check that the following uniform w.r.t. n a
priori estimates hold:

sup / / fi v, r)drdv < 400, (2.6)
R3 Jr

t>0,nEN*

sup fa(t,v) dv < 400, (2.7)
t>0,neN* JR3

(deduced from the conservation of mass for molecules on one hand, and dust
specks on the other hand)

s [ ([ st g e ar 8)

t>0,nEN*

Tmin

+ﬁ@wu%ﬁmw0w<+w

(deduced from the entropy inequality)

sup /(/m”Mwﬂmmemfﬁmw>m<+w (2.9)
R3

t>0,nEN*

Tmin

(deduced from the conservation of kinetic energy).



As a consequence, it is possible to extract from the sequence (f7*, f3')nen-
a subsequence which converges in C'(Ry; L' (R3 X [Frin, Tmaz]; (14 |v]) dvdr) x
LY(R3; (1+]v|) dv)) weak towards a couple of functions (f1, f2) such that fi, fo >
0, f1, f2 satisfies the bounds (2.6) — (2.9) [with f]*, f3 replaced by fi, f2, and
without having to take the supremum w.r.t. n € N*], and f1, fo is a weak
solution to eq. (1.1), (1.2), with initial datum fi i, f2,in-

The Proof of Proposition 1.1 can be concluded by noticing that for all s > 1,
estimates (1.10) and (1.11) is a consequence of an easy variant of Povzner’s
inequality (Cf. for example [MW]). Once again, we refer to [C2] for a completely
detailed Proof of Proposition 1.1. B

We now turn to the establishment of a non-dimensional version of eq. (1.1),
(1.2). Our assumptions concern cases in which the number of dust particles is
very small in front of the number of molecules, and in which the radiuses of
different dust particles are of the same order of magnitude.

We introduce a time scale t° which is the typical collision time of two
molecules (we refer to [C2] for non-dimensional versions of eq. (1.1), (1.2) with
other time scales), a typical length scale L which corresponds to the mean free
path of molecules, and, like in [DL1], two different scales V;° and V3 for the
velocities of particles of dust and molecules respectively (they correspond to the
thermal velocities of the species). We assume here that the order of magnitude
of the kinetic temperature of the two species are identical and we denote them
by 7°°. Under this assumption, V}° and V5’ are defined by

8kT° 8kT°
VW=y/—— and V3 = ,

M (Tmin) TMme

where mi (rmin) is the mass of a particle of dust of radius 7, and mq is the
mass of a molecule. These velocities are related by the formula

Ve = \fem Vs (2.10)

Contrary to the assumptions made in [DL1], we introduce here two different
orders of magnitude ny and nj for the number density of the species, and we
define by

a® = n (2.11)
n3
the ratio of these magnitudes. In the applications that we have in mind, this
ratio is very small.

Then, we introduce the adimensional densities in the phase space:

0\3 )
fl({a:faﬁlaf) = Mfl(t,x,v,r),
ny
and 5
S Ve
f (t7£.7{)2) - (io) fQ(t,JI,UQ),



where 7, t, ©; and ¥, are the adimensional variables defined by

B x 7 t _ r N U1 . U2
Tr = —-, = 5 r= ’ V1 = 75> V2 = 755>
L 2 T N
where 1
tO - L — tO ‘/207

T dmngr3 Vs
and fi, fo are solutions to eq. (1.1) - (1.5). The densities (f1, f2) are then
solutions to the following system of equations
oh

A A S
E—i—\/aﬁlvwfl:E(_) Rl(f17f2)7

Em
6V . o 2/3 _ N . . -
%—f—{)g'vifgzj—ﬂ_ (%) Ra(f1, f2) + Q(f2, f2)-

Here Ry, Ry and Q are defined by

Q)@ = [ [ ] @A) = 20) a0

Cersr(VE)* . .
W |1} — ’U*|ad0'd’U )
with L 15— 5|
., 0 —+ Uy U — Vg
v = 5 + 5 o,
, V40, |0 — 0.
Uy = - ag,
2 2

Rl fonn) = [ [ (A6 R0) = Ao )

and

L] (64 R ~ 7]
X <(%m)1/3 T f>2 (2 — /1) - w| drdwdy,

Ro(f1, fo)(va) = /

R3

with
2 /EmF 3

S

[w- (02 = VemD)]w,
T)é = 172 #[w . (’DQ — \/af)l)]w,

I

v = 0

10



ma
Apry’
where p is the volumic mass of particles of dust and r the radius of molecules

Cesr (V3)™
47 r% Vy

and rg = ::—“z Finally, n is an adimensional constant defined by n =
1/
(that is, (%) = fmin). From now on, we also denote Cfy =
(this parameter is of order 1 under our assumptions).
We now put ourselves in a spatially homogeneous context, and we establish
the adimensional versions of various estimates (mass, energy, entropy).
We first notice that the adimensional versions of the relations of conservation

of mass are similar to formulas (1.7) and (1.8): we get indeed, for a.e t € Ry
and for all 7 € [1,7g]:

fi(E, 01, 7) din =/ £1(0,01,7) doy, (2.12)
]R3 R3
(where rg = f=e=) and

fz(ﬂéz)d@z:/ £2(0,02) dis. (2.13)
R3 R3

We also get

Tmaz 3
/ / filt, v, 7)oy |2 (r " ) drdvy
T R3 min

min

) .
N nc{ (V10)2/1 /]RS fl (t’ ’017 7:) |1A)1|2 7:3d7:d{)17

/ Falt, v2) [oal? vz = ng (VE)? / FolE, 52) [52]? di.
R3 R3

Thanks to (2.10), (2.11), one deduces from the relation of conservation of energy
(1.11) the following relation:

T0 . _ . _
Oéo/ / fl(t,’f)l,f) |?A}1|253dfd’{)1 +/ fz(t,’ljg) |’lv}2|2d’lv)2
1 Jrs R3
T0 N .
:ao/ F1(0,94,7) |01 |> P drdin +/ F2(0, 52) [02]? disy. (2.14)
1 JRs R3
Moreover, since
/ / fit,v1, ) In (f1(t,01,7)) drdvy
R3 Tmin
T0 . B . B
= nS / / Fi(E, 01,7 In ( fl(t,ﬁl,f)) drdd,
R3 J1
T0 . _
e (ln (n2) — In ((Vf)?’rmm)) / / Fi(E, o1, F)didoy,
Rr3 J1

11



and
/ fg(t,’l)g) In (fg(t,’l)g)) d’l)g = TL;/ fg(f, @2) In (fg(f, @2)) d’lng
R3 R3
+n5 () —n ((V5)°)) [ fallvm)din,

R3

[and thanks to relations (2.12) and (2.13)], the entropy inequality (1.9) leads to
the following inequality:

/ / fl t ’Ul, )ln (fl(t ’Ul, )) deUl + f2(f, @2) In (fQ(t_, @2)) d’ljg
R3 R3

<« /R% / fl 0,01, 7 (fl (0,’{)1,?)) drdo, + o fg(o,@g) In (fg(o,@g)) dvs.
(2.15)

In the experiment that we consider, the typical value of a° is 107, that of
€m is 10712, and that of 1 is 6 - 1072, Therefore, we consider that

o () 1, and — ! (2.16)
C .= — i ~ al ~ — = — OQ. .
a7 \ e, ’ Jem  a° p

We now write fi(t,v,7) instead of fy(f,91,7), fa(t,v) instead of fo(f,s),
Q® instead of @, R}” instead of Ry, Ry” instead of Ry. Then we have

1/3
m 1 . .
(%) =3 77¢ and we write \/% = &p, with € > 0 fixed. We end
up with system (1.16), (1.17).

Next section is devoted to the proof that when p — oo in (1.16), (1.17), the
solutions of this system converge towards the solutions of a Boltzmann-Vlasov
coupling given by eq. (1.19), (1.20) [that is, Theorem 1.1].

3 Proof of Theorem 1.1

We now begin the

Proof of Theorem 1.1 : For the sake of readability, we only consider the
case £ = 1 (this changes nothing in the Proof). We first express what remains of
the relations of conservation of mass, energy (and of the evolution of entropy)
when p — oo in eq. (1.16), (1.17), under the assumptions of Theorem 1.1.
According to relations (2.12), (2.13), (2.14), (1.9) and to assumption (2.16), the
following estimates hold, for all p € N, for all t € Ry, and for a.e r € [1,ro]:

/Rsfl,ptwdv_/flmw (3.1)

12



/3 fap(t,v)dv = /11@3 f2,in(v) dv, (3.2)

1
E/}RS/ fip(t,v,r)In(fi,(tv,7)) drdv—l—/ fap(t,v)In (fo,(t,v))dv
< - / / Jrin(v,r)In (f1,in(v,7)) drdv—i—/ Fo.in(©) I (f2,in(v)) dv

(3.3)
and
/ / fip(t,v,r) Y o P drdv —I—/ fap(t,v) v)? dv
(3.4)
= / f1 in(V,T) |v|2 r3drdv —I—/ f2.in )|v| dv.
p 1
We consequently obtain the following bounds (for all 7' > 0)
sup sup / (1 + Jv| + |v|2> fop(t,v)dv < 400, (3.5)
pEN* t€[0,T] /RS

and

2
sup sup / / <1 + |v] + %) fip(t,v,r)drdv < 4o0. (3.6)
R3

peEN* te[0,T

Estimate (3.5) is indeed a direct consequence of relations (3.1), (3.2) and (3.4).
So is also the bound

2
sup sup / / 1+—| f1p(t,v,r) drdv < +oc.
peN~ t[0,7] Jr3

In order to obtain (3.6), we only have to prove the following bound:

To
sup sup // [v] f1,p(t,v,7) drdv < 400. (3.7)
peEN* t€(0,7] Jr3 J1

Let p € N* and ¢ € [0,7]. We have

70 0
/ / fip(t,v1,7) v | drdvy = / / f1,in(v1,7) 01| drdvy
1 Jrs . . 1 Jrs

+pc/ / /R?’p(flm,fg,p)(s,vl,r)|v1|dsdrdvl,
1 Jrs Jo
with

0 T0
/ fl_,m(vl,r) |1)1| d?"d’Ul S / fl_,m(m, ’I”) (1 —+ |1}1|2) d’l“d’[)l < +00.
1 R3 1 R3
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Thanks to the involutive character of the transformation (v1,v2) — (v ,,v5,),
one can get:

t T0
p/ / / RYP(f1,p, fo.p)(8,01,7) |v1| drdvids
o J1 Jgs

—p/ot/R3 /RS /sz /lmf1,p(s,v1,r)f2,p(s,v2) w- <%—vz>
2

1
X (2\/7T—pc + 7") (|v'17p‘ — |v1]) drdwdvadv, ds.

Noticing that

’w. (% _Ugﬂ (|v;,] - o))

U1
= — vy
p

IN

i
’Ul,p _Ul‘

2
t
O_S 1+M (1—|—|’02|2),
p p

IN

we get

t T0
D / / / RYP(f1,p, f2.p)(8,01,7) dsdrdv,
o J1 Jgs

T0 2
< Cst sup sup // 1—|—ﬂ fip(t,v,r)dvdr
peN* t€[0,7] JR3 J1 p

X sup sup / (1 + |v2|2> fap(t,v)dv,
RS

pEN* tc[0,T)

and estimate (3.7) (and therefore (3.5)) holds.

We now show that higher order moments can be bounded for f3,, (uniformly
w.r.t. p), provided that they initially exist. More precisely, we define for s > 1,
and g1 := g1(t,v,7) >0, g2 := ga2(t,v) > 0, the quantities

1 ro 3y
Mo e2)(0) = [ <1+|v|”>{gz<t,v>+]—9 / ﬁm(t,v,r)dr}dv,
R3 1
and
S, (g1, 92) () = / (14 [o]) ga(t, v) dv + / / (14 o) g1 (1, v, 7) drdo.
R3 R3 J1

Then the following Proposition holds:

Proposition 3.1 Let s > 1. Then there exist constants Ky, Ko, K3 > 0 which
depend only on s, T, rg,c,& and Cgff >0, a € [0,1] in the cross section of Q°,
RYP, R3", such that (for all g1 == g1(t,v,7) > 0, g2 := g2(t,v) > 0 such that
the integrals make sense)

/]RS (1 + |v|25) Q" (92, 92)(t,v) dv < K1 Mag p(g2, g2)(t) (3.8)
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x (Mz,p@z, 92)(0) + Mass (g2, g2><t>> .

/ (1 + o) {Rg’p(gl,gz)(tva/ r* Ry (g1, g2)(t, v, 7) d?’} dv
R3 1

< Ko |:M2s,p(gla 92)(t)S1(g1, 92)(t) + pMas—1.5(g1, 92) (t) M2, (g1, gz)@)} )
(3.9)

and

/ (1 + |v|25) {R;’p(gl,gg)(t, v) —|—/ 3 RYP (g1, g2)(t, v,7) dr} dv
R3 1

K
< K3Ma (91, 92) (1) Mas—1,5(91, 92) (1) + ?351 (91,92) (1) M2 (91, 92)(t)

K K
+p—23M25+1,p(917 g2)(t) + 73M3,p(91= 92) () Mas 2 5(g1, 92)(t).
(3.10)

Proof of Proposition 3.1 : We use the classical Povzner’s inequality to
prove inequalities (3.8) and (3.9). More precisely, the inequality for (3.8) can
be found in [De] for example. We have, for inequality (3.9):

0
/ (1 + |v|2s) <RS>P(91792)(15,U) +/ S RYP (g1, g2)(t,v,7) dr) dv
RS .
To
= / / / / ((T3|’Ui,p|2 + |v§7p|2)s — 38|y |2 — |02|25)
R3 JR3 J1 §2
U1 1 2

‘”'<§‘”2> <2wr—pc

and since the couple of velocities (v} ,,v5 ,) given by (1.18) satifies the relation

X

+ 7") g1(t,v1,7) ga(t, v2) drdwdvaduy,

T3 "U/l,p|2 + |’Ul2,p‘2 = ’I”3|1}1|2 + |1)2|2,

we get

(1L 2+ o 2)T = 7o 2 = o)

— — Uy

< Cst(s,r9) (|v1|251|02| + |U1||U2|251)

1 1 _ _
< Osi(s,10) (5|v1|25|v2|+|v1||v2|28+5|v1|2|v2|28 U o 1|v2|2)

and estimate (3.9) holds. This estimate only depends on moments M, with
k < 2s, but is not uniform w.r.t p. So it is not possible at this level to use it to
establish a uniform estimate on the moments M.

15



Therefore, we establish inequality (3.10) thanks to a new variant of Povzner’s
inequality. We use for that an other parametrisation of the post-collisional
velocities in the operators R{"? and Ry (Cf. [De] again):

2
1 1 U1
RyP t = = — -
(91, 92) (%, v1,7) /g3j£22 (2VHF§E_%T> ‘p 2

X |:gl (t5 v;.,,;m T) 92 (tv ’U;)p) — 01 (ta U1, T) g2 (ta UQ):| davaa

and

2
! 1 V1
RyP(g1,92)(t,v2) = /// —< +7°> ’——U2
2" ( I ) rs Js2 J1 2 \2\/mpc D

X |:gl (t7 /Ulll,pu 'f')gg (tu ’U;p) — 01 (t7 U1, T)g2 (t7 U?):| deO'd’l}l,

with
2 1
= P {<01T3+v_2) Y ) U}
’ 1+rp P P P (3.11)
] .
_ p 1 3, b2 3 U1
o= a5 (004 3) 0 =S

We now establish the new variant of Povzner’s inequality. We define, for
(v1,12) ER? X R3, 0 €S, r € [1,70] and s > 1, the quantity

2 2
"/115)1,1)2 (0,7 T) _ 7‘35 ’Ui/,p s + ‘U/Q/,p s 7‘35|’U1|25 _ |’U2|25,

where v and vy, are given by (3.11), and we begin by introducing the vector
oo € S? defined as:

Vo —
UOZ—’

E sk

Vg —

Noticing that 7% — % >0 for all p € N*, r € [1,7¢], we get

Yy 02 (00,7)
() el B (-3)-
0 [25 — g
< (%)25 {r‘o’s Kr3 - Z%) ur| + % |U2|} )
+ [2?%3 1| + ( - I%) |U2|:| 25} — 35|y |25 — |ug|?*

< (as(p) = 1) (7 Joa** + 0a**) + F(v1,00),

2s
+

16



with

v = () (-2 e )}

and
F(’Ul,vg)
p2 2s
< Osts) <W)
2s—1 3\ 25—1
1 2 2 1
><{|v1|2s—1|1)2| [r3s (r3 B _2> 24 (L) (r3 _ _2”
p p p p
25—1 3 2s5—1
1 2 2 1
+vp| vz 251 l?ﬁs (r3 - —2) (—) + (L) (r3 - —2> ] }
p p p p
< Gapr (02 Mool + or[Joa[*71)
with
2 2s 2s5—1 2s—1
_ p 3(2s—1 3 1 2 2 3 1
Gonr =) (1553) 7" )l( ) () (-
< Cst(s,ro)'
p
Moreover,
rp2 —1)° + 403p? °
as(p) < G ) 2p <1,
(14173p?)

consequently we have

2s—1

Cst(s,ro) 2s—1
Vin(00,7) < =2 o

|va] + v |va| (3.12)

We then study the quantity 5, . (o,7) — ¥, ,,(00,7) for any o € S?. We
denote here v{, , and vy, , the post-collisional velocities given by (3.11) corre-
sponding to this vector o, and vf, , and vy, , the post-collisional velocities
given by (3.11) for o = 0. We can write

1/}15)1.,1)2(Uv T) —1/}3171}2(0'077”) = T (|vlpa'|2s |vlpa'o|2s) + |v2pa'|2s |v2pa'o|2s
with
|U1 p 0‘|2S - |U11/ O‘()|2S

) || +2| |2S ) forl = 2 ol
v —|v - == ) |v| ——|v
1—|—7°3 1 > 2 7 1 > 2

17
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and

P2 273 1 28
2s 2s < = - 3

2,p o’| 'U2,p,ao| = (1 + T3p2) { |: D |U1| + (p2 +7r ) |'U2|:|
23 1 2
——wn—(ﬁ——)&w |
P p?

(a+b)
(a+b)* —(a—b)* = s/ ¥V dr < 4s (a + b)**2ab,
(a—b)?

Using the inequality

with a,b > 0 and s > 1, and the inequality
(a+b)* < 2% (a® 4+b"),

with z > 0, we obtain:

|2s _ |2s

17177 1717700

2 252
P 4573 3 1) 2 ] {1 ]

< v [+ = |+ =v vi] [ = o]+ 2
= (1+r3p2> p {| 1|( 2 p| 2| | 1| p| 1| | 2|

2 2s CSt s 1 2s—2 ) 25—2
< p — ( » 0) |'Ul|2572 r3+ - I |v2|2572
1+7rp D P P

1
xmﬂwm+mw]
p

and

|25 |25

|v2pa'o

2 3 25s—2
P 4sr° [2r 1 3) } { 3 }
< — |v1| + +7r7) v 2r° vy | + — |v2|| |v
= (1+r3p2> p {p o1 (p |02 |vs | p| 2| |v2

2 > Ost(s,r 278\ 272 1 22
S p — ( ) 0) |’U1|2S_2 + = +’I°3 |U2|2s—2
1+7p p D D

Pﬁmu MWW
p

|v2pa'

Then

(|v1po|2s_| 1pag|2s)+| 2pcr|2s_| 2pog|2s (313)

sm@p%mﬁ+wﬂﬂ+ﬂmmm (3.14)

where

bs(p) =

cmWw( p? f

p2 1+ T’3p2

18



and

2 > Cst(s,r _ _
e ) { (0] (o o[ 4 o o)

1+ r3p? P
Cst(s,r 2\*7? _ _
I ](?2 0) <];> [|v1|2 |v2|2s 2+|02|2|v1|25 2} .

Finally we estimate v;, . (

o,T) ‘— - ’1)2‘ Thank to (3.12) and (3.13), we
obtain, for s > 1 and using the bound 1 <7 <y,

Cst(s,r Cst(s,r _ _
1/)15)17112(0' 7") < %(|Ul|25+|’02|25)+% [|Ul|25 1 |v2| + |v2|25 1 |Ul|]
Cst(s,r _ _
+¥ |:|U1|25 2 |’U2|2 + |’U2|2S 2 |U1|2].
p
Then
U1
1/}15)1,112 (Uv T) — — U2

Cst(s,r 1 s s Cst(s,r 1 s s
< Gstls,ro) L—D [or [+ 4 Jua? *1} | Cetlsiro) L—D 012 o] + fon Joa]?

> p2
Cst(s,r 1 _ _
+ ( 0) |:_ |’U1|2 |’U2|2S 1 + |’U2|2 |’U1|28 1:|
p p
Cst 1 _ _
L2 ( ) |:_ |Ul|3 |v2|25 2 + |U2|3 |'Ul|2s 2:| ,
p? p

and we finally obtain (3.10). This ends the Proof of Proposition 3.1. B

Thanks to Proposition 3.1, we can prove the following (uniform w.r.t. p)
bounds for the solutions of eq. (1.16), (1.17):

Proposition 3.2 Under the assumptions of Theorem 1.1, the moment of order
3 of fap is uniformly bounded (w.r.t. p) for all T > 0, more precisely:

sup /R/ ( Frolt “vr)+f21p(tvv)) (1+ [vf*) drdv < +o0. (3.15)

€[0,T],peN*

Proof of Proposition 3.2 : Thanks to (3.5), (3.6), we know that (for all
T >0)

S = sup sup Si (fip, fo,p) <400, (3.16)
t€[0,T] peN*
and
My := sup sup Ma, (f1,p, fo,p) () < F00. (3.17)
te[0,T] peN*
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The Proof will be divided in several steps. We first notice thanks to (3.8) and
(3.9) used with s = 3/2 that (for all T > 0)

1
sup sup — M p(fip fo)(f) < +oo. (3.18)
peN* te[0,T] P

Using the same inequalities, but with s = 2, we then obtain:

1
sup sup — My p(f1,p, f2,)() < +00. (3.19)
peN* te[0,7] P

This allows us to prove, thanks to inequality (3.10) used with s = 3/2 that:

sup sup MS,p(fl,p; f21p)(t) < 400. (320)
peEN* te[0,T)

Let us now give a few more details about the successive bounds:

1
Bound on —Ms ,(f1,p, f2,p)(t): Since f1, and f2 , are solutions of the equa-
p
tions (1.16) and (1.17), we have, for all s > 1:

M2s,p(fl7p7 fZP)(t)

= Mas p(f1,in> f2,in) + /Ot /R3 (1 + |v2|2s> Q(frp Fo.) (7 0) dvsdr
+c /Ot /R3 (1 + |v2|25) REP(f1p, fop) (7, 02) dvadr

t r0
+c / / / r3s (1 + |v1|28) RYP(f1,p, fo.p)(Ty01,7) drduy dr.
o JrsJ1

Thank to (3.8) and (3.9), we obtain the following bound when s € [1,2] (with
the notations (3.16) and (3.17))

Mas p(f1p, f2p)(t) < Mas p(frins f2in) + D KoM /Ot Mas—1,(f1ps fop)(7)dr
M+ e S) [ Mgl fag) () (320
Taking s = g in (3.21), we obtain
Msp(frp, f2p)(t) < Msp(frin, fon) +pcKoMZT
#0040 S) [ Moyl foa) 7).
Then, thanks to Gronwall’s lemma, we can deduce that for all ¢t € [0,7] :

%M?),p(fl,pa fop) () < [ KoMZT + M3 1 (f1,in, f2,in)] exp [(K1Ma + cK2S) 1],
(3.22)
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so that relation (3.18) holds.

1
Bound on FMZL;D(JCLP, f2,p)(t): Using now inequality (3.21) with s = 2, we
see that for some constant K, > 0, for all t € [0, 77,

M47;D(f17pa f2,p)(t) - M4,p(f1,pv fl;o)(o)

t t
sm{AMmthmwm+gAMwm@nwmm}

Using (3.22) and Gronwall’s lemma, we see that estimate (3.19) holds.

Bound on Ms ,(f1,p, f2.p)(t). We here use the bound (3.10), and obtain, for
all s € [1,2], the following estimate:

M2s,17(f1,p7f27p)(t)
K3 [*
< Mo p(f1yins f2,in) + CF Masi1,p(f1,ps fo,p)(7) dT
0
K K
+ C?S+M2K1 MQS,;D(fl,pvaﬁD)(T) dr
0

t
H&%/Mmm%MMWW
0

+c & / Ms o (f1,ps fo,p)(T)Mas—2p(f1,p, fo,p)(T) dT. (3.23)
P Jo

3
Taking s = 3 in the previous estimate, we get:

K t
MaplFrip o)) < Map(Giin foin) + 22 [ Muy(fip fop)r)dr
0
K t )
+ C?S-i-MgKl Mg)p(fl)p,fgm)(T) dT+CK3M2T
0

Ky [*
+C?S M3,;D(fl,p7f2xp)(7-) dT’
0

so that thanks to (3.19) and Gronwall’s lemma, we get estimate (3.20) (and
(3.15)). W

We now are in a position to pass to the limit in (the weak form of) eq.
(1.16), (1.17). We first notice that thanks to estimates (3.3), (3.5) and (3.6), the
sequences ( fi.ps f2,p)pen+ converge up to extraction to measure-valued functions
(f1, f2) in LRy ; MY (R3 x [1,70]) x LY(R?)) weak * and the following estimate
holds: o
sup / / (1 + o)) f1(t,v,r) dvdr < oo, (3.24)

1JRr3 J1

tel0,T
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sup / (1 + o) falt,v) dv < . (3.25)
tel0,T] JR3

In the sequel, we keep the notation fi(t,v,r) for the measure-valued function
fi: Ry — MY(R3 x [1,79]) as in (3.24), though this measure might a priori not
have a density w.r.t. Lebesgue’s measure.

Moreover, thanks to assumption (1.22), and bound (3.15), moments of order
lower or equal to 3 of f5, are bounded w.r.t p.

In order to conclude the Proof of Theorem 1.1, it remains to show that
(f1, f2) is a weak solution to eq. (1.19), (1.20). We study for that the conver-
gence of the weak form of kernels R’ (f1 p, fo.p), B3 (f1,p, f2.p) and Q*(fa.p, f2.p),
when p — oo, in the following Proposition.

Proposition 3.3 Under the assumptions of Theorem 1.1, we can extract from
(fi,ps f2,p)pens a subsequence such that (for all T >0):

1. for all ¢ € CZ ([0,T] x R3 x [1,70]),

T T0
lim/ / / peRYP(fip, fo,p) drdvdt
p=eoJo JR3J1

:/OT/R3 [TOK(fg)-vafldrdvdt;

2. for all € CL ([0,T] x R?),

(3.26)

i [ ' B G oy it = | : [ mifanLifp dode

p—00

3. for all ¢ € C. ([0, T] x R3),

i [* [ @ peetit= [ [ @ pedva

Proof of Proposition 3.3 :
1. Let ¢ € C2 ([0, T] x R? x [1,70]). Denoting

T T0
L, :=pc / /g/ U(s,v,7)RYP(f1,p, f2,p)(8,v,7) drduds,
o JrsJ1

and .
T0
I = / / / K(f2)(r,s) - Vob(s,v,7) f1(s,v,7) drdvds,
0 R3 J1
where K(f2) is given by (1.21), we prove that

lim ILP = Il.
p—o0
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Thank to the involutive character of the transformation (vi,v2) — (v ,,v3,),
I, can be written under the form :

O S = e

W - (?1 — 02> ‘ p (U(s, 0], 1) — (s, v1, 7)) drdwdvyduy ds

2pr=3 U1
/ P S . _
Vip =01+ = p— {w (’Ug w,

and thanks to the relation

X

with

/ (a-w)(b-w)la -w|dw=mlal(a-b),
SZ
for a € R3 and b € R3, I, can be written under the form:

L o= 2C/OT/RS L] / o2 -] (v2 - ) fa(s, 02) (@ - Toyd(5,01,7))

1
X = f1(v1, 7, 8) drdwdv dvads.
,
We now write the difference I, — I; as the following sum:
Ly—TLi=Jl ,+Ji,+J},+Ji,+ 7,

where

7, = pc/ LLLI KWW ) ]fl,p@,vl,r)fz,p(s,vz)
.
o [ LL L G

X7 flﬁp(s,vl, r) [w(sava? r)— 1/)(5,1)1,7“)] drdwdvsdvy ds,

B = e[ [ ][] P hat s

X [p (1/}(5 Ul D’ r) — (s, v, 7 )) 3 w Vo, ¥(s,v1,7) (v2 w)‘|

Xdrdwdvidvads,

X [1/}(5 vy 7)) = 1/)(5,1)1,1")} drdwdvsduyds,
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To |
/ / / / —w -V, (s,v1,7) f1(s,v1,7)drdv
S22 JR3

X / (fo,p(s,v2) = fa(s,v2)) (v2 - W) |w - V2| dvadwds,
RS

By = 2o [ [ [ e St Grpto,1r) — o) dra,

X / anP(Sa va) |w - va] (V2 - W) dvadwds.
R3

Noticing that

p(9(s,05 1) —d(s,01,7) < pIVY) V1, —
v

< 2|Vl 2 — — |,
p

and thank to bounds (3.5) and (3.6), it is easy to prove that
lim J = lim J7 , =0.
p—00 p—00 ’

Moreover,

1/}(57’01,1)77‘) —1/’(&”1,7”)
= (vll,p - 1)1) ' Vv11/)(8,1}1,’l”) + T(’Ul,UQ,T,S,p)
2pr

-3 v
- W |:w ’ (1}2 - ;1):| ((.() ’ lew(SavlaT)) +T(’U17’027T757p)5

with, since 1 € C? ([ T] x R x [1,7"0])7

D%y|| oo 2
|T(U17U27T787p)| S % ’Ui,p _U1’
Cst || D3¢l ‘ v |’
SRy — —
p p
Then
2
(006 07) = 05, 01.7)) = 5 (@ Tayos0n,) o) o
< Gsto) [IDutlloe (1 12 |01
3 — [va|” + — [v2]
r p p
Cst(ro) | D?¥|| val|vg |2 v1||va]?
L Ostlro) |1 D5y <|v2|3+ | 2||21| 4 glullve] )7
p p
and thank to bounds (3.5), (3.6), and (3.15), we see that lim J3, = 0. Morever,

p—00
one can write

T
J{l,p = /0 /]RS h(s,v2) (f2,p(s,v2) = fa(s,v2)) (1 + |v2|2) dvads
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with k€ L* ([0,T] x R?); so that thanks to the weak convergence of (f2,p)pen-
and to the bound (3.15), we get lim pr = 0. It remains to prove that
p—00 ’

lim J7, = 0. We write for that

p—00

T "0 2¢
J157;D = /0 /]R3 /1 TV'Ulq/}(S?’Ul?T) ' kP(S) (flqp(sa 1}177') - fl(sa 1}1,7’)) drdvldsv

where
kp(s) = / / wfop(s,v2) |w - va| (Ve - w) dwdvs.
R3 Js2

Thanks to estimate (3.5), the sequence (kp),cy. is bounded in L ([0, T7).
Moreover, for all h > 0 and ¢t € [0,7T] such that ¢t + h < T, the following
estimate holds for all p € N*:

/0 |kp(s + h) — kp(s)| ds

t
SCst/
0

< htCst  sup fop(T,v2) (|’U2|3 + 1) dvsy
T€[0,T],peEN* JR3

s+h
[ R8s o) (o) + Qg )]

></ w |w - ve| (v - w) dw dvadr|ds
S2

v v 2 |u®
X [ sup fip(T,v1,7) (1 + [vn] + | 12| + %) drduv;
7€[0,T],peN* JR3 p p p
sy (el 1) dua |
7€[0,T],peN* JR3

Using estimate (3.15), we deduce then from Riesz-Fréchet-Kolmogorov’s Theo-
rem that {k,, p € N*} strongly converges (up to a subsequence) in L' ([0, 7).
But

/ / 0 Evvﬂﬁ(savlﬂ“) (fl,P(&Ulur) - fl(S,’Ul,'f')) drduv,
r3J1 T

tends to 0 in L°°([0,7T]) weak *. This allows us to conclude that lim pr =0.

p—0o0

2. Let ¢ € C} ([0, T] x R?). We can write

T
L, | o6 G oo dods = 1, = 15,
0

where we denote

T 0
I, o= e / / / / / o (5,05,) Frp(5,01,7) fa.p (5, 02)
0 R3 JR3 JS2 J1
(5 )
w - — — U3
p
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and

“ e[ L L e ste st

(2 T ) w - (% — ’U2> drdwdvy dvads.
Denoting
T T0
c / (/ / 7°2f1)m(v,7")dudr)
0 R3 J1
X / o(8,v2 — 2 (w - v2)w) fas,v2) |w - va| dwdvads,
R3 Js2
and

I, = ¢ /OT (/}1&3 /1”) rzfl)m(v,r)dvdr>

X / / ©(s,v2) f2 (8, v2) |w - v2| dwdvads,
R3 JS2

we prove that lim I;p = I} (the proof can then be easily adapted to show that
p—00 ’
lim I, , =1y ).

p—00

Thanks to relation (3.1), we notice that for all ¢ € [0, T,

0 o
/ / frp(t,v,r)r? drdv = / / frin(v,r)r? drdv
R3 J1 &3 )1

and we write the difference I; — I as the following sum:

IQJTP - IQ+ = J21,p + J22,p + J23,p + J24,p7

']21,p = / / / .fl in 'Ul, 7" d’l”d’lh/ / |u} ’UQ|
R3

X (s,v2 — 2 (w-v2)w) [fa,p(s,v2) — fa(s, v2)] dwdvads,

By = o [ [ L et s s

) ) |w - va| drdwdvy dvads,

where

(e
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T T0 1
J3 _ /
2,p C/O /R3 /R3 ~/Sz~/1 90(87UQ,p)fl,p(Savlur)pr(Sa'U2) (2\/7'(—])6 +

(e
ty = o[ [ 7] ] ety - ot -2 m0)

X2 lw - va] fop(s,v2) f1p(s,v1,7) drdvi dwdvads.

— |w - v2|> drdwdv;dvads,

Firstly we have:

JQl,;D = /1T0 /]1&3 fl,in('UhT)d’Ul’f‘zd’r
T
x/o /}R3 b(s,v2) [fap(s,v2) — fa(s,v2)] (1 + |va]) dvads

with
1

(1 + Jva])

and since b € L>([0, 7] x R?), the convergence of (f2,p)pen+ in
L ([0, T]); LY(R3, (1 + [v]) dv)) weak * implies that lim J; , = 0.

p—0o0

b(s,ve) = / 0 (8,02 —2(w- V)W) |w - va| dw,
S2

Then, we can observe that

Cst o

2

|J2,p‘ < %”SOHOOT/RS/I frin(vi,7) drdo;
X sup fap(7,02) |v2] dus,

7€[0,T],pEN* JR3

and

3 CSt 7o
}J2,p’ < — HSDHOOT sup fip(T,v1,7) 01| drdvy
p r€[0,7],peN* Jr3 J1

X sup fop(T,v2) dva,
T€[0,T],peN* JR3

so that lim J22p =0 and lim JS’p =0.
p—oo ¥ p—oo ¥

Finally, we have the following estimate:

T T0
AN A I O PO eI

X / |v’2)p — (v2 — 2 (w - v2) )| dwdrdvadvyds,
S2
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with

= (2w = [ o (=22 my
< SX ) (1ol

We conclude that lim J;lyp =0.

p—0o0

3. Let ¢ € C ([0, T] x R?). Let us write:

T
[ o) Qg o) o0) = @ (o )5, ) duds = v =

where we denote

Mo = [ [ o) faaton) o))

xp(s,0") Cs s [v — v.|" dodv.dvds,

and

Mg = [ [ Ut faatone) = o))

xp(s,0) O |v — vi|* dodv,dvds.

We prove here that lim A; , = 0 (the proof can easily be adapted to show that
p—00

lim As, =0). We write A, as the following sum:
p—oo

ALP = J31,p + J§,p’

where
T
Bp = [ [ ] ] el Uanlsrvn) = s,
o Jrs Jrs Js2
x(s,0") Cp s [v — vi|™ dodv.duds
and .
By= [ [ salo) aplo) = fols,o)l duds,
0o Jr
with

Kp(s,v) = /RS /S2 @(5,0") Cpp [ = v fop(s,v0)dodv,.

Since (f2,p)pen+ converges to fo in L>(([0,T]; L' (R?, (14 |v]) dv)) weak *, it
follows that lim ngp = 0.

p—00
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Then, using the weak formulations of @® and Ry”, we observe that

o v v
sl < Cstllglion [ [ [ (bl 120) (ol +1221)
rs Jrs J1 p p

X f1,p(8,01,7) fa,p(s,v2) drdvaduv;

sstlil= [ [ (i + e+ ) (1eaf + ol
R3 JR3

X fa,p(8,w) fa,p(8,v2) dvadw
+ Cst |05l L (1 + [v]¥) /3 fa,p(s,v2) (L + [02]*) dva.
R

As a consequence, we can extract from (k,),en- a subsequence which converges
a.e. in [0,7] x R3. Since moreover

|kp(s, )| < Cst ]| (1 + Ivla)/ fap(s,02) (14 [0|*) dos,
R3

the weak * convergence of (fa,)pen+ in L>([0,T]; L*(R3, (1 + |v|) dv)) implies
that lim J327p = 0. This ends the proof of Proposition 3.3. B

p—00

We can then deduce from Proposition 3.3 that f; and fo are weak solution
of (1.19) — (1.21), in the sense given by (1.23) and (1.24). This ends also the
Proof of Theorem 1.1. B

Remark: Note that f1;, being a function (that is, not only a measure), the
solution of the equation

% +div, (K(f2)f1) =0

is itself a function, given by

Fulto,r) = frin (U _ /OtK(fg)(s,r)ds,r> .
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