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summary :
The field scattered by a plane composed of several homogenous layers on a perfectly reflecting plane is
generally given by its plane wave expansion (Fourier representation). We here develop another approach to
express the field, more suitable for point source illumination. For this, we sum the contributions of modes
corresponding to zeros g; (or poles — g;) of the reflection coefficient of the imperfectly reflecting surface,
developing an original integral representation and its expansions, valid for arbitrary mode which can be
passive or active. Particular attention has been paid to active modes with Reg; < 0, and to the vicinity of
the mode with g; = — 1. We then obtain novel exact expressions for the field in acoustics and for

potentials in electromagnetism.

1) Introduction

The field scattered by a structure composed of several homogeneous and planar layers on
a perfectly reflecting plane [1]-[6] is usually given by its plane wave expansion (Fourier
representation). In this expression, the reflection coefficient, which characterizes the
structure, is a meromorphic function that can be modelled by a product of elementary
reflections coefficients, with constants zeros g; (and poles — g;), so that the field
satisfies a multimode boundary condition, which is the product of elementary ones of
impedance type, depending on g;.

In practice, the Fourier expansion is suitable in far field or for simple plane wave
illuminations, but is particularly complex to use for non-plane, in particular spherical,
incident waves near the scatterer. Indeed, even if double Fourier integrals can be reduced
to simple Fourier-Bessel integrals for point source illumination in 3D, numerical
integration is quite lengthy because of the highly oscillatory nature of the integral and the
calculus of Bessel functions. Moreover, in far field, the steepest descent method (or
saddle point method) that is currently used for this integral [1]-[4], leads us to an
expansion that is not strictly convergent but asymptotic, and poles of the reflection

coefficient near steepest descent path can greatly complicate the calculus.
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So, we here consider another approach in acoustics and in electromagnetism to express
the scattered field, developing an original integral representation and its expansions for
the contribution of each mode depending on g;. The roots g; can have positive or
negative real parts even if the complete system is passive. Particular attention will be
paid to active modes with Reg; < 0 and to the vicinity of the case g; = — 1 which is
generally singular. The presence of active modes leads us to develop novel exact
expressions for arbitrary g;, for pressure field in acoustics and for potentials in
electromagnetism, for arbitrary bounded sources. The analytic method so developed can
be applied for the determination of coupling between antennas above an imperfectly
reflective plane, or for the calculus of Green's functions for planar lines printed on a
multilayer. Other methods that use analytic approximations in some specific cases or
some discrete technics exist. So, for the radiation of a point source in 3D above a
homogenous passive half-space or a passive monomode impedance plane, we can notice
[1]-[4] and [7]-[12], while for determination of Green's functions for planar lines using
asymptotics or discrete schemes, we recommend the reading of [5]-[6] and [13]-[16].

The paper is organized as follows. In section 2, we give a brief discussion on general
properties of the field, and show how to derive a complex image representation for the
one mode acoustic case. We transform the expression in section 3, then obtain a compact
form for arbitrary g;, from which we derive rapidly convergent series, and thus simple
approximations. We detail in section 4 how to use this development in multimode
acoustic case. The electromagnetic case is studied in section 5, where we develop novel

compact expression of the potentials, by using the results we obtained in acoustic case.
2) Formulation in acoustic case : general properties and elementary problem
2.1) General properties

We consider the pressure field u, scattered by an imperfectly reflective plane illuminated
by the incident field wu;,. radiated by a bounded source above the plane. The plane is
defined by 2z = 0 in Cartesian coordinates (x,y, z). A harmonic time dependence e™?,
from now on assumed, is suppressed throughout. To simplify the notation, the field u at
the observation point M (z, v, z) is thereafter denoted u(z) or u(p, z), p = /22 + ¢2.
Some general properties are considered for the field:



(a) us(p, z) satisfies the Helmholtz equation
(A + E*)u, = 0 with |arg(ik)| < 7/2, (1)

and is regular like w;,,.(p, — 2), in the domain z > 0;

(b) us(p, z) is constituted of outgoing waves, and decreases at infinity for large z or p, so
that u,(p, z) = O(e %19M) § > 0, as z or p — 00, when |arg(ik)| < 7/2.

In other respects, we consider that, for any plane wave of incidence angle 5 composing
Uine, the reflection coefficient R(3) of the imperfectly reflective plane is a meromorphic

function (see appendix A) that can be factorized as the product of elementary factors,

cosf — g;
RB)=1]——, 2
=ity @)
attached to roots cos3 = — g; of the characteristic equation of the surface, so that
o .
H(% —ikgj)us(2)].=0 = — H — ikg;)tinc(2)].=0 (3)

J

is satisfied [16]-[18]. In this multimode boundary condition, g; is denoted the impedance

parameter of the mode j. Developing R(/3) in simple rational elements,
1
RB) =14 aj—, 4
(/6) ; jCOSﬁ‘f—gj ( )

we see that the reflection depends on a combination of elementary terms (cosf + g;) !

only differing in the constant g;. The contribution of this term can be studied if we

consider the problem with a one-mode boundary condition and R(3) =1 — 2gcosﬁ i

for arbitrary g.

Therefore, we develop the expression of the field satisfying one-mode boundary
condition in passive (Reg > 0) and active (Reg < 0) cases, then we consider its
generalization for an arbitrary multimode condition in acoustics and in electromagnetism,

respectively in sections 4 and 5.

2.2) Elementary expression of the field in one-mode case

The one-mode boundary condition is given by

(% —ikg)us(2)|m0 = — (% — 1k g)Uine(2)|2=0 = (% + tkg)uinc( — 2)|:=0, (5)



This type of condition, also called Robin or impedance boundary condition, is well-
known in scattering theory for passive surfaces (Reg > 0) [19]-[22]. For (5) when

Reg > 0, we can consider like Maliuzhinets in [7], the solution of

9 . 9 .
(& - Zkg)“%(z) - (& + Zkg)“inc( - Z)v (6)
or
0 4 gy O,
tkgz Y ¢ —ikgz — ,—tkgz _~  ( jikgz, -
€ k02 (e us(z)) =e 502 (€™ uine( = 2)), (7)

which gives us,

z . . o .
_ ikg(z—21) ,—ikgz ikgz,, . _
us(2) /moe e oo (" e — 21))kd 2y

0
= Ujpe( — 2) + Zig/ e k9 (= 21 — 2)kdzy (8)

—iT00

This representation, particularly simple, verifies (6) and thus (5), and satisfies the
conditions (a) and (b). It has been described by Maliuzhinets in 1948 for Re(g) > 0, for
arg(ik) = m/2 with 7 = 1, and is called the complex image expression of the field [2]-
[4], [10], [12].

This expression can also be considered for Re(g) < 0 with a new definition of 7 = 7.

Radiated by bounded sources, the incident field at (x,y, —z) satisfies
[r0e 0w, (— 2)| = O(1) as z > 0, 79 = /22 + y2 + 22, and we can write [1]-[3],

27
Uinc( . Z) — / ( WO(ﬁ, ,y)e—ik(:vcos'y+y51n'y)51nﬁd7)6—ikzcosﬁsin5dﬁ,
" J0

_ /DVO(ﬁ)e_ikzcosﬁdﬂ, (9)

when z > 0.1In (9), W) is the spectrum of the plane wave expansion and D’ is from 0 to
+ i00 + arg(ik) with Re(iksin3) = 0. We can then consider that D = D', or, in some
conditions of parity, that D is from —ioo—arg(ik) to + ioco+ arg(ik) with
Re(iksingd) = 0 (see remark 1). Applying the conditions (6) and (a)-(b), we then obtain

27
) _ W, , 7ik(xcos“/+y5in7)5inﬁd C()Sﬁ——g 7ikzcosﬁsin d

= Uine( — 2) + 2igZ, (10)

where



. Vb(ﬁ)e—ikzcos,@
Ig—z/pmdﬂ, (11)

The path D belongs to the line from — ioo — arg(ik) to + ioco + arg(ik) with

Re(iksinf) = 0. In consequence, we notice that,
1 0 :
S, / e~ kaleositO) kg, (12)
cosBrg e
for arbitrary g with 7, = Img # 0 when arg(ik) = 0, for Re(g) > 0 with 7, = k* when
larg(ik)| < 7/2, and for Re(g) < 0 as =£Img<O0 with 7,= £ik* when

+ arg(ik) > 0. Using this expression in (11), we derive, after changing the order of
integration,

0
Ig = / eiikgzlumc( — 21— Z)deh (13)

1T400

We notice that the integral term in (13) has poor convergence in the vicinity of g ~ — 1,
and that the parameter 7, is not defined for arbitrary g when arg(ik) = 7/2. Thus, we

now seek more suitable expressions for arbitrary g and k, for point source illumination.

Remark 1:
For w,.(2) = %E;()) with R(z) = v/p>+ (z — h)?, V} is given by [24, eq. 6.616.2]

Vo(B) = — i1 Jy (kpsinB)sing, (14)

with Re(iksin) =0 on D from 0 to doco+ arg(ik), or, from parity,
Vo(B) = — %e*ikhcosﬁHém(kpsinﬁ)sinﬁ if D is from — ioco — arg(ik) to ico + arg(ik).

Remark 2:
The function Z, is multiform because of the cut due to poles of (cos + g) ! in (11) that
can go through D, and we have to pay attention to the condition (b) on the behaviour of

us at infinity when we modify the expression of the field.

3) Reduction of the integral expression for a point source in one-mode acoustic case

The incident term w;,. is generally a combination of elementary terms e "*2) /LR (%),
with R(2) = \/(z — /)2 + (y — y')2 + (2 — /)2, radiated by a monopole at (z',y/, 2'),
and we now consider the case of a monopole at 2’ = h above the plane (figure 1).
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figure 1 : geometry and definition of ¢ for the radiation at M

Letting  ujn.(2) = e #) /kR(2) and I, = e*EN T (p, —2—h) in previous

expressions, we have

us(2) = e *RA JRR( = 2) + 2ige™ I T (p, — 2 — h) (15)
with
0 k(1o h) efikR(lefz)
—2—h)= ikglatzth) S g 16
ap—em=[ e ] (16)

where R(—2) = /p>+ (z + h)% 2+ h = R(— z)cosp, p= R(— z)sinp. We now
develop different exact expressions to cover any choice of active (Reg < 0) and passive
(Reg > 0) modes, for g = sinf; with |[Re(61)| < 7/2, as |arg(ik)| < 7/2.

For this, we first explain how to obtain a correct integral form in 3.1. We begin with
changing (16), as Maliuzhinets [7], into an expression more simply convergent but rather
uneasy to use for Reg < 0, then we modify it and define a correct integral form in 3.1.2

for arbitrary g. We expand this latter form in different exact series in 3.2, 3.3, and 3.4.

3.1) An exact integral expression of J, for arbitrary g as |arg(ik)| < /2
3.1.1) Simplication of (16) but difficulty concerning branch cut when Reg < 0

A way to avoid the choice of 7 parameter is to transform the integral (16) by taking

v=1ik(R(— 2z —2) 4+ g(h+ z + z1)) as a new variable of integration. We then obtain,

Jp, —2z—h) = —/ , -
o ) vomikR(~z)(1+geosp) \/ V2 — (ikR( — 2)sinpcosf; )

o e—l/

dv, (17)

where the path is defined so /12 — (ikpcost; )? = ikR( — z)(cosp + sinf; ), v, being

the value of v for z; = 0, g = sin#,.



This expression, found in 1948 by Maliuzhinets for passive case [7] and rediscovered in
1951 by Ingard (see (10) in [8]), is very efficient when Reg > 0. However, several
difficulties exist for a correct use when Reg < 0. The path of integration is straight when
Reg > 0, but it can turn around the branch points v = =+ ikpcosf#ywhen Reg < 0.
Moreover, the cut Re(ikcost;) =0 of Z, for Reg < 0, which is due to poles of
(cosB + g) ! in (11) that can go through D, does not appear clearly in (17).

Concerning this difficulty with integration path when Reg < 0, we can consider the

closed-form expression that we obtain when we let sinpcosf; = 0 as Reg > 0 in (17),
Jy= — By(ikR( - 2)(1+ geosg)), (18)
where FE; is the exponential integral [25], and remark that this expression, already

described in [7] and [11], cannot be used when g = — 1, or when cosp = 1 if Reg < 0
and Re(ikcosf;) < 0, even though sinpcost; = 0.

To convince ourself of this, we give in figure 2 an example which shows that (18) for
cosp = 1 is false in some region with Reg < 0.

o S
0 i I i I i i H 1

-2 -15 -1 -0.5 0 0.5 1 1.5 s Re(g)

fig. 2) | J,| when Reg varies, Im(g) = 0.1, cosp = 1., z + h = 2.,k = 1., comparison between exact result

(dashed line) and the expression (18) given in [7] and [11], incorrect for Reg < 0 (continuous line).

3.1.2) A correct definition of the integral expression of [, for arbitrary g

Proposition 3.1. 4 correct definition of J, for arbitrary g = sinb; is given by

Typ, —z—h) = —/ e wosht gt — z/ e "o (19)
b

b



where a = eik R( — z)singpcosfy, € = sign(Re(ikcoshy)) (Re(a) = 0 being considered as

a limit case), and b satisfies

. kR( —
et = ¢, = %(1 + sinf; ) (1 + cosy), (20)

. —2ib __ (1+4sinb;)(14-cosp)
with ]Reb| < T, and e " = m.

Proof. We now let a = ik R( — z)sinpcosf;, € = sign(Re(ikcosb;)) (Re(a) = 0 being
considered as a limit case), v, = ikR( — z)(1 + sinf;cosyp), and take a new variable of
integration in (17), ¢t with v = acosht, asinht = \/v? — a?, or a = it. Defining b with
acosb = v, —dasinb = a\/(v./a)? — 1 = ikR( — z)(cosp + sinfy),  |Reb| < ,
|Re(01)| < m/2, |arg(ik)| < %, we then obtain (19) where b satisfies (20).

With this definition, the reader can verify by inspection that the expression of the field,

100
US(Z) _ Umc( . Z) . 2g6ikgR(—z)cos<p/ e acosa 1 (21)
b
satisfies the conditions (a)-(b) and the boundary condition (5) for any choice of g = sin#,
as |arg(ik)| < m/2, except for g = — 1. In this latter case, the expression (21), like (11),
is singular. Moreover, we notice that, as g varies in complex plane, this expression has a
correct cut as e changes of sign for Reg < 0, and is regular elsewhere (note: for Reg > 0,

the change of sign of € does not induce a cut as g varies).

This type of expression was previously described for a passive mode with
Re(zkcosf;) > 0 as an approximation for the scattering by the earth [9] ; it was also
given in [11] for passive impedance case but it was with a definition of parameters which
restricts its application, since, in particular, it gives (18) for cosp = 1, which is false in
some region of g with Reg < 0 (see figure 2).

So, to our knowledge, it is the first time that this expression is given with a correct
definition of @ and b which permits the application for arbitrary g as |arg(ik)| < 7/2.

A general property of the expression (19) is worth noticing. Using the integral expression
of the modified Bessel function K [25], we can write,

b “+i00
TJy(p, —2—h)= — Z/ e %o + z/ e %% (22)

= —j / ey 9K (a)
—b



which is equivalent, by definition of b and a, to
‘79(:07 —Z—h) = —j—g(p,2+h) —QK()(G) (23)

This relation between the values of J,, when we take ( — 6;, — cosy) in place of

(01,cosp), will be useful to derive other expressions of this function.

The figure 3 shows the agreement of J, given by (19), and by Fourier-Bessel expansion
when (11) is used with (14) [1]-[3].

T T

18 5 T T ! ! !

Ll B S NN S

04 i i | i i i i 0 i i i i i i i
-4 -3 -2 -1 0 1 2 3 1 Re g -4 -3 -2 -1 0 1 2 3 41Re g

figure 3) Comparison of J, given by (19) ( — O — ) and by Fourier-Bessel expansion when (11) is used
with (14) (— o — ), when Reg varies; left : | /| when Im(g) = — 0.4, z+h = .2, p= .3, ik = .01 +il.;
right : [ J,| whenIm(g) = 1.2,z +h =1.,p=1.,ik = .01 4+ il.

Remark 3:

Some particular properties of b are worth pointing out. So, we have
’cosb—e‘_‘lﬁ—sm( )‘_| elmfi (3 Ree)+e_i‘/’|2<1 (24)
cosb + € 1 + sin(0; + @) elmb gi(5—Rebi) 1 gip ' —

where we have used that |[Ref;| < 7/2 (cos(Reb;) > 0), 0 < Rep < 7/2 (sinp > 0), and
ea = ikR( — z)sinpcosf;. We deduce from (24) that Re(ecosb) > 0, and

— €

1 3
TEW < [Reb| < . (25)

We remark that, if cosb — ¢ = 0, then cosf; = sinp and sinf; = — cosyp, so that, from
larg(ik)| < m/2, e =1 and b = 0, and thus b is never equal to =+ 7.
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Besides, we notice that sign(eReb) = — sign(Im(sind;)), from e~ = %

and (25). Thus, when 0 < +arg(ik) < 7, we have 0 < = eRe(b)sign(Ref;) <  in the
region + Ref;Imé; < 0 where e changes of sign. In this region, + earg(a) > 0 so that
+ earg(a) = § when Rea = €0", and the zone — § + arg(a) < Rea < § + arg(a) of
convergence of e %% when Ima — oo becomes 0 < =+ eRea < m when Rea = €0™.
Thus, we can deform the integration path from ioco to 700 + emr when Ref; > 0 and
obtain the continuity of J, as e changes of sign, while J, is discontinuous when

Ref; < 0.

3.2) Two exact series for Jy, rapidly convergent when a or R( — z) is small

We present two exact series for J, for arbitrary g in this section. Their speed of

convergence grows as a or R( — z) decreases.

3.2.1) An exact series whose first two terms give exact expression for g =1 and

sinp =0

Proposition 3.2. An exact expansion of J,(p, — z — h) for arbitrary g is given by,
(1 + sinfy)(1 + cosyp)

2
— ikR( — z)1sinf)cosp) yp 1 + sin6;)(1 + cos

Ty(p, —z—h) = — Ex(ikR( - 2) ) — 10,2(Ko(a) — Ko( - a))

|
p>1 p:

where 1q, is the indicator function of the region S, of the strip |Re(6:)| < T, following

1—c¢
lg, = 5

U( — Re(sinb,))U (Reby — ( — g + G(Imb-))), (27)

with G(x) = 2arctan(tan(arg;ik))tanh(%)), ¢ = sign(Re(ikcosby)), and U being the unit
step function [25].

Proof. We let t = e~ in (19), and write

Tylp, —2—h) =i / e IOy = — / ¢ 2: dt (28)
b cy

where a = eikR( — z)sinpcosb;, € = sign(Re(ikcosf;)) (Re(a) = 0 being a limit case),
(t+1/t)|i=c. = 2v./a, v, = ikR( — z)(1 + sinf;cosp). We then develop the term e~ %,
and obtain for Re(acy) > 0,
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|
p=>0 p:

which gives us, for Re(ik(1 + sinf;)) > 0,

— ik R( — ) Uzsind)(1—cosp)yp

Ty, —z—my= - D )

p>0 p:

(1 + sinfy)(1 + cosyp)
2

x By (ikR(~ 2) ) (30)

where E, is the exponential integral of order n [25].

To continue this expression for arbitrary sinf; in complex plane, we need to take some
precaution with the cut of (11) and of E,, . Indeed, the pole in the integrand of (11) can
change of side with respect to the path of integration D, which defines a cut in the
expression of the field with respect to g. In (30), we have also a cut which is the one of
E,;1(v) when Im(v) = 0, v < 0. These cuts are different, but we can deform D so that
the cuts coincide. We then capture the poles (the zeros 3 = 6 + 7/2 of cosf + sinf;)
that goes through the path during the deformation, and determine the residue terms that
have to be added to (30).

We then obtain the exact expression (26) for arbitrary g, where 1q, is the indicator
function of the region €, of the strip |[Re(f;)| < 5, on the right side of the path
Im(ik(1 +sinfy)) =0 with Re(ik(1 +sinf;)) < 0, where Re(ikcosf;) <0 and
Re(sinf;) < 0. The function 1g, being equal to 1 in €, and zero elsewhere, can be
expressed following (27). Since |E,11(2)| < |E,(2)| as n is large, the series converges
everywhere, except on the cut of exponential integral. This expression corresponds to the
one given in works of IS Koh and JG Yook [11], except that the term
—19,2(Ko(a) — Ko( — a)) has been added to render (30) valid everywhere.

3.2.2) An exact series whose convergence is particularly rapid in vicinity of g = — 1

Proposition 3.3. 4 second expression of J,(p, — z — h) with a better convergence in the

vicinity of g = — 1, is given by
) 1 —sinf;)(1 — cos
7y = By(ikR( — LIy o) 110 2(K (@) — Kol a)
— ikR( — z)sinfi)(Ltcosg) yp 1 — sinf;)(1 — cos

p=>1 p!
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Proof. For this, we consider (22), using (24) with — b, c_ in place of b, c,, or directly
(26) in (23). This formula is more convergent than previous one (26) when Imb < 0, i.e.

(1 + sinfy)(1 + cosyp)
(1 —sinfy)(1 — cosyp)

1 + sinfcosy + (sinf; + cosyp)
1 + sinfcosp — (sinf; + cosyp)

| = <1 (32)
which is the case, for example, when (1 + sinf;cosy) and (sinf; + cosyp) are real and of

opposite sign, and Re(sinf;) < 0.

Let us notice that, when cosp = — sinf, the terms under summation are the same in
(26) and (31), and 1q,, = 0. In this particular case, we have b = 0, and thus

Ty = 2/ e *da = — Ky(a). (33)
0

We give in figure 4, two examples of application of (26) and (31). With only three terms,
(26) is better for Re(g) > 0, while, for (31), it is the case for Re(g) < 0.

|*79‘ |\79‘
45 T | | [ 1 . 35 . I,(x-/l 1 |

3

0.5 i i i i i i i 0

i i i I i
4 3 2 X 0 1 2 3 4 Reg -4 -3 2 -1 0 1 2 3 4 Reg

figure 4) Comparison of (26) and (31) and exact result ( — o — ) when Reg varies; left : |L79| when
Im(g) =04, z+h=.2, p=.3, ik=.014il. (with all terms of (26) and (31)); right : |J,| when
Im(g) =0.1,z+ h = .02, p = 1., ik = .01 4 ¢1. (with sums truncated to p = 2 in (26) and (31))

Remark 4 :

From  |Reb;| <7/2, sign(Im(a)) = —sign(arg(ik)) when e= —1, and
+irly(2) = Ko(2) — Ko(2€*™), we have sign(arg(ik))inly(a) = Ko(a) — Ko( — a)
when 1o = 1. Notice that Ky(z) = — inéQ)( —iz)/2 when —7/2 < arg(z) <,

Ky(z) = inél)(iz)/Q when — 7 < arg(z) < /2, and [y(z) = Jo(iz).
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3.3) a series rapidly convergent for arbitrary R( — z) when | (125i“‘p°°sel | <1, and

[T+sin(@1+9))
asymptotic for large R( — z)

We present an exact series, convergent for arbitrary R(—z) when

| 2a :| 2sinpcosfy
v,+ea (1+sin(61+¢

) | < 1, which is also asymptotic for large R( — z).

3.3.1) a first order expression with E;(acosb — ea)

Lemma 3.1. We can express J,(p, — z — h) in the form
Ty = R(be, €, 195w27r) - 19527%610[0(@) (34)

where

(1+sin(0; — ¢))

R(bc,€,8) = —e ““E1(ikR( — 2)(1 + sin(6; — ¢)))

(cosp + sinf;)
(1= 6)K(a) — i6 esa/io"” a(El(acosa - ea)asina)(cosa ~Yda (35)
/70 ‘ 5. ‘ (acosa — €a)? sinay
with s = 195 w2T. In this expression, we have
1—e€ ) s
los = TU( — Re(sinfy))U (Ref; — ¢ — ( — 5 + G(Imb,))), (36)

and 26, = (1 +€)61 + (1 — €)6 with

(1 + sinf ) (1 + cosyp)
(1 — sinfy)(1 — cosyp)

§ = sign(In| ), &1 = sign(Ret; — ¢ — ( — g + G(Imb1))){(37)

and bw = sign(Re(b)) which is equal to sign(arg(ik)) in 2.

Proof. It is possible to express (19) and (22) in the compact form
Ty(p, —2—h) = i&/ e *“"da — (1 —6)Ko(a), (38)
8b
with ¢ being equal to + 1 or — 1. We then choose the parameter ¢ in order to keep
Ima > 0, and thus Iméb > 0, which, from (20), implies

(1 + sinfy)(1 + cosyp)
(1 —sinfy)(1 — cosyp)

6 = sign(In| ). (39)
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To develop the expression, we consider (24), which indicates that the singularity of
\/ V2 — a? the nearest of v, = acosb is ea, and we write,

ico  ,—(acosa—ea) . o3 —
7, = it /5 (& AN COS € (1— 8)Ko(a) (40

b acosa — €a sinq

where we have expressed the integrand as the product of two functions, respectively
infinite and nul at cosae = €. We then choose to integrate by parts, restricting ourselves to

not cross the cut of the exponential integral £ (v), v < 0, and we obtain

Ty =R(6,¢,5s=0) (41)

where

(14 sin(0; — ¢))
6(cosyp + sinf)

R(6,¢e,8) = — e ““Ey(ikR( — 2)(1 + sin(0; — ¢)))

ots B (acosa — ea)asina

—(1—=96)Ko(a) — iéeea/ ea( )(

sb (acosa — ea)?

cosa — €

. Sda (42)
sina
However, we can go further and transform the expression of 7, so that it becomes valid

everywhere. For this, we need to distinguish the case ¢ = — 1 and the case € = 1.

In the casee = —1, the cuts of FEj(acosa—ea) from arg(a)+m+ico to
—arg(a) £ m — ioco are centered on o = =+ 7. The path from 6b to ico goes through the
cuts when 60 belongs to the domain denoted Q) (figure 5). In this case, we then choose a
new integral expression where the path of integration, going from 6b to ioco + w2,

avoids to cross the cut. For this, we use that

100 100+w2T
ié/ e %o = ié/ e "o — 2midwly(a) (43)
6b ob

where w = sign(Re(6b)), and we obtain,

Ty =TR(b,¢, 1§2§w27r) - 19'527?2'610[0((1) (44)
as € = — 1, where 195 is the indicator function, equal to 1 in Q; (figure 5) and being nul
elsewhere. The domain Q7 is a part of the region with Re(sinf;) < Oand e = — 1 which

is limited by the curve Im(v, — ea) = 0, Re(v, — €a) < 0, so that (36) applies.
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figure 5 : definition of 2

In the case € =1, the cut of Fj(acosa —ea) goes from — 7w+ 7(arg(a) + ico) to
7w — 7(ioco + arg(a)) with 7 = sign(arg(a)). To avoid the cut in this case, 6b has to be
above it, so that we need to modify the definition of 6. We then take, instead of 6,

81 = sign(Ref + g — v — G(Imf"))) (45)

Thus, we obtain in general (34), where dw = sign(arg(ik)) in QZ from remark 3. Let us

notice that the integral term in the expression of R vanishes as a = 0, except in the case
b = 0 where (33) applies.

3.3.2) an expression of arbitrary order with E,(acosb — ea),p < n

Proposition 3.4. The function J,(p, — z — h) can be developed following,

1+ sin(6; — ¢))
cosy + sinf;

J, = — e MRSt B R R(— 2)(1 + sin(6; — ¢))) (

— (1 —=460)Kp(a) — Ly 27 sign(arg(ik))lo(a) — nz_:hp - H, (46)

p=1
where hy, and H, are, respectively, the term of the series,

,(Ix . x(2p—1))
) 2rp! %

2sinpcosf

fp = (1 + sin(6; + )

1+ sin(6; — )
cosy + sinb;

x e kB(=2)singeosty, (R R( — 2)(1 4 sin(6; — ©)))( (47)



16

and the remaining integral term,

H,= — Z-E’n,e—ikR(—z)sing@cosé?]6E (1 X ... X (2n — 1)) /ioo+5 Un(a(cosa — 6)) dey (48)
(n—1)! 5. (cosa + €)"

where QZ, s, and b, are defined in previous lemma and figure 5. The function v, detailed

n—1

in appendix B, is given by v,(t) = > %Em+l(t)
m=0
When |%| < land asn — oo, Im(6:b) > 0 and the term H, vanishes, and the

expansion becomes an absolutely convergent series. Moreover, for large
a = eikR( — z)sinpcosby, a"H, is small, and the expansion is asymptotic, except when
b = 0 and cosp + sinf; = 0.

Proof. We continue to iterate the integration by parts in (34). For this, we notice that

2((7' — e)c) _ 2¢cc (1 — )t
or (T +€)¢ (1 —¢€)? (14 e)t!

(49)
and define the function v,, satisfying

ooe—t n—1, m(pn — |
O e e et IO ')

tn = ml(n—1-m)!

where |argz| < w.After n integration by parts, we obtain (46), where
a = eikR( — z)sinpcosf;, € = sign(Re(ikcosh;)), eT = lkR( )(1 + sinf)(1 =+ cosyp),
dw = sign(Re(b)) = sign(arg(ik)) in Q, s = lgew2m, 26, = (1 +€)61 + (1 —€)é.

The function v,, has remarkable properties (see appendix B), in particular,

“(n—1)! 1
va(z) = w(l + O(—)) as z is large, n fixed
2" z
vn(2) ~ 2e 7 (e2K((2+/nz)) as n is large,  fixed
vp(2) = —Inz — 2y — ¥(n) + O(zInz) as z is small (51)

Consequently, v,1(z) is bounded as p increases and z is fixed, so that the series is

absolutely convergent as

2si 0 2
e Ased | = | | = <1 (52)
(14 sin(61 + ¢)) v, +ea  |cosb+ €

This is confirmed by the fact that the remainder integral term H, is

O( 22"75!2(7:3!—1)! (m972)") as n increases, since Im(&:b) > 0 when (52) is satisfied.
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In other respects, when a is large and b # 0, we can consider the asymptotic behaviour of

vn(z) as z becomes large and n is fixed. In this case, h,_1 is O(#) and the remainder

n is O( ,M) if cosb # €. Thus, a" H,, is small which implies that the expansion is also

asymptotic for large a, except when b = 0 and cosp + sinf; = 0 (see remark 3).

We give in figure 6, two examples of application of (46). Notice the convergence when

(52) is satisfied, and a correct asymptotic behaviour, except when cosy + sinf; ~ 0.

T T

T g T T e
figure 6) comparison of (46) with exact result ( — o — ) when Reg varies. left : |J,| when Im(g) = 0.1,
z4+h=.6, p=.2, ik=.01+1¢1. (with n — 00 and H, =0 in (46) / convergence except when
|cosb + €| < 2); right : | J,;| when Im(g) = 0.1, z+h = 3., p=9., ik = .01 +41. (with only n =2 and

H,, = 0/ asymptotic except in the vicinity of sinf) = — cosp)

(1+sin(61+p))
2sinpcost

3.4) a series rapidly convergent for arbitrary R( — z) when | | <1

To complete the expression (46) given in previous section, we need some expansion of
(19) rapidly convergent for arbitrary R( — z) when |v, + €a| < 2|a|, or better still, in the
larger domain |v, — ea| < 2|al, since, from (24), |v, — ea| < |v. + ea|. We then choose

to develop the expression when |cosb — €| < 2 and b is in a vicinity of 0 or =+ 7.

v.tea| _ | (1+sin(fi+¢))
2a | T | 2sinpcost; ‘ <1

Proposition 3.5. When |“%| = |<2=¢| < 1, and thus as

two convergent expansions of (19) apply. If € = 1, we are in vicinity of b = 0 and we can

write
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100 b
Ty(p, —2—h) = Z(/ e “do — / e 1% )
0 0

b
= (Ko(a) +i / e=00s0 g (53)
0
where,
b .
/ e g Z%e—w(m+ 1/2,(—iv/2asin(b/2))%)  (54)
0 m>0 (2(1)
while, if e = — 1, in vicinity of b = vm, v = sign(Reb), we have
0 100 b
jg(p7 oy h) _ 'L(/ e —acosa +/ e —acosa 7 _/ efacosada/)
v 0 v
b
= — (imvly(a) + Ko(a) + z/ e “da), (55)
where,

b — 1)™me
/U e-acosa g — Un;)((za)lin)wrl/rgea’)/(m + 1/2, ( 2@008(b/2))2) (56)

T

In these expressions, c,, = ( — 1)™(2m)!/((m!)?2?™) is the binomial coefficient of the
function (14 t)7Y2 for |t| < 1, and v(m + 1/2, 2) is the incomplete gamma function
[25, p.262], related to error function erf(x) by

v(1/2,2%) = \/merflz), v(a + 1,2%) = ay(a, %) — a2, (57)

Proof. In the case ¢=1, we use cosa =1— 2(sin(a/2))?, and obtain, when
|cosb — 1| < 2,

b - a=b je—acosa o 9
/0 e da = /0 —isin(a/2)(1+(—isin(a/2))2)1/2d(_Zsm(a/ 2)

(—isin(b/2))? je —2at (—isin(b/2))?
— —a —2atym—1/2
= /0 t1/2(1 vy 1/2 E icpe / e “"'t dt

m>0

while, when €= —1, we use cosa =2(cos(a/2))>—1, and obtain, when
lcosb + 1] < 2,
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b cOS a=b pe—acosa )
—aQ ()zd - _ d 2
/vﬂe ) /oc:wrcos(a/z)(l—(COS(a/2))2)1/2 (cos(a/2))
(cos(b/2))? pele2at (cos(b/2))> (—)m
- = —2at
. _/0 m UZ:ocme / et

with v = sign(Reb), which gives us (54) and (56).

We give in figure 7, two examples of application of (53)-(56). We then notice the

excellent convergence when |v, — ea| < 2|a.

| Ty NA
14 T T _ . T : 25

|

06

04

02

P R T
figure 7) comparison of (53)-(56) with exact result (—o —). left : |Jy| when Im(g) = 0.4, z+h = 2.,

= 3., ik = .01+ i1. (with all terms in (53)-(56)), right : |Jy| when Im(g) = 0.1, z4+h = .6, p = 1.8,
ik = .01 + ¢1. (with sums truncated to m = 2 in (53)-(56))

Remark 5 :
We can truncate the series for (1 4 t)~'/2, noticing that, for [¢| < 1,
N2 [ (tsinz)N
(1+1) 12 = "+ (- —/ ——d 58
+ ZC mJo 1+ tsin’z v (58)

where the integral term is O(W)

4) The generalization to a multimode boundary condition in acoustics

Among the zeros g; of the reflection coefficient used in (2) and (3), a finite number can
be with nul real part when there is no loss, while the ones with large real parts, which

have small influence on the field, can be neglected [16]-[18].
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Therefore, we truncate the boundary condition (3) at the order N with
IRe(g;+1)| > |Re(g;)], and consider that,

H(% — ikgj)us(2)].=0 = — H(% — ikgj)uine(2)|:=0 (59)

J=1 J=1

The reflection coefficient is then given by

R(p) = M - ﬂw (60)

cosp + Z(p) i1 Cosp + gj

where ¢ is the angle with the normal Z, and |R(¢p)| < 1 for real ¢ if the plane is passive.

The sign of Reg; can be positive or negative when Reg; # 0. Indeed, let us consider a
common physical example without loss with arg(ik) = 7/2, where |R(y)| =1 and
Z.(¢) is purely imaginary for real ¢, and Z,(p)* = — Z.(¢*) (see appendix A). In this
case, we have R(p) = (R(p*)"1)*, and thus g; and ( — g;)* are zeros of R(y). These

zeros have real parts of opposite sign when Reg; # 0, which confirms our assertion.
4.1) An expression of the solution

Proposition 4.1. The field scattered by a multimode plane illuminated by a monopole,
satisfying the condition (a)-(b) and the boundary condition (59), when

Uine(2) = e ) JER(2) with R(2) = \/p? + (2 — h)?, |arg(ik)| < ©/2, is given by

N
Us(2) = Uine( — 2) =1y _ae N T (o — 2 — h) (61)
=1

J

where the coefficients a; satisfy

N

N N
cos(d — ¢ 1 a; i+ gi
||ﬂ:1+§aj4’ . ||u (62)
i1 cosf + g; ‘= “cosBtyg; 29 il 95— 9

Proof. As in (9) of section 2, we consider the representation of w;,.( — z) for bounded

sources, for z > 0,
T N A (63)
D

We first let arg(ik) = 0, Img; # 0. Using (59) and (62), we obtain
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uy(2) = /D Vo(3)e ik=eos? Hi‘“’sﬁ Y4

reosf + g,
V —zkzcos,@
— zkzcos[a’d + / 0 A | 64
[ Vi@ ag Z e p (64)
then, writing,
1 0 :
s Z/ e—zkzj(cosﬁ-i-gj)kdzj (65)
cosf+ g, ~
with 7; = Img;, we derive
N, 0 .
us(2) = Uine( — 2) —7 229 / T (— 25 — 2)k dz;j). (66)

As expected, the integral terms in (66) are similar to the one in (8) for single mode case.
For an  illumination by a monopole at  (2/,y,2’=h), when
Uine( — 2) = e P2 JER(— 2) with R( = /P2 + (2 + h)?, these terms are
given by e’ Z*”)jg(p, —z—h) for g = gj, Wthh has been studied in section 3 for
arbitrary g and k, so that we can write (61) in general for |arg(ik)| < /2.

This expression can be used, by superposition principle, for arbitrary sources which are

combinations of monopoles.
5) The generalization to electromagnetic case with multimode boundary conditions

The problem is more complex in electromagnetism because of the polarization of the
field. However, it can be reduced for a large class of multimode boundary conditions.
Following R.F. Harrington [23, p.131] in 1961 (see also [1, p.19] in 1964), we can write
the electric field £ and the magnetic field H satisfying the Maxwell equations, with two

scalar potentials £ and H, following
E = —ikrot(HZ) + (grad(div(.)) + k%) (E2)
JEUH = ikrot(£2) + (grad(div(.)) + k2)(H?2) (67)
€0
where (A + k?)€ = 0 and (A + k?)H = 0 outside the sources, with k = w, /g€, the

constants €y and pp being respectively the permittivity and the permeability of the

medium above the plane. These equations, developed, give us



22

¢ L OH  [m, _ OH . 0€

E"’:axaz_z Ay’ g x_8w82+Zk8_y’
0%E OH PH . OE
Ey = Oy0z k% €0 HJ Aydz Zkf)_x’
28, oH
E.= o5+ K8, R = Sk (68)

Thereafter, we denote (Eine, Hine) and (Es,Hs) the potentials corresponding to the
incident field and the scattered field, and write (E,,/ 22 H)(2) = L(ZE,ZH)(z).

We then consider the class of multimode boundary conditions on an isotropic plane,

0
(_ - ikge')Ez,tot|z=0 = O,
jljll 0z 1
Lo
H(% - ikg?)Hz,tot|z:0 =0, (69)
j=1

which corresponds to the reflection coefficients for the principal polarizations 7'M
(components of electric field E in the plane of incidence) and T'E (components of

magnetic field H in the plane of incidence), given by,

N cosp — ¢¢
_ J
Ry (p) = H cosp 1 g
7=1 J
L cosp — 97
Rente) = ][ (70)
o1 Cosyp + g

where ¢ is the angle of observation with the normal Z [1]-[3]. This class of problem
corresponds to the reflection by a substrate with different layers composed of isotropic
media, or more generally, of uniaxial anisotropic media with principal axis along z [1]-
[3]. From the symmetry at normal incidence, we notice that the condition

Rrg(0) R | lp'[l_ (71)
TE - T]U +gj - 1+

is satisfied, which implies, for monomode conditions (N = P = 1), that g{ = 1/g".

Following the boundary conditions on the field, we have the conditions
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82 2 al 8 . 82 2 N a y
(@ + k ) E(g — Zk?g])gs(Z) = (ﬁ + k )}1(& + Zkgj)ginc( - Z)
82 2 o 0 -7 h 82 2 = 0 7. h inc
(5 +h )]Hl(& —ikg))Hs(2) = (55 ++) ]”1(@ +ikgi)H"™ (= 2) (72)

for z > 0. We can then choose to search the two scalar potentials & and H, satisfying
the Helmholtz equation as =z >0, regular and vanishing as 2z — oo when
larg(ik)| < /2, which satisfy

E: 0 0
11 —ikaHa(z) = 11(5; + ikgj Hine( = 2) (73)

Consequently, we can use an approach similar to the one previously used in acoustics,
with

u < & with g; < g, u < H with g; < g.? (74)

in (66), with scattered field components verifying the conditions (a)-(b), if we have a
correct definition of the scalar potentials (&;,c, Hinc). We then study the expression of
the potentials (&, Hinc) attached to the incident field radiated by an electric or a
magnetic dipole of arbitrary orientation.

5.1) A new expression of potentials (E;n,cyHinc) for arbitrary source

We begin with searching (., Hin.) for arbitrary dipole, reducing the expression to a

finite combination of known special functions, then we express potentials for any source.

5.1.1) An artificial parameter g to reduce the determination of (E;pcyHine)

Let us consider the incident field (E, H) at r of coordinates (z,y, z), radiated by an
electric or magnetic dipole source, J = Jyd(r — ') or M = Myé(r — r'), of arbitrary
direction at 7’ of coordinates (', %/, 2’), where we first take z’ = 0 to simplify. We have,

from appendix D,
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= rot(GxM) + —(grad(dlv( )) + k3 (GJ)

\/71-[— \/7rot(G*J) k(grad(div(.))+k2)(G*M) (75)

*1k\//> +22 . .
where G = — £ yy e with p = /22 + y?, and = is the convolution product.

We search the scalar potentials &;,. and H;,., satisfying the Helmholtz equation as
+ z > 0 and vanishing at infinity when |arg(ik)| < 7/2 when =+ z — oo, which gives
us

E = (grad(div(.)) + k:2)(5m(2) — ikrot(Hin: 2)

/:—SH = ikrot(Eme ?) + (grad(div(.)) + &) (Hine 2). (76)

To simplify, we first take M = 0. We choose to use an original approach in the sense of
the limit. So, we introduce an artificial parameter g, and consider the equations

i 2
B.(2) = % (@ad(div)) + ()5 = (7 + (kg))E, (),

2
Ho H. (2)= — \/’l:j;)’irot(J)*G = (86— + (kg)* YHy(2), (77)

€0

with (A + k?)(&,, H,) = 0, that &, and H,,, satisfy when g — 1 from (74)-(75).

Lemma 5.1. One of solutions of (77) satisfies,
i (2 (grad(div(.)) + k*)(Jo.),ik Z rot(Jy.))

EoMy) = 26 8migk Wo
_ { JOI' o JOy . JOZ 92
- wgeq (8m'k: (Oz; Zkay) + 8mik (azy’ ikor) + g o 8mik (02 + 0))Wg (78)
where,
W, = (e ﬂkng;(ik(V —r'|+2))+ eﬁk"’z(E](ik(V —r'|F2) - (79)
— 2K, (ik g*p)) + O(g — 1)),

is a function whose factor Ky(ik+\/1 — ¢g?p)) diverges as g — 1.
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Proof. To solve (77), we begin by noticing that, for + z > 0, we can write G(z) in the

form

+ico+-arg(ik) '
G(Z) — / Vb(ﬂ)e:mkzcosﬁdﬁ —
0

82 " ) +ico+arg(ik) 6:Fikzcosﬂ 1 1 J
N (@ + (kg) )/0 Vo(5) 2gk? (cosﬂ-l—g a cosﬂ—g) 6 (80)

Comparing (77) and the second line of (80), we use (11)-(13), and obtain the following
solution, as £+ z > 0,

(% (grad(div(. 2 N ikt ‘
(gg;Hg): w60( (g d(d ()) ;jkz(Jo ), k Ot(JO ))

0 0
(/ e 9% G(z; £ 2)kd(z;) — / e G(zj £ 2)kd(2j)) (81)
for arg(ik) = 0. We can then consider 7, in (16) and its expansions (26) and (31) to
express (81) for arbitrary k. So, as g — 1 is small, we can write (78) with (79).

We remark the divergence of the expression as ¢ — 1. However, we can modify (79) and

suppress diverging factors which have no influence on the field.
5.1.2) Expression of (E;nesHinc), and suppression of diverging factors

Proposition 5.1. 4 definite expression of the potentials &;,,.(r) and H;,.(r) in the region
+ 2 > 0, for the field radiated by arbitrary bounded sources J and M in the domain

F 2z >0, |arg(ik)| < 7/2, when (76) and (77) apply, is given by

E Ho . 9 .
— d(div(J kJ, ik rot(J
o (/ E gradldin 1) + 2 ik ron() +

+ (— ik rot(M), grad(div(M)) + E*M))xW = S:k:QE(\//eZSJ’ M)W, (82)

(ginca Hmc) ==

where

W(r) = ("B (ik(r| + |2)) + e MU E ik (Ir] - |2]) + 2Inp))  (83)

with |r| = \/p?* + 22 and p = \/x* + y?> at r(z,y, 2).
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Proof. The electric field E,, attached to the potentials ( &, H,), as + z > 0, satisfies

i N
Eg - m(x(JOI(aZQ(?xQ o k2ay2) + JOy(a’Ey(aZZ + k2)) + J(]z(aatz(az2 + kQ))

+ @(Jox(axy(azz + kQ)) + Joy(azzayz — ]{7281,2) + JOZ(&,Z(@Zz + ]{32)>
+2(Jox (052 (02 + k) + Joy(02y (022 + k) + J0.((022 + k) (9,2 + E2))W,  (84)

when M, = 0, and the magnetic field is given by H, = ﬁrot(Eg). We can complete
(84), from (A + k)W, = 0, with

(0,20,2 — kQayz)Wg = (0,2 + k‘Q)(azz + k’Q)Wg
(az28y2 — k)2axz)Wq = (3y2 -+ k?Q)(@Zz —+ ]{JQ)WQ (85)

so that, using (9.2 + (kg)*)W, = G, we recover the known expression of field in
function of JyG as g — 1.

We then use (84)-(85) and verify that some part of W, given in previous lemma, which
diverges when g — 17, can be regularised. So, considering WV, and the behaviour of K|

as g — 1, we begin by writing

T Ko (ik\/1 — ¢2p)) = (e7" Ko (ik\/1 — ¢°p)) + e ¥ Inp) —
_ eq:zkzlnp (86)

The contribution of (e¥#9° K (ik+/1 — g2p)) + eT**Inp) to the field given by (84)-(85)
vanishes when g — 17. Indeed, we notice that,as g — 17,

(A + k) (7™ Ko (ik /1 — g?p)) + 7" np)) =
= —271(eFh97 — TR ()6 (y) — 0, (87)

where 6(w) is the Dirac delta function [1], and

2
(o R Ko ik /T #p) + ™*Inp) =

= k(1 — ¢*)Ko(ik\/1 — g2p) — 0. (88)
We can then formally suppress this term in (86), as we let tend ¢ — 17, so that we obtain

1% (grad(div(Jy.)) + k*(Jo.), ik rot(Jo.))

weg 8mik

(Eine, Hine)(r) = W(r — r/) (89)

where

W(r) = (eF* B\ (ik(|r| & 2)) + eT* (B, (ik(|r| F 2)) + 2Inp)) as =2z > 0 (90)
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From 0,,F;(w) = — e " /w, the reader can verify by inspection that the conditions
0? W(r) e~ klrl
k2 = _ A + k2 = 91
(822 + k) mik Ar|r|’ (& +E)W(r) =0 (o1)

are satisfied when =+ z > 0, and that all derivatives of WV are regular in these domains.
In the same manner, this method can also be applied with M instead of J, and
generalised for arbitrary combination of dipoles in the domain F z > 0, so that we
obtain (82) with (83)as £+ z > 0.

It is worth noticing that we have A,,In(p) = 0 for p # 0, which implies that Inp in (90)
has no influence on the expression of the field except by its singularity at p = 0. It is then

possible to consider WW(r) as the generalized function

W(r) = ™ (Er(ik(|r] + 2)) + 2fe (7] + 2)lnp) + e (B (ik(|r] — 2)) +
+2fa(|r| = 2)np) (92)

where fg(fl)(w) — 0 when ¢ — 0" for w >0, except that f, (0) =1, ¢ >0 (for

- 1112 . . . . . .
example, f. (w) = e~ ) ). This latter expression is even in z, and it can be used in
place of previous one in (83) to obtain the scalar potentials in the whole space outside the

sources.
5.2) Expression of the potentials (€5, H ;) for a multimode plane with Jg eh
J

We have obtained an expression for the potentials (&, Hine) attached to the radiation of
arbitrary sources, and we can now express the scalar potentials & and H, which satisfy
the boundary conditions (73), for scattered field components verifying (69) and (a)-(b),

with 7, defined in section 3.

Proposition 5.2. The potentials E;(r) and Hy(r) at r(x,y, z), for arbitrary bounded
arg(ik)| < w/2, verify as z > 0,

sources J and M above the multimode plane,
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2 grad(div(J)) + k*J
5S(x,y,z) = gmc(.f,y, - Z) + ((—g ( ( ))

weg 8k +
x> Z

V +€IC ))(xvya _Z)
e=—1,1 j=1 g] )

(—ikrot(M)) "
8tk

x| W

= gmc(x,y, — z) + ((z grad(div(‘])) +k°J ( — ik I’Ot(M))

| W

weg 8k * 8k )
> (L -+ Y gy 2) (93)
* - et e Y, —
e=—11 j= 1€—g] j= l(gj_e)
and
B 2 (ikrot(J)) = 2 (grad(div(M)) + k*>M)
Hs(xaya Z) - HZTZC(LE? y? Z) + ((WEO 87Tk + k 87Tk )*
P h
Y Z (Ve + €K h))(x,y, —2)
e=—1,1 j= 1 j )
B 2 (ikrot(J)) = Z (grad(div(M)) + k>M)
- HZTLC(x7 y7 Z) + ((WE() 87Tk + k 87Tk )*
P ¢4 gh eath ;
« > (1 J+1v+z 2)(@,y, — ) (94)
=11 j=1€¢— gj g] €)
where V., K, and the a;’h satisfy
Ve(p, z) = G*Eikz(Ez(ik(W —€z)) + (1 — e)lnp), Ky(p, z) = e " Fy(p, )
L cosf — g oh aj’h P gjh + gf’h
H eh L+ ZCL ’ eh = - “eh b (95)
=1 cosf + g; = COSﬂ +g" 7 24 2 9 — i

Proof. We first let arg(ik) = 0. As indicated in (74), we can then use (66) of the section
4 on acoustic case, and write,

(ES,H )( ) = (gmcaHmc)( - )

P
. e_—1i —ikglz;
- / Z aje "M 75”“’2“.?6 595 e ) (= 2 — 2)kd(2)) (96)
—iTj00 =

where the a;’h satisfy (95).

If we consider J = Jyé(r — 1), M = Myd(r — '), with (2,3, 2/ = h) in (91), the
principal terms we need to reduce are of the type,
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O 2, h
190 = gt / e MW (= 2 — 2 — h)kd(z))
—1T;00
0
= — ia?h(z e“k(”h)/' e_ik(gfh_e)sz1(ik(R( —z—2zj—h)+
e=—1,1 —ITj00
) ik(z+h) ’ fzk(gethl)zj
+e(z+ 2+ h)))kd(2)) + 2¢” Inp [ g kd(z;)) (97)

that we can express, after integration by parts, in the form,

eh _ eh
I =qa (Z

RN By (ik(R(— 2) 4+ e(z 4+ h))) N 2e "=+ np
e,h

(5" =) (95" +1)
qu§ h(z+h) 0 , —ikR(—z—z;)
—ikgi" (zath) € T g
+ 5 g R
_ eh (e“FEHN (B (ik(R( — 2) + e(2 + h))) + (1 — €)e * EHNnp))
= a7y ( o
e=—1,1 (g] 6)
ikg| (Z+h)jg¢.h,(p, —z—h)
+ E’.hJ _ ) (98)

The function J, has been studied in section 3 for arbitrary g and k, and the expression of
I;’h in (98) with qu,h is general. It is regular when gj’h # —1 and is valid as
larg(ik)| < w/2. Letting |r| = \/m, and using (98) in (96), we obtain (93) and
(94), for z > 0, where we have used (95). These formulas can be used for arbitrary
bounded sources J and M above the plane. In other respects, using the properties of 7,
the reader can verify by inspection that each component of the scattered field given by

these potentials satisfes the condition (a)-(b).

Moreover, we can add the condition (71), and thus consider in previous expressions,

H6+g£:—H€+g]~ (99)

=195 €= 9

Let us remark that (&;,.( — 2), — Hin( — 2)) are the potentials attached to the field
scattered by a perfectly conducting plane with ¢¢ = 1/g" — 0, N = P = 1. Besides,
since derivatives of potentials are contained in the expression (66) of the field, it is worth

noticing that, from the Helmhotz equation satisfied by the potentials and by
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e M ikgZ,, the functions to

7, = ettt 7. (p. — 2 — h), and from (11), 9,7, = G

calculateare only J .» and 0,7 .
J J

6) Conclusion

We have developed simple exact expressions of the field scattered by a multilayered
medium modelled by a boundary condition of high order with active and passive modes,
for general sources, in acoustics and in electromagnetism. We begin by studying the
scattering for a point source illumination in acoustic scalar problem for a one mode plane
with arbitrary impedance, passive or active, then the total field for a multimode plane,
which is a combination of contributions of each modes. Different difficulties restrict the
use of expressions known for a one mode passive plane, and we give here a novel exact
expression for arbitrary case that we develop. Our analysis is then applied in
electromagnetism, where we give a new expression for the scalar potentials in
electromagnetism without diverging terms, for arbitrary sources in free space, then the

one for the scattering by an imperfectly reflective plane with passive and active modes.
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Appendix A : On some properties of the reflection coefficient and its zeros g;

In section 2, we consider a plane, composed of several homogenous layers on a perfectly
reflecting plane, and its reflection coefficient, related to a component of an incident plane

wave [1],

_ cosf— Z,(5)

R(B) = cosB+ Z.(B)

(A1)

In (A.1), Z,(pB) is the ratio of the normal derivative d,,u with iku, where w is the total
field component and [ is the angle of incidence with the normal Z. Denoting U1y
m =1, 2, ..., M, the field component u at the top of layer m of thickness d,, and
wavenumber k),;, we can generally write [1]

(bm—lanum—l) _ ( COS(’I]mdm> SmSIH(nmdm)) (bman,um) (AQ)

Cm—1Um—1 - Sin(nmdm)/sm COS(nmdm) CmUm
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where the coefficients of the matrix have no cuts and are meromorphic functions of cos/3,
even when 7, and s,, have cuts [1]-[3], and b,,, c,, are constants. If, at the last interface

denoted M, we have

8,1U(M) — Z'kMZMU(M) =0 (A3)

where Z) is a constant, we derive from (A.2) that Z, = 0,u/ikysu is meromorphic. It is
in particular the case with Z; = 0 or oo which corresponds to a perfectly reflecting
plane. Let us notice that if we have dj; — oo and some loss in the last layer, Z, is no
more meromorphic and has generally a cut in complex plane [3].

Letting W, = b, 0pun /[ (Cnti) » tanay,, = Wy, /s, we have

Wi/ s$m + tan(n,d,,)

W1 =s = sptan(n,,d,, + «

ml " 1 - (WnL/57rL)tan(77mdm) " (nm " m)

Sm+1
tana,, = W, /sm = : tan (9,4 1dmi1 + Q1)
m
7; Rm+1 + €_2i(nm+ldm+1+am+l) Sm — Sm+1 A
Ay = 511’1(1 —24( d 1ta ))7 Rm-i—l = ( 4)
+ Ryi1€ Nm+1Gm+17+m+1 Sm + Sma1

with Z,- = &,,u/iku = — iCOWO/kao, and ZM = &,,uM/ikMuM = CMW]\/[/ikaM.
The reader will notice that by iteration we can simply express a; and thus the reflection

coefficient R in function of the elementary reflection coefficients Rq, Ro,...,Ras.

In acoustics, we have

gradp = —iwpv, dive = —i—5p (A.5)

(S

where p is the pressure and v is the particle velocity, in a medium with density p and bulk

modulus B, and thus, when u = p,

1
bm - yCm = 1; Sm = — 77m/(wpm)a Mm = kO \/,Omr/er - SiHQﬁ, (A6)
wWPm
!
Z, = tan (1, d .
kop1r an(md; + o)

where p = pm/pos Bir = B /Bo, ko = w+/ po/Bo, while, in electromagnetism,
rotH = iweF, rotE = — iwuH (A.7)
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and thus, when v = H,(if H = (H,,0,0) is normal to the incidence plane), we have

1

by = —cm = 1,80 = — N/ (wen), Mm = ko\/emrumr — sin2(3,
Wem
im
Z, = tan(mch + 041) (AS)
koety

where €y = € /€0, fimr = fim /o, Ko = wy/€opio. Since E. = 9, H,, we notice that,
foru=FE., b, =1, c,, = we,,.

Let us consider the solutions g; = cosf; of cos3; — Z,.(3;) = 0, j > 1, with |g;41| > |gj]-
For €, and py, # 1, Img; is bounded. In other respects, we notice that, when there is no
loss in layers, w is real and 7, is purely imaginary, we have Z,.(6)* = — Z,(8*) and
R(B) = (R(B*)7")*. In this case, if g; is a zero of R, then ( — g;)* is too. Besides, for a
simple layer backed by a planewith Z; = 0 (resp. Z; = o0), we notice that a; =0
(resp. ay = m/2). In this case, we notice that g; ~ w/(kod;) for large g; where w
satisfies — kobi /citan(w + o) = ikoby/co, in lossless case, the number of g; purely
imaginary that can be found graphically when p;, > 1 or €, > 1 (usual case in

electromagnetism) is odd.
Appendix B : On the functions v,,

The function v,,, used in section 3, is defined following

va(2) = 2" (n —1) / / 22/ _dz..dz=dz

:znl/z %dt—/:oi(t— z)""Ldt. (B.1)

tn

where |argz| < 7. We can develop (¢ — z)" "1, and obtain
icm /OO gt = i (“D"n=Dlp () (B2)
Un(2 o T Ll (n— 1 —m)! m ‘

For small z, this gives us,

un(2) = lnz_7+zm'n—1n—_ni)) i—FO(zlnz)

1+a)m ! —1
= —lnz—’y+/ 1+2) dz 4+ O(zInz)
0

T

= —1Inz — ¥(n) — 2y + O(zlnz) (B.3)
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where U(n) is the digamma function, U(1) = — ~, and ¥(n) ~ Inn when n is large,
with v = .57721... (Euler's constant).

For large z, we use an integration by parts,

Un(2) = /:O - (t— )"‘1dt=/m(—l)"‘l(e—f)w—l)#dt
_ (7’1, - 1)' & (27’L -2 - ) Zm: 1 )n—m—l—p

=t L=ml(n — 1 —m)! e (n—m—1-p)!p!

En+p(z) (B'4)

which gives us

e *(n—1)!

vy (2) ~ o

(1+0(2)) (B5)

In other respects, from [25, p. 505], v, is related to the Whittaker function W5, ¢(2)

and thus to the confluent hypergeometric function ¥(n, 1, z), also denoted U (n, 1, z),
00 (¢ n—1
U (2) :/ %e—tdt =e*(n—1)IU(n,1,2) (B.6)

In this respect, we can also use [25]
(n—12*U(n,1,2)= —U(n—2,1,2)+2n+2-3)U(n—1,1,2) (B.7)
so that, for n > 3,

(n—1Dvp(2z) = (2n — 3+ 2)v,—1(2) — (0 — 2)v,_2(2) (B.8)
(n—Dw,(2) = (2n — 3+ 2)w,—1(2) — (n — 2)w,—2(2) + zE1(2)

where v1(z) = F1(z), v2(2) = E1(2) — Eo(2), w,(2) = v,(2) — E1(2).
From Temme [26, p.65], we have

vn(2) ~ 2e 7 (e2K((2+/nz)) as n is large,  fixed (B.9)
remark :
We notice that,
Un(2) — Sn—p(Z) E(z)
sp(2) = —————— = — + —, (B.10)
2" Hn —1)! ;p!(—z)p (n—1)!I( —z)rt
L (e o) | B
where, since ) == =0 for n>2,we have h,(z) = — ) =5 + o and
= n—p—1)!p! = (n—p)! (n—1)!

hi(2) = 0, when hy (2) = (— 2)"'s,(2) — S Ba(2).
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Concerning general properties of E,, we have E,(z) = +(e™* — zE,_1(z)), and [25]

Ei(z) e & (m—1)

E,(2)=(—-2)"! - — (=)
Ei(z) = (1+0(1/z)) forz > 1,
z
E(z):—y—lnz—i(_l)nn for z small (B.11)
! “~  nnl ’ '
Appendix C: another asymptotics when Reg > 0
We give here some other asymptotic expression of
—ikR(—2) 0 —tkR(—2z1—2)
e N
s =75 T2t Thon ), C.1
’ Mﬂ—@*‘w/;we R(—z—2)" -y
whenReg > 0and R(— z) = /1?2 + (2 + h)? is large to complete section 3. We notice

22sin?p
R(—z1—2)+R(—z)+z1c0osp

that, R(— 21 — z) — (R( — 2) + z1co8p) = < 1.In this case, if

e—ik(R(—:l—z)—(R(—z)+z1cos;,;))
kR(—z—z)

welet f(—z1 —2) = which is a smooth function, an integration by
parts gives us,

e—ikR(—z)

cosp —g 2g ( cosp (sinp)? )
ER(—z) cosp+g ikR(—z) (g+cosp)? (g+ cosp)?

e—ik‘(g—i—cosgp)zl 6n—1f( _— Z)
~ (ilg+cosp)) D(kz)

‘ 0 —ik(g+cosp)z; anf( _— Z)
+ 2igieFR(-2) / € kd C2
igie (g T oosp))t  Olkayr K (2

Ug =

) +

as given by Maliuzhinets in [7].
Appendix D : expression of the field radiated by J and M sources

Considering the Maxwell equations with electric and magnetic sources J and M,
otk = —iwugH — M, rotH = J +iwegE, with k = w, /o€y, we can write [1]

= rot(GxM) + —(grad(dlv( )) + k3 (G*J)

\/7H = — \/jrot(G*J) k(grad(div(.)) + k*)(G*M) (D.1)

where (A + k2)G(r) = 6(r), G(r) = — e *I"l /4x|r| (time convention e™*), with * the
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convolution product. This expression is used in section 5. Notice that (grad(div(.)) + k?)
can be replaced by rot(rot(.)) outside the sources. For electrical or magnetic dipole,
J = Job(r — ") or M = My6(r — '), we obtain for r # r/, using that rot(grad(.)) = 0
and grad(upgrad(G)) = (upgrad)(grad(G))),

E = grad (G(r — 1')) A My + — ((Jograd,) (grad,(.)) + k*Jo) G(r = 1)
€0

H= —grad,(G(r — ")) AN Jo + wL/;()((Mogradr)(gradr(.)) + E2My)G(r — r')D.2)
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