Existence of nontrivial steady states for
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Abstract

We prove the existence of nontrivial steady states to reaction-diffusion equa-
tions with a continuous parameter appearing in selection/mutation/compe-
tition/migration models for populations, which are structured both with re-
spect to space and a continuous trait.
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1 Introduction

We are interested in this work in the steady solutions to models of population
dynamics in which the population is structured both w.r.t. the space variable
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x (here, x € ©, a bounded regular open set of IR") and a trait variable
denoted by v (here, v € [0, 1] for the sake of simplicity).

The distribution function f := f(¢,z,v) > 0 shall then denote the number
density of individuals at time ¢t € R+, p031t10n x € (Q, and whose trait is

€ [0,1]. We also denote by p(t,x) fo f(t,z,v)dv the total number of
individuals at time ¢ and position z.

This paper is concerned with an integro-PDE model of reaction-diffusion type
in infinite (continuous) dimension in which selection, mutations, competition,
and migrations are taken into account.

Our modeling assumptions are the following: migration is described by a
diffusion (w.r.t. z) operator with a rate v := v(z, v) [that is, individuals with
different traits or at different positions can have a different migration rate];
mutations are described by a linear kernel K* := K*(z,v,v") > 0 which
is related to the probability at point z that individuals with trait v’ have
offsprings with trait v; selection is implemented in the model thanks to a
fitness function k* := k*(z,v) > 0 which may depend on both point x and
trait v; finally a logistic term involving a kernel C* := C*(x, v,v") > 0 models
the competition (felt by individuals of trait v) at point x due to individuals
of trait v'.

Under those assumptions, the evolution of the population is governed by the
following integro-PDE:

of

1
a(t,x,v) —v(z,v)A.f = k'(x,v) f(t,z,v) + /K*(x,v,v’) f(t,x,v") dv
0

—f(t,z,v) /C*(:c,v,v') f(t,z, ")y dv'.  (1.1)
0

For a mathematical study of eq. (1.1), we refer to [DFP|.

Our goal in this paper is to investigate the existence of (non-trivial) steady
states for eq. (1.1), that is (non-zero) solutions to the following non-linear,



elliptic integro-PDE for f := f(x,v) (where x € Q, v € [0, 1]):

—A,f(x,v) = k(z,v) f(z,v) +/K(az,v,v’) f(x,v") dv

1

—f(x,v)/C(x,v,v')f(x,v') dv’, (1.2)

0

where k(z,v) = k*(xz,v)/v(z,v), K(z,v,v") = K*(z,v,v")/v(z,v), and
C(z,v,v") = C*(z,v,v")/v(z,v). This study will be carried out assuming
moreover that the population is confined to the region Q, that is f := f(z,v)
satisfies the homogeneous Neumann boundary condition:

Vo € 09, V.f(z,v) - n(z) =0, (1.3)

where n(x) is the outward unit normal vector to 02 at point x.

We use in the sequel coefficients which satisfy the following assumption:
Assumption A

e The selection and mutation parameters k := k(z,v) and K := K(z,v,v’)
satisfy

1
ki, k>0 VeeQvel01], HJ_§k;(x,v)+/K(x,w,v)dw§/{+;
0

(1.4)

e The competition kernel C' := C(x, v, ') satisfies

C,C, >0: VreQuv el0,1], C. <Cx,v,v) <0y (1.5)
Our main result reads

Theorem 1 Let ) be a smooth bounded subset of RN (N € IN), and K, C, k
satisfy Assumption A. We suppose moreover that K,C,k are continuous on
Q. % [0,1],(x[0, 1], for K,C).

Then there ezists a function x +— p, in L>(£,) with values in the set of
bounded nonnegative measures on [0, 1], such that:



For a.e. x € Q, a:=— < (g, v— 1), < = :=b. (L.6)

For all € € CR([0,1]), (2 — (e, €)0) € H' (), (1.7)

where C2([0,1]) is the space of functions & € C*([0,1]) such that £'(0) =
§'(1) =0.

. The function
v € [0,1] — (g, C(x,v,+))y (1.8)
s continuous uniformly w.r.t. x € €.

. The measure-valued function p is a weak solution of eq. (1.2), (1.3) in
the following sense: for all p(x,v) := (x)é(v) with ¢ € HY(Q,) and
&€ ce(o 1),

/ V() - Vo ({1, €)0} da
Q

- /(,,LI, k(x,) §)¥(x) do

[ [ K ) 60) dovia) do (L9)
Q 0

- / </“‘Iv v = §(v) (e, C(, 0, '))v/>U1/1(:L’) dx.

Q

Note that all terms are well-defined thanks to estimates (1.6), (1.7), and

This result can be improved in situations when mutations are somehow pre-
dominant, as shown by the following

Theorem 2 Let Q) be a smooth bounded subset of RN (N € IN), and K, C, k
satisfy Assumption A. We suppose moreover that K € L>(€2 x [0, 1] x [0,1])
and that

C
o> ||k poo- (1.10)



Then, there exists [ := f(x,v) € L®(Q x [0,1]) such that A,f € L®(Q x
[0,1]), f is mnonnnegative, and f is a weak solution to eq. (1.2), (1.3) in
the following sense: for all ¢ := ¢(x,v) in H'(Qy; L*([0,1],)) (i.e. ¢, V.0 €
L*(Q x [0,1])),

Q/jV;;;(b-szdvdx = Q/O/Ik¢fdvdx+Q/O/lo/leﬁf(x,v')dv’dvdx

_Q/O/O/C¢f(x,v)f(:c,v')dv'dvda:.

We now put these results in perspective. On one hand, models of selec-
tion/mutation/competition for populations structured w.r.t. a continuous
trait were studied (especially from the point of view of their large time be-
havior) in [DP], [DJMR/, [R], [Cal, etc. On the other hand, the very rich
subject of reaction—diffusion equations with a finite number of equations has
been the subject of innumerable studies (cf. [Ro| and [S] and the references
therein). Extensions to an infinite (enumerable) number of such equations in
the context of coagulation-fragmentation models can be found for example
in [LM1].

Models involving infinite "continuous" dimensional reaction-diffusion equa-
tions were studied in [LM2, CDF1, CDF2|, and the large time behavior of
such equations in the presence of a Lyapunov functional was established (cf.
[CDF1]).

The present work is a first step towards the extension [to infinite-dimensional
(continuous) reaction-diffusion equations modeling selection/mutation/com-
petition/migration] of two of the above research directions: of results on the
large time behavior of the spatially homogeneous models [DP|, [DIMR], [R],
[Ca| on one hand, and of models with Lyapunov functionals, as in [CDF1],
on the other hand. The absence of a Lyapunov functional in the considered
model (1.1) makes our analysis much more difficult than the one performed
in [CDF1]. Hence, we present here only existence results for steady states of
equation (1.1) (but we shall not study their stability).

As when looking for nontrivial steady states of finite-dimensional reaction-
diffusion equations, one needs topological tools. Here, we shall use Schauder’s
fixed point theorem (cf. [S]) for an approximate problem, together with a
(weak) compactness method for removing the approximation.



The paper is organized as follows: In §2 we prove existence of nontrivial
solutions to problem (1.2), (1.3) in the space of measures (that is, Theo-
rem 1). In §3 we prove Theorem 2, that is, when mutations are predomi-
nant, the solutions to (1.2), (1.3) obtained in §2 lie in the Sobolev space
L*([0,1],; H*(€2)). In the numerical examples of §4 we illustrate the effect
of the diffusion strength on the steady states.

2 Stationary Solutions

The proof of Theorem 1 uses a compactness method based on the following
regularized equations (with € > 0):

—(Ag [+ 20, f°) = k[ +/Kf5(v’) dv' — fE/CfE(v’) dv', (2.1
0 0

Vo € 09, v € [0, 1], V. f(x,v)-n(x) =0, (2.2)

Vo €, Opf(2,0) = 0pf(x,1) = 0. (2.3)

These boundary value problems have solutions thanks to the following

Proposition 1 Let Q be a smooth (C?) bounded domain of RY (N € IN),
and K,C, k satisfy Assumption A. Then for all € > 0, there exists a strong
solution f¢:= f*(x,v) € ﬂ W2 (Qx]0,1]) of (2.1)-(2.3).

n>0

Moreover, [ is nonnegative and satisfies (for a.e. x € Q)

1
a = g—; < /f’g(x,v) dv < % = b. (2.4)
0

Proof of Proposition 1: We establish this result thanks to Schauder’s fixed
point theorem. In order to do so, we introduce (for § > 0) on one hand the
linear operator Ls defined by the elliptic Neumann problem (with constant
coefficients)

(Id_(;Am —55612,)([/5]0)(1‘,1)) = f(x,v), (25)
Vo € 0Q,v € [0, 1], Vo(Lsf)(z,v) - n(x) =0, (2.6)
Vo € Q, Op(Lsf)(2,0) = 0y(Lsf)(x,1) =0 (2.7)
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And on the other hand we define the (nonlinear) operator Ns, 6 > 0, by
Ns(f)(z,0) = fl(z,v)+dk(z,v) f(z,0) + 5/K($, v,v') f(z,v")dv'

—5f(a:,v)/C(:L’,v,v')f(a:,v') dv'. (2.8)

Then the boundary value problem (2.1)-(2.3) is equivalent to the fixed point
problem

LsNs(f%) = [*. (2.9)

Next, we introduce the bounded convex (nonempty) closed subset

Y =< fel'(Qx[0,1])|f>0, ae x€Q, aS/f(:c,v)dvgb

(2.10)

(for a, b defined in (1.6)) of the Banach space L'(Q x [0,1]).

We now prove the

Lemma 1 The operator LsNs maps Y into itself as soon as d > 0 is small
enough.

Proof of Lemma 1: Note first that (for f > 0)

/N(; fldv<(1+4dky) /fdv—éC (/fdv) ) (2.11)
/N(; fldv>(1+6k) /fdv—50+(/fdv) . (2.12)

We now choose 0 > 0 sufficiently small for the following inequality to hold:

b < 1+ 0k

< 5c, (2.13)



Then, the functions h; and hy: Ry — R defined by

hi(y) == (14 8Ky )y — 6C_5° (2.14)
and

ho(y) = (14 §k_)y — 6C, (2.15)

are monotonously increasing on [0, b] (note that 12;50’1* < 12’(;50"“_*), and hy(b) =
b, ho(a) = a.

Now, if f € Y, we know that a < [ f dv < b. According to (2.11) and
(2.12),

h2</fdv) g/Ng(f)dvghl(/fdv), (2.16)

so that (using the monotonicity of hy and hy)
a=hs(a) < /N(;(f) dv < hy(b) = . (2.17)
But
Ns(f) dv
— (a6, — 5:02) (Las( ) do
— (1= 88,) [ LaNi(s) o,

and for z € 0¢),

V{/L(;N(;(f)(x,v) dv} -n(z)

= /vx[L(;Ng(f)](fL‘,U) -n(z) dv
=0.

Then, by a standard maximum principle applied to the solution [ LsNs(f)(z,v)dv
of a Neumann elliptic problem, we see that

a < /LgNg(f)(SL’,U) dv <b. (2.18)



In order to conclude the proof of Lemma 1, it remains to show that LsNs(f) >
0 for 6 > 0 small enough.
Using again the maximum principle (but this time on the domain Qx]0, 1[)
for the elliptic operator Id —JA, —d£0?, we just have to show that Ns(f) > 0
(for 6 > 0 small enough).

But

1
Ni(Ha) = f0) [1-6 [ Cla o)) ao
0
> f(x,0)(1 - 56C,b),
so it is enough to choose § < CLM This concludes the proof of Lemma 1. [J

We now turn to the proof of

Lemma 2 As soon asd > 0 is small enough, the operator LsNs is continuous
and compact on'Y (as a subset of the Banach space L*(Q2 x [0,1])).

Proof of Lemma 2:

Note first that Ls is a bounded operator on L'(Q2 x [0,1]) (cf. Prop. 13 of
§11.8.4 in [DL|, Comments on §IX in [Br|). Moreover, for fi, fo €Y,

HMUD—%%WUS//O+M@wﬂﬂaw—ﬁ@wmwx
+5/// K(z,v,0") | fi(z,0") — fo(z,v")| dv dv' dx

+5/// Clx,v,0") | fi(z,v) fi(z,v") — folz,v) folx, V)| dv dv' dz
< [T+ 6(ky +20C)] || fr = follro-

It remains to prove that LNy is compact. For this, we observe that according
to the proof of Lemma 1, Ns(Y) C Y when 6 > 0 is small enough, and that
Ls sends L*(Q x [0,1]) in W2=1(Q x [0,1]) for all n > 0 (cf. [BG|: Th. 3.1.5,
Warning 3.1.9, Remark 3.1.11).

This concludes the proof of Lemma 2. O

End of the Proof of Proposition 1:

9



Then, the existence of a solution (in ﬂ W21 (Q x [0,1]) NY) to eq. (2.1)
n>0
—(2.3) is a consequence of Lemmas 1, 2, and Schauder’s fixed point theorem

(cf. [S]) used for (2.9) and 6 > 0 small enough. This concludes the proof of
Proposition 1. [

Remark 1: Before turning to the proof of Theorem 1, we observe that so-
lutions to (1.2), (1.3) are sometimes only measures: Consider indeed the
coefficients k := ky > 0, K := 0, C' := Cy > 0. Then, all distributions of the
form f(z,v) = k—%u, where p is a nonnegative bounded measure on C([0, 1],)
with (i, 1) = 1, are solutions of eq. (1.2), (1.3), that is

AL = kof — Cof / f v,
Vo € 0Q, V.f-n(xz)=0.

We now turn to the

Proof of Theorem 1: We start from a sequence of solutions f¢ = f*(z,v),
e > 0 to the regularized problem (2.1) — (2.3) given by Proposition 1. Hence
(2.4) holds.

As a consequence, we can extract from f¢ a subsequence (still denoted by
f¢) such that

£5 =0 1in L(Q,; MY([0, 1],) weak *, (2.19)

where 1 is some function z +— p, of L*°(€),) with values in the set of (non-
negative) bounded measures on [0, 1] (denoted here by M]). This means that
for all functions p € L'(Q,; C([0,1],)),

//1 fo(x,v) p(z,v) dvde — /</~Lx790(37,-))v do.

Note that x +— p, clearly satisfies estimate (1.6).

Next, we prove property (1.7). Let ¢ lie in C2([0, 1]). Then, multiplying (2.1)
by £ and integrating with respect to v, we get

~A, / fedv—e / £ du

_ / keSS du+ / K () (') dv dv’ — / Ce(w) ) F2 () dv dv.

10



Multiplying now this equation by [ f°¢dv and integrating with respect to z,

Vx</f5§dv) dx—g/</f€g”dv) (/ffgdv) dx
_ /(/kgffdv) (/ffgdv) dx
+/</ K &) do fo(v )(/fegdv)d:c
- /(//Cgv Fo(v) F (o) dvdv) (/f%@)dx.

Then, remembering that k, [ K(-,w,)dw,C,&,£" are bounded and that f¢
satisfies (2.4), we immediately see that

v.( [rea) 2

+ UKl e I8l 70 2] + 7

dx < eb||¢] 18" [l 22

/K(-,w,~)dw

Letting £ go to 0, we recover the property (1.7). Note that thanks to (2.4),
J fe&€dv is bounded in L*(Q2), so that x — (u, &), lies in L*(Q) (by (2.19) it
is even in L>(2)).

IENZ0 122 (2.20)

Lo

+ O[Cll<[I€IIZ<€2-

We now introduce our test function ¢(z,v) = ¥ (x)&(v) with ¢ € HY(Q), € €
C?(]0,1]), and we rewrite problem (2.1) — (2.3) in the weak form:

/Vx@/) {/f*f;m }d:p—s//fexv” %) dv d
//fsscv z,v)é(v)(x) dv dx

+// () K (2, 0,0 ) (o) () dv o dae (2.21)

—// fe(z,0) fo(z,0") E(0) Cz,v,0") Y(x) dv dv’ da.
9!

11



Then, it is easy to pass to the limit in the (linear) first four terms (using
estimate (2.20) for the first one), and we only need to show that we can also
pass to the limit in the (nonlinear) last one:

Lemma 3 The following result holds:

//lfe(x,v) §(v)/1fs<x,v/) Clz,v,0)dv' | dvp(z)de  (2.22)

[ Gpev = €00) (s Ol ), v0) e =20

Q

Proof of Lemma 3: Due to the uniform continuity of C' (and estimate
(2.4)), the function v — fol feé(z,v")C(x,v,v") dv' is continuous, uniformly
with respect to ¢ > 0 and = € Q. Hence, v — (u,, C(z,v,-)), is also con-
tinuous (uniformly w.r.t. x € Q) that is, (1.8) holds. As a consequence, the
second part of the Lh.s. of (2.22) is well-defined.

Now we estimate the Lh.s. of (2.22) by
// o (x,v) (x) E(v) /fe(x,v’) Clx,v,0") dv" — (pig, C(z,v, ) | dvdz
Q0 0
+ [ (@, 0) (@) §(v) (pa, C(2, v, ) dv dz (2.23)
[l

—/OmvH§WOmC D). ()

Q

The second term tends to zero since (z,v) — ¥(x)(v) (e, C(2,v,))y is a
test function in L*(,; C([0, 1],)). Then, the first term of (2.23) is bounded by
Ol[ 2@ 1€l L | K< [l 2@, where

= sup /f6 z,0") C(z,v,0") dv' — (g, C(z,0, )| . (2.24)

ve[0,1]

12



The property ||K.|[z2 — 0 when € — 0 can be shown by first approximating
C(z,v,v") by a sequence

W(x,v,0") Za] v)c;(v') € span {C(Q,) x C([0,1],) x C2([0,1],)}

such that C,, — C uniformly. Then we estimate

Rn 1
1Ko <) gl l1b]l e /fa(fﬁ,v’)cj(v')dv’—(Mmcj%f
Jj=1 0

L2(92)

# G = Ol | [ ey e+ ]|

L2(Qa)
where the last term is bounded by 2||C,, — C||1~b|Q2|/2. The first term tends

to 0 as ¢ — 0 for all fixed n € IN since z — fol fe(x,v") ¢j(v") dv' is bounded
in H'(Q) due to (2.20), and therefore compact in L?(2) (strong). O

As a consequence of Lemma 3, the limit of (2.21) as ¢ — 0 yields (1.9). And
this finishes the proof of Theorem 1. (]

3 The case when mutations are predominant
We develop in this section the

Proof of Theorem 2: We once again pass to the limit when ¢ — 0 in the
regularized problem (2.1) — (2.3) in order to get a solution to problem (1.2),
(1.3). In order to do so, we multiply (2.1) by (f¢)? (p > 1) and we integrate
with respect to x and v.

13



We get

//\V ez, 0) |2 (f(z, )P~ ldazdv+6p//|8 fe(x,0) | (f(x,0))P do dv

// 2, 0) (f2(z,v))P dz dv

// K(z,v,0") (f¢(z,0))? f*(x,v") do dv dv’

00Q

_ /1 j / C(x,v,v") (f(z, v))P+ £z, o) da dv do’ .

00Q

Due to Proposition 1, the solution f¢ > 0 satisfies (2.4), and hence:
p [ [IVar o (o) dodo < [Kllu=b [ [ 15 0P dse (1)

+(||k‘||Loo—aC'_)/ | fe (2, )P dx dv.

So, under hypothesis (1.10), which can be rewritten as aC_ > ||k||z,
we see (using (3.1) for p = 1) that f° is uniformly bounded (w.r.t. €) in

HY(Qu: L2([0,1),)) = {f € L2 x [0, 1],) ) V. f € L2(Q x [0,1],)}.
Moreover, for any p > 1,

K[ b
aC — ||k

£l <

12112

so that letting p — +oo, we see that f< is bounded in L>(2, x [0, 1],)). Hence,

we can extract from the family (f¢).-o a subsequence still denoted by (f%).~0
such that f¢ — f in H*(Q,; L*([0,1],)) weak and L>°(Q, x [0,1],) weak *.

As a consequence, for all ¢ € H'(%; L*([0,1],)) such that ¢, 0,0, ¢ €
C(Q, x [0,1],) and (for all z € Q) d,p(x,0) = Jyp(x,1) = 0, we can write

14



the weak form of (2.1) — (2.3):

//v fo xcpdvdx—e/()/fexv 20 dv dx (3.2)
//kf6¢dvdx+ O/Kff o) dv/dv da

11

~ / / / C £ () 20 p(v) du'dv da.

Q00

Then, we can pass to the limit (as € — 0) in the following terms:

//fo€~vx<pdxdv - //v Voo dedo,
- / F¥Ohip da dv
//kfapda;dv ~ //kﬁpda;dv
/ / K f(a0) (a,0) do dv dv - — / / / K f(,0!) ol v) dar do o'

We now wish to prove that

///C(x’“’v/) fe(z, ") f5(z,v) p(a,v) de dv dv’
- ///C(%Ua?}/)f(ﬂfav')f(ﬂfav) o(x,v) dx dv dv'.

We write therefore

///C(x’v’vl) [e(z,v") f(z,v) p(x,v) de dv dv’

/ F2(x,0) [ / Clz,v,0") fo(z,v) p(z,v) dv| &' da, (3.3)

and observe that since f© — f in L weak *  we only need to show that (up to
a subsequence) [ C'fpdv strongly converges in L'(Q x [0,1],/) to [ C feodv.
To this end we use the following lemma (with s(z,v,v’) := go(a: U)C(:c v,v')):

15



Lemma 4 Let (f¢).~0 be a sequence converging in H'(Q,; L*([0,1],)) weak
towards f, and s = s(x,v,v") € L*(Q, x [0,1], x [0, 1],).

Then, a subsequence (still denoted by f€) satisfies

/fe(:c,v) s(z,v,v")dv — /f(a:,v) s(z,v,v")dv  strongly in L'(€2,x[0, 1],).

Proof of Lemma 4: We first observe that

/fe(x,v)f(v) dv — /f(a:, v)&(v) dv in L'(Q,). (3.4)

Then, we approximate s (in L?(£2, x [0,1], x [0,1],/)) by a sequence
(x,v,0") Za (') € span {C(Q,) x C([0,1]) x C([0,1])} .

We see that

//'/[fg(x’”)—f(%v)]s(a:,v,v’) dv

[nf Loz + 11l 2o, ]||sn—s||mxx[omx[o”)

+§I|a?c?||mo/'/[f’f(x,v)—f(a;,v)] b (v) dv
j=1 o

dx dv'

dz.

Thanks to (3.4), the second term tends to 0, hence [ fs dv converges to
[ fsdvin L'(2, x [0,1],/). This ends the proof of Lemma 4. O

Finally, we can pass to the limit when ¢ — 0 for all the terms in (the
weak form (3.2) of) problem (2.1) — (2.3), and get a weak solution f to
eq. (1.2), (1.3), for test functions ¢ € H*(€,; L*([0,1],)) such that moreover

@, Oyp, 0%p € C(Q, x [0,1],) and (for all z € Q) dyo(z,0) = dyp(x,1) = 0.
These last assumptions can easily be removed thanks to an approximation
procedure. Note that these additional assumptions on ¢ were only used to
treat the term e 0% f° which disappears in the limit. As a last remark, note
that since f € L>®(Q x [0, 1]), we also have A, f € L>*(Q x [0, 1]). O
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Remark 2: Theorem 2 shows that smooth solutions of problem (1.2), (1.3)
exist when mutations are predominant. Our feeling is that in many situations,
all steady solutions of this equation are smooth when mutations are present
(i.e. K > 0). This is supported by the study of the time-dependant equation
(1.1) with suitable initial and boundary conditions, cf. [DFP|.

4 Some numerical examples

We present here some computations which illustrate the results obtained in
§2. In particular we show the influence of the diffusion strength on the shape
of the steady states.

More precisely, we chose to use the following parameters for the selection,
mutation, and competition:

k(x,v) = A3z —12(v — 1/2)?), K(z,v,0") =0,

, 10A

Clz,v,0v") = 512 (0 —v)E

Note that this choice of k does not satisfy the positivity assumption from
(1.4) on the whole (z,v)-domain. It would, however, hold on an appropriate
subdomain. Anyhow, the above fitness function k prefers one single trait (at
v = %) On the other hand, the competition kernel C' favors a clear splitting
of population into well separated traits. This example hence illustrates the
balance between these two opposing effects.

The computation is performed on the square [0, 1] x [0, 1] by letting ¢t — oo
in the time-dependent equation (1.1), (1.3). We use 200 cells in the z-space
and 200 cells in the v-space. The time step is adjusted in order to obtain a
CFL parameter of 0.396. We use a semi-implicit finite difference scheme (the
0-th order part of the equation is discretized in an implicit way, but not the
diffusion part).

We present results obtained for A = 107, 10°, 105, 10* where 1/A plays the
role of the diffusion coefficient in (1.2). The surface that defines the (quasi)
stationary solution is presented at two different angles so that the shape
of the solution is clearer. The coordinate = corresponds to the vertical axis
and the coordinate v to the horizontal axis in the figures on the left. The
graduation from 0 to 200 corresponds to the numbering of cells.
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The first figure (A = 107) corresponds to a case in which the diffusion is very
small, so that its solution is very close to the case without diffusion which
can be computed explicitly (cf. [DJMR]): for 2 small, the function of v is a
Dirac mass at v = 0.5, for x bigger, it is the sum of two Dirac masses, and
for x large, it is the sum of three Dirac masses (one of them sits at v = 0.5).
Note the quite sharpe transitions (in x) between the regions populated by
individuals with one, two, or three traits.

In the other figures, the diffusion w.r.t. x entails the presence of individuals
with various v in the whole domain x € [0,1]. This is particularly clear in
the last figure, where the diffusion is strong enough to build a "five-modal"
function of v at point z = 1.
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