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Abstract. This paper is devoted to the establishment at the formal level of an expansion leading
from gas-particles (also called Eulerian-Lagrangian) models for monodisperse thick sprays towards
multiphase flows models (also called Eulerian-Eulerian). This passage to the limit is done through
a Hilbert type expansion involving an inelastic collision operator whose kernel only consists of
distributions in velocities and internal energies which are Dirac masses.

1. Introduction

Sprays are flows involving a continuous gaseous phase and a disperse phase (typically liquid)
whose volume fraction is not too big. We consider in this paper only monodisperse sprays (that is,
the disperse phase is constituted of droplets which all have the same radius r). Moreover, we shall
also suppose that all droplets are incompressible and that no evaporation occurs, so that r will be
in the sequel an absolute constant.

We denote by α := α(t, x) ∈ [0, 1] the volume fraction of gas at time t ∈ R+ and point x ∈ Ω
(Ω being a subset of R

3). The underlying assumption when one writes such a quantity is that the
volume 4

3 π r3 of a typical droplet is much smaller than a small (but macroscopic) elementary volume
of fluid. We say that the spray is thick (Cf. [O’R81]) when 1−α(t, x) is not negligible in at least part
of R+×Ω (typically 1−α(t, x) >> 10−3) but not too big either (typically, 1−α(t, x) ≤ 0.2 at worst).
In such a situation (that we shall assume from now on), one can write a set of equations in which α
is one of the unknowns (this is not the case in so-called thin sprays, where the approximation α ∼ 1
is performed).

We denote by ρg := ρg(t, x) ∈ R+, p := p(t, x) ∈ R+, ug := ug(t, x) ∈ R
3, eg := eg(t, x) ∈ R+,

Eg := Eg(t, x) = eg(t, x) + 1
2 |ug(t, x)|2 ∈ R+ and Tg := Tg(t, x) ∈ R+ the respective density (of

mass), pressure, velocity, internal energy (per unit of mass), total (internal + kinetic) energy (per
unit of mass), and temperature of the gas. When the gas is inviscid, the following set of balance
laws is written down for the quantities ρg, ug and Eg ( [O’R81]):

∂t(αρg) + ∇x · (αρgug) = 0 ,(1)

∂t(αρgug) + ∇x · (αρgug ⊗ ug) + ∇xp = −A,(2)

∂t(αρgEg) + ∇x ·
(

αρg

(

Eg +
p

ρg

)

ug

)

+ p∂tα = −B1 − B2,(3)

where A is the momentum transfered to the (elementary volume at time t and point x of) gas by the
dispersed phase and B1, B2 constitute the corresponding (resp. mechanical and thermal) transfer.

The density in the phase space f := f(t, x, up, ep) ≥ 0 of droplets which at time t and point x have
velocity up ∈ R

3 and internal energy ep ∈ R+ satisfies the following Vlasov-Boltzmann equation:

(4) ∂tf + up · ∇xf + ∇up
· (fΓ) + ∂ep

(fφ) = Q(f, f),
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where Γ and φ represent the transfer of momentum and energy of the gaseous phase on a given
droplet (which at time t and point x has velocity up ∈ R

3 and internal energy ep ∈ R+). Accordingly,

(5) mpΓ = −mp

ρp
∇xp − D (up − ug); mpφ = Φ (Tg − Tp),

(6) A =

∫∫

up,ep

mpΓ f dupdep,

(7) B1 =

∫∫

up,ep

mp

(

Γ +
∇xp

ρp

)

· up f dupdep,

(8) B2 =

∫∫

up,ep

mpφ f dupdep,

where mp is the mass of one droplet, ρp is the density of the liquid constituting the droplets
(mp = 4

3 π r3 ρp, and mp, ρp, r are absolute constants), and Tp is the temperature of the droplet.
In (5), the term D (up − ug) models the drag. The drag coefficient D is in general a function of ρg,
|ug − up| (and also r, ρp and the molecular viscosity of the gas [this last quantity being neglected
in the equation of momentum of the gas]).

Also in (5), the term Φ (Tg − Tp) models the thermal exchanges between the droplets and the
gas. The coefficient Φ in general depends upon the thermal viscosity of the particle and the Nusselt
number (and therefore upon r, |ug − up|, etc.).

The system is closed thanks to the constitutive equations of the gas and the liquid:

(9) p(t, x) = P1(ρg(t, x), eg(t, x)), Tg(t, x) = T1(ρg(t, x), eg(t, x)),

(10) Tp = T2(ep),

and the identity for the volume fraction of droplets:

(11) 1 − α(t, x) =
4

3
πr3

∫∫

up,ep

f(t, x, up, ep) dupdep.

The set of equations (1) –(11) is sometimes called “Gas-particles” or “Eulerian-Lagrangian”. From
the mathematical viewpoint, it consists in coupling the compressible Euler equation of fluid dynamics
with the Vlasov-Boltzmann equation of kinetic theory, through:
i) the exchange of momentum and energy between the phases,
ii) the volume fraction of gas α.

A different kind of modeling is possible for sprays, in which the density in the phase space f of
droplets is replaced by macroscopic quantities, namely: the density (of mass) ρ := ρ(t, x) ∈ R+ of
liquid, its velocity v := v(t, x) ∈ R

3, its internal energy (per unit of mass) e := e(t, x) ∈ R+, its
total (internal + kinetic) energy (per unit of mass) E := E(t, x) = e(t, x) + 1

2 |v(t, x)|2 ∈ R+ and
its temperature T := T (t, x) ∈ R+. The set of equations for those quantities write ([Ish75])

(12) ∂t(αρg) + ∇x · (αρgug) = 0,

(13) ∂t(αρgug) + ∇x · (αρgug ⊗ ug) + α∇xp = −Ã,

(14) ∂t(αρgEg) + ∇x ·
(

αρg

(

Eg +
p

ρg

)

ug

)

+ p∂tα = −B̃1 − B̃2,
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(15) ∂t((1 − α)ρ) + ∇x · ((1 − α)ρv) = 0,

(16) ∂t((1 − α)ρv) + ∇x · ((1 − α)ρv ⊗ v) + (1 − α)∇xp = Ã,

(17) ∂t ((1 − α)ρE) + ∇x ·
(

(1 − α)ρ

(

E +
p

ρ

)

v

)

+ p∂t(1 − α) = B̃1 + B̃2.

Those balance laws are completed by the constitutive equations of the gas (similar to (9))

(18) p(t, x) = P1(ρg(t, x), eg(t, x)); Tg(t, x) = T1(ρg(t, x), eg(t, x)),

together with the constitutive equations of the liquid (incompressible) phase

(19) T (t, x) = T2(e(t, x)), ρ(t, x) = ρp.

Finally, the transfer terms Ã, B̃1, B̃2 of momentum and energy write

Ã = −(1 − α)
ρ

mp
D̃ (v − ug), B̃1 = −(1 − α)

ρ

mp
D̃ (v − ug) · v,

B̃2 = −(1 − α)
ρ

mp
Φ̃ (T − Tg).

The terms Ã, B̃1, B̃2 respectively represent the drag force term, the deposit of the drag force
term in energy and the thermal exchanges. The constants D̃, Φ̃ respectively represent the drag
force coefficient and the thermal conduction coefficient. They can be fitted using experimental data
and in general depend upon α, v − ug, etc . Note that systems like (12) – (19) appear not only in
the theory of sprays, but also in many other kinds of multiphase flows (stratified, churning flows,

etc.), the transfer terms (like Ã, etc.) depend in general of the type of flows which are considered.

Our goal in this work is to provide a clear scaling which enables to derive “rigorously at the
formal level” macroscopic equations such as (12) – (19) from “gas-particles” equations such as (1) –
(11). This is done after having obtained a non-dimensional version of eq. (1) – (11) under suitable
assumptions on the flow: basically, the collision term Q appearing in (4) must be dominant. This
exactly corresponds in the context of standard kinetic theory to the Hilbert expansion, in which 1

ε
is put in front of the collision kernel, and which leads from the Boltzmann equation of rarefied gases
towards the compressible Euler equations of fluid dynamics (Cf. [KMN79] for a rigorous proof in
the context of very smooth solutions on a small time interval, and [Gol05] for a general survey on
the question).

Our paper is structured as follows: in section 2, the gas-particles equations are specified in detail,
including the collision kernel Q (representing elastic or inelastic collisions). Then, a non-dimensional
version of those equations is provided in section 3. The distributions which cancel Q are described
in section 4. Finally, equations for the macroscopic quantities (for both phases) are written down,
first in a non closed form in section 5, and then in closed form in section 6. A typical example
of modeling of an experiment with realistic data is presented in section 7. Some conclusions and
perspectives are presented at the end of the paper (section 8).

2. Presentation of the gas-particles equations and the elastic or inelastic

associated collision kernels

We recall here the main assumptions that we presented in the introduction of this work about
the flow we consider.

We assume that the flow is constituted of a surrounding gas and of a dispersed liquid phase. This
phase is itself assumed to be of relatively small volume fraction (typically between 10−3 and 0.2),
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and to be constituted of very tiny spherical incompressible droplets having all the same radius r
(that is, the spray is monodisperse). The flow inside the droplets is not modeled.

As stated in the introduction, a system which models the spray under this assumption can be
devised by considering the unknown f := f(t, x, up, ep) ≥ 0 for the droplets and ρg := ρg(t, x) ∈ R+,
ug := ug(t, x) ∈ R

3, p := p(t, x) ∈ R+, Eg := Eg(t, x) ∈ R+ for the gas. The set of equations is then
(1) – (11), and it remains to precisely define the collision operator Q.

2.1. Formula for the collision kernel. The assumptions that underly the establishment of this
operator are the following: First, since the spray is monodisperse, no complex phenomena of coales-
cence or breakup of droplets are considered. For the same reason, all collisions are supposed to be
binary (that is, two droplets are present at the beginning of the collision and produce two droplets
at the end of the collision).

Then, since droplets are macroscopic objects, the cross section will be that of hard spheres. For the
same reason, kinetic energy conservation during the process of collision is not expected in general.
As a consequence, one needs to write down a model in which part of the kinetic energy is lost:
models of granular media (Cf. [Vil02]) provide a good solution for that (with small modifications
due to the fact that here drolplets are liquid and not solid).

Moreover, since the internal energy of the droplets is one of the variables in f , one needs a rule to
exchange internal energy during the process of collision: models for polyatomic gases (Cf. [Des97])
provide a simple solution for this physical phenomenon.

Finally, the kinetic energy which is lost has to be converted in internal energy, and to be dis-
tributed between the two outgoing droplets. Since those droplets have the same volume, we choose
to divide it equally.

Collecting all those ideas, we end up with a collision kernel which writes

(20) Q(f, f)(t, x, up, ep) =

∫∫∫∫∫

σ∈S2,up
∗
∈R3

ep
∗
∈R+

(

1

1 − a

1

β4
f(t, x,′ up∗,

′ ep∗) f(t, x,′ up,
′ ep)

. − f(t, x, up∗, ep∗) f(t, x, up, ep)

)

× 1{′ep,′e∗p≥0} r2 |up − up∗| dσdup∗ dep∗,

where the pre-collisional velocities ′up∗ and ′up are defined as

′up =
up + up∗

2
+

1

β

|up − up∗|
2

σ,

′up∗ =
up + up∗

2
− 1

β

|up − up∗|
2

σ,

where σ belongs to the unit sphere S
2, and

∫

σ∈S2 dσ = 4π. The pre-collisional internal energies ′ep∗
and ′ep are defined as

′ep =
2 − a

2 − 2a
ep −

a

2 − 2a
ep∗ −

1

2
∆E,

′ep∗ = − a

2 − 2a
ep +

2 − a

2 − 2a
ep∗ −

1

2
∆E,

where

(21) ∆E =
1

2
(′up

2
+ ′up∗

2 − up∗
2 − up

2) =

(

1 − β2

4β2

)

|up − up∗|2

is the loss of kinetic energy (or gain of internal energy) [divided by mass].
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In those formulas, β := β(|up − up∗|) is a measure of the inelasticity of the collision (the collision
is elastic when β = 1), and a := a(|up − up∗|) is the parameter which measures what part of the
internal energy is exchanged during a collision (no internal energy is exchanged when a = 0).

Note that the prefactor 1
1−a

1
β4 is related to the Jacobian of the pre-collisional transform (up, ep, up∗, ep∗) 7→

(′up,
′ ep,

′up∗,
′ ep∗), and to the cross section of hard spheres. The model presented here is reminis-

cent of models appearing in granular gases, where the collisions concern solid particles. The main
difference is that here, the loss of kinetic energy, due to viscosity effects in the liquid constituting
the droplets, is the same in all directions.

2.2. Weak form of the collision kernels. The following weak form of the collision kernel can be
obtained (at the formal level) (see [Bar04b] and [Des93]):

For all test function Ψ := Ψ(up, ep),
∫∫

up,ep

Q(f, f)Ψ(up, ep) dupdep

=

∫∫∫∫∫

up,ep,up
∗
,ep

∗
,σ

ff∗
[

Ψ′ − Ψ
]

r2 |up − u∗
p| dupdepdup∗dep∗

=
1

2

∫∫∫∫∫

up,ep,up
∗
,ep

∗
,σ

ff∗
[

Ψ′
∗ + Ψ′ − Ψ∗ − Ψ

]

r2 |up − u∗
p| dupdepdup∗dep∗,

(22)

with the following formulas for the post-collisional velocities and internal energies:

u′
p =

up + up∗
2

+ β
|up − up∗|

2
σ, up

′
∗ =

up + up∗
2

− β
|up − up∗|

2
σ,

e′p =
2 − a

2
ep +

a

2
ep∗ +

1

2
∆E, ep

′
∗ =

a

2
ep +

2 − a

2
ep∗ +

1

2
∆E

(remember that ∆E is defined in (21) and that Ψ′
∗ := Ψ(t, x, up

′
∗, ep

′
∗), etc.).

Specializing the weak formulation to the functions Ψ(up, ep) = mp,

Ψ(up, ep) = mpup and Ψ(up, ep) =
1

2
mpu

2
p + mpep, we get the conservations

of mass, momentum and total energy :

(23)

∫∫

up,ep

Q(f, f)(up, ep)mp dupdep = 0,

(24)

∫∫

up,ep

Q(f, f)(up, ep)mp up dupdep = 0,

(25)

∫∫

up,ep

Q(f, f)(up, ep)

[

1

2
mpu

2
p + mpep

]

dupdep = 0.

Moreover, for elastic collisions (that is, in the case when β = 1) -in which both kinetic and
internal energy are conserved-, we have

5



(26)

∫∫

up,ep

Q(f, f)(up, ep)

[

1

2
mpup

2

]

dupdep = 0,

(27)

∫∫

up,ep

Q(f, f)(up, ep) [mpep] dupdep = 0.

3. Non dimensional form of the Vlasov-Boltzmann equation

We write down in this short section the dimensional analysis which enables to obtain the Hilbert-
like expansion for the Vlasov-Boltzmann equation (4). In order to do so, we first introduce the
following time/space typical quantities:

• tg: typical time of the experiment,
• L: typical length of the experiment.

Next, we introduce quantities related to the gas and the droplets (remember that r, mp, ρp are the
radius, mass and density of droplets, and that D, Φ are the coefficients for drag force and thermal
exchanges)

• N : typical number of droplets of the experiment,
• V : typical mean velocity of the droplets. We shall assume that it is also the typical thermal

velocity of the droplets [that is, the square root of the variance of the velocity distribution],
and the typical velocity of the gas. One has V tg = L.

• Ip: typical internal energy of the droplets per mass unit,
• Ig: typical internal energy of the gas per mass unit,
• TT : typical temperature of the droplets. We shall assume that it is also the typical temper-

ature of the gas.
• P : Typical pressure of the gas
• P ′ = ρp V 2: this quantity has the dimension of a pressure

It is customary to introduce at this level the mean free path σ = L3

r2 N
. Finally, we denote by ε the

Knudsen number ε =
σ

L
. This quantity is at the basis of the Hilbert expansion: it is supposed to

tend to zero in the hydrodynamic limit (see [Cer88] and [CC70]).

The orders of magnitude of the terms appearing in (4) are then given by the following formulas:

• Time derivative term:

∂tf ∼ N

Ip V 3 L3

1

tg
.(28)

• Transport term:

∇x · (fup) ∼ N

Ip V 3 L3

V

L

∼ ∂tf.(29)

• Pressure term:

∇up
·
(∇xp

ρp
f

)

∼ N

Ip V 3 L3

V

L

P

P ′

∼ P

P ′ ∂tf.(30)
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• Drag force term:

∇up
·
(

D

mp
(up − ug)f

)

∼ N

Ip V 3 L3

D

r3 ρp

∼
(

D tg
r3 ρp

)

∂tf .(31)

• Energy exchange term:

∂ep

(

Φ

mp
(Tg − Tp) f

)

∼ N

Ip V 3 L3

Φ TT

r3 ρpIp

∼ Φ TT tg
r3 ρpIp

∂tf.(32)

• Collisional term:

Q(f, f) ∼ r2V Ip V 3

(

N

Ip V 3 L3

)2

(we recall that we use the hard sphere cross section)

∼ 1

ε
∂tf.(33)

We now introduce non-dimensional quantities (denoted with a tilde) for the unknowns and pa-
rameters entering eq. (4). That is, we consider

t̃ =
t

tg
, x̃ =

x

L
, ũp =

up

V
, ẽp =

ep

Ip
, T̃p =

Tp

TT
,

f̃(t̃, x̃, ũp, ẽp) =
IpL

3V 3

N
f(tg t̃ , L x̃ , V ũp , Ip ẽp),

for the particles and

ũg(t̃, x̃) =
ug(tg t̃ , L x̃)

V
, T̃g(t̃, x̃) =

Tg(tg t̃ , L x̃)

TT
, ẽg(t̃, x̃) =

eg(tg t̃ , L x̃)

Ig
, P̃ (t̃, x̃)

p(tg t̃ , L x̃)

P

for the gas.

The equation satisfied by f̃ then becomes

∂t̃f̃ + ũp · ∇x̃f̃ + ∇ũp
· (f̃ Γ̃) + ∂ẽp

(f̃ φ̃) =
1

ε
Q(f̃ , f̃),(34)

where

Γ̃ =
P

P ′ ∇x̃p̃ + C2 (ũp − ũg) ,

φ̃ = C3(T̃g − T̃p),

C2 =
D

mp
tg,

C3 =
ΦTT tg
mpIp

.

We shall now study the limit of eq. (34) when ε → 0. We see that this limit makes sense when
the typical parameters of the experiment under study are such that
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from (28) and (29) , 1 ≫ ε,(35a)

from (30) ,
P ′

P
≫ ε,(35b)

from (31) ,
mp

D tg
≫ ε,(35c)

from (32) ,
mpIp

ΦTT tg
≫ ε.(35d)

A typical situation appearing in the nuclear industry where those assumptions are fulfilled is
described in [Mat06].

4. Solutions of Q(f, f) = 0

In order to pass to the limit (at the formal level) in eq. (34) when ε → 0, we study the solutions
of the functional equation Q(f, f) = 0.

4.1. Elastic collisions and Maxwellian distribution. We suppose in this subsection that all
collisions are elastic (that is, we assume that β = 1) so that Q(f, f) takes the simpler form (w.r.t.
(20))

Q(f, f)(up, ep) =

∫∫∫

σ∈S2,up
∗
∈R3

ep
∗
∈R+

(

1

|1 − a|
′f∗

′f − f∗f

)

χ′ep,′e∗p≥0(ep, e
∗
p) r2 |up − up∗ | dσdup∗ dep∗

with the pre-collisional velocities

′up =
up + up∗

2
+

|up − up∗|
2

σ, ′up∗ =
up + up∗

2
− |up − up∗|

2
σ,

and the pre-collisional internal energies

′ep =
2 − a

2 − 2a
ep −

a

2 − 2a
ep∗,

′ep∗ = − a

2 − 2a
ep +

2 − a

2 − 2a
ep∗.

Here, we use the standard notations ′f∗ = f(t, x,′ up∗,
′ ep∗), etc.

In this model, both kinetic and internal energy are conserved during the collisions (that is, (26)
and (27) hold). Note that the collision kernel presented here differs from the standard Boltzmann
operator (of rarefied monoatomic gases, with hard spheres cross section) only by the taking into
account of the exchange of internal energy between the droplets. Boltzmann’s H-theorem takes in
this case the following form:

Lemma 4.1 (H-theorem for the elastic kernel). If f := f(up, ep) is a positive measure with compact
support in ep (and a function of up such that all the integrals below make sense) and the ther-
mal exchange parameter a := a(|up − up∗|) satisfies 0 < a ≤ 1, then the following properties are
equivalent:

(1) There exists a strictly convex function Ψ in C∞(R+) such that

∫∫

up,ep

Q(f, f)(up, ep)Ψ(ep) dupdep = 0,(36)

and the following inequality holds:
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∫∫

up,ep

Q(f, f)(up, ep) log(f(up, ep)) dupdep = 0;(37)

(2) Q(f, f) = 0;
(3) One can find Z, T > 0, v ∈ R

3 and e > 0 such that

(38) f(up, ep) =
Z

(2πT )
3

2

exp

(

−(up − v)2

2T

)

δep=e(ep).

The parameters Z, T, v, e represent the respective number of droplets, mean velocity of droplets,
mean internal energy of the droplets, collective temperature of the droplets (with no direct
link with the temperature Tp of each individual droplet).

Proof of Lemma 4.1: As usually, (3) ⇒ (2) ⇒ (1) is a consequence of direct computations. It
remains to prove that (1) ⇒ (3).

In order to do so, we consider f a positive measure with compact support in ep which satisfies
relations (36) and (37). Then the tensor product f ⊗ f is also a positive measure with compact
support in ep and ep∗ . Furthermore, the support of f ⊗ f [w.r.t. ep, ep∗ ] is linked to the support of
f [w.r.t. ep] through (see [Hor90] or [Sch66])

(39) supp(f ⊗ f) = supp(f)× supp(f).

Let Ψ be the strictly convex function in C∞(R+) which satisfies (36), that is, using a transparent
notation,

< Q(f, f)(up, ep),Ψ(ep) >= 0.

Using the properties of the collision kernel (see subsection 2.2), one gets (with Ψ′
∗ := Ψ(e′p∗),

etc.):

< r2 |up − up∗|f ⊗ f,Ψ + Ψ∗ − Ψ′ − Ψ′
∗ >= 0.

The function Ψ is strictly convex and 0 <
a

2
< 1, so that the following relations are satisfied for

ep 6= ep∗ :

Ψ((1 − a

2
) ep +

a

2
ep∗) <

(

1 − a

2

)

Ψ(ep) +
a

2
Ψ(ep∗),

Ψ((1 − a

2
) ep∗ +

a

2
ep) <

(

1 − a

2

)

Ψ(ep∗) +
a

2
Ψ(ep).

As a consequence, the function

K(ep, ep∗) := Ψ(ep) + Ψ(ep∗) − Ψ
((

1 − a

2

)

ep +
a

2
ep∗

)

+ Ψ
((

1 − a

2

)

ep∗ +
a

2
ep

)

is strictly positive except when ep = ep∗.

We now prove that the support of f ⊗ f w.r.t. (ep, ep∗) is restricted to a single point or empty.

Note first of all that if the support of f ⊗ f is empty, then the measure r2 |up −up∗|f ⊗ f is equal
to zero and (38) is satisfied with Z = 0.
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We now suppose that the support of f ⊗ f is not empty. Let χ := χ(up, ep, up∗ , ep∗) be a test
function in D (R3 × R

+ × R
3 × R

+) which vanishes in a neighborhood of the set A defined by

A =

{

(u1, e1, u2, e2) ∈ R
3 × R

+ × R
3 × R

+/e1 = e2

}

.

Since χ vanishes on a neighborhood of A, we can define the function K1 := χ
K (with K1 extended

by 0 on A) in such a way that K1 belongs to D(R3 × R
+ × R

3 × R
+), and

(40) |up − up∗ |f f∗ χ = (|up − up∗ |f f∗ K)K1 = 0.

Since (40) holds for all χ vanishing in a neighborhood of A, the support of f ⊗ f is contained in A.
We conclude that the support of f w.r.t. ep is restricted to one point thanks to (39). Since we

now know that f is a positive measure in ep whose support in ep is restricted to a point, we end up
with f having the following shape (see [Hor90]):

f(up, ep) = µ(up) ⊗ δep=e(ep),

where µ is a positive measure.

It remains to find the shape of µ. Since the measure f is a Dirac mass w.r.t. ep, the expression of
the collision kernel is exactly similar to the formula for the Boltzmann collision kernel of monoatomic
rarefied gases in the case of hard spheres. It is well-known that only Maxwellian functions of up

(see [Cer88]) are such that
< Q(f, f), log(f) >= 0.

This ends the proof of Lemma 4.1. �

4.2. Inelastic collisions. We now study the case of inelastic collisions, that is when β := β(|up −
up∗ |) ∈ [0, 1[.

We recall that the kernel under study is given by formula (20). The computation of the exchange
of kinetic energy leads to

(41)

∫∫

up,ep

Q(f, f)
1

2
mpu

2
p dupdep = −

∫∫∫∫∫

up,ep,up∗ ,ep∗ ,σ

1 − β2

8
ff∗

× r2 mp|up − up∗|3 dσdup∗dep∗dupdep ,

so that the effect of inelastic collisions is to concentrate the velocities of the droplets.
We begin with a lemma showing that Q(f, f) = 0 only when f is a Dirac mass w.r.t. the velocity.

Note that in absence of internal energy exchange, the convergence towards a Dirac mass is rigorously
proven in [Vil02], [BGP04] or [FM05] for solutions of the spatially homogeneous Boltzmann equation
∂tf = Q(f, f), for models of granular media which are close in spirit to the model studied here.

Lemma 4.2 (Equivalent of the H-theorem in the inelastic case). Let f be a positive measure. Then,
the following properties are equivalent:

(1) < Q(f, f), up 7→ u2
p >= 0 (with obvious notations);

(2) Q(f, f) = 0;
(3) there exists some positive measure µ and v ∈ R

3 such that,

(42) f(up, ep) = δup=v(up) ⊗ µ(ep).
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Proof of lemma 4.2: It is clear that (3) ⇒ (2) ⇒ (1). We now prove that (1) ⇒ (3).

Note first that r2|up − up∗ |f ⊗ f is a positive measure. We assume that

< Q(f, f), up 7→ u2
p >= 0,

so that

(43)

∫∫

up,ep

Q(f, f)
1

2
mpu

2
p dupdep = −

∫∫∫∫∫

up,ep,up∗ ,ep∗ ,σ

1 − β2

8
ff∗

× r2 mp|up − up∗|3 dσdup∗dep∗dupdep = 0.

Using eq. (43), we prove that the support of f (w.r.t. velocities) is restricted to one point at
most. In order to do so, we assume that the support of the measure is not empty. Let χ :=
χ(up, ep, up∗ , ep∗) be a test function in D (R3 ×R

+ ×R
3 ×R

+) which vanishes in a neighborhood of
the set A:={(u1, e1, u2, e2) ∈ R

3 × R
+ × R

3 × R
+/u1 = u2}.

Since χ vanishes in a neighborhood of A, we can define the smooth function K := χ
|up−up

∗
|3

(extended by 0 on A). Then,

f ⊗ f χ = (f ⊗ f |up − up∗ |3)K = 0.

Since this is true for every χ which vanishes in a neighborhood of A, the support of the distribution
f ⊗ f is contained in A.

Finally, we use the property (39): if (u1, e1) and (u2, e2) are in the support of f , then (u1, e1, u2, e2)
is in the support of f ⊗ f . Moreover (u1, e1, u2, e2) is included in A since the support of f ⊗ f is in
A so that necessarily u1 = u2. We see therefore that the support of f w.r.t. velocity is restricted to
one point. The proof of Lemma 4.2 is then concluded by classical arguments (see [Hor90]). �

We now wish to show, at the formal level, that among the equilibria of the form

f(up, ep) = δup=v(up) ⊗ µ(ep),

only those given by the formula

(44) f(t, up, ep) = Gδup=v(up) ⊗ δep=e(ep)

(with v ∈ R
3, G ≥ 0, e > 0) are stable. We assume in the following computation that a and β are

constant, for the sake of simplicity. An extension of this computation in a case in which a and β
are not constant is given in subsection 7.3.

In order to do so, we first recall Haff’s law ([Haf83]): For f := f(t, up) satisfying the spatially
homogeneous equation ∂tf = Q(f, f) (with β ∈ [0, 1[ and no exchange of energy involved), the
following estimate holds:

(45)
m

1 + t2
≤ T (t) ≤ M

1 + t2
,

where T (t) :=

∫

up

f(t, up)
1

3
mp(up − v)2dup

∫

up

f(t, up)mpdup

, and where m and M are constants depending on

initial data.
A rigorous proof of this result can be found in [MM06] and [MMR06], in the case of granular

media (that is, with a collision kernel which is slightly different), with the hard-sphere cross-section.
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though our model of inelastic collisions is not exactly the same, an easy computation shows that,
at the formal level, Haff’s law still holds.

Our goal here is to estimate the evolution of the mean internal energy along the solutions of the
equation

(46) ∂tf(t, up, ep) = Q(f, f)(t, up, ep).

The computations provided from now on are only approximations. They give an idea of what
should be the evolution of the quantity

g(t) :=

∫∫

up,ep

f(t, up, ep)mp (ep − e(t))2 dupdep

∫∫

up,ep

f(t, up, ep)mp dupdep

,

that is the variance of f w.r.t. ep. They will be sustained in next subsection by numerical simula-
tions. Note first that thanks to the conservation of mass,

g′(t) =

∫∫

Q(f, f)(t, up, ep)mp(ep − e(t))2dupdep

∫∫

f(t, up, ep)mp dupdep

(47)

=

(

−a(1 − a

2
)

∫∫∫∫

1

2
ff∗4πr2(ep − ep∗)

2|up − up∗|dupdup∗depdep∗

+
1

2

∫∫∫∫

4πr2ff∗
[

1

2
∆E2 + ∆E (ep + ep∗ − 2e)

]

|up − up∗|dupdup∗depdep∗

)

/
∫∫

fdupdep .

We use the following approximation based on Haff’s law: in all computations we replace |up−up∗|
by

√
6T (the 6 comes from the fact that we are in 3D).

Then,

g′(t) ∼
(

−a(1 − a

2
)
√

6T

∫∫∫∫

1

2
ff∗4πr2(ep − ep∗)

2dupdup∗depdep∗

+

∫∫∫∫

2πr2ff∗
(

1

2

(

1 − β2

4
6T

)2

+
1 − β2

4
6T (ep + ep∗ − 2e)

)

√
6Tdupdup∗depdep∗

)

/

∫∫

up,ep

fdupdep .(48)

We use the identities
∫∫∫∫

ff∗(ep − ep∗)
2dupdup∗depdep∗

=

∫∫∫∫

ff∗ [(ep − e)2 + (e − ep∗)
2
]

dupdup∗depdep∗

= 2g(t)

(

∫∫

up,ep

fdupdep

)2

,(49)

12



and

(50)

∫∫∫∫

ff∗(ep + ep∗ − 2e) dupdup∗depdep∗ = 0.

As a consequence, we obtain the following (approximate) ODE for the evolution of g:

g′(t) ∼ (1 − α)

(

−a(1 − a

2
)
√

6
3

r
T (t)1/2g(t) +

1

4

(

1 − β2

4

)2
3

r
(6T (t))5/2

)

,(51)

where 1 − α =

∫∫

up,ep

f
4

3
πr3dupdep is the volume occupied by the droplets (this quantity is a

constant). Using now (according to Haff’s law) the approximation T (t) =
c2
1

(1 + c2t)2
where c1 and

c2 > 0, we solve eq. (51) and obtain (except in the exceptional case when
3

r
(1−α)

c1

c2

√
6a(1−a/2) =

4):

(52) g(t) ∼ g(0)

(1 + c2t)
3

r
(1−α)

c1
c2

√
6a(1−a/2)

+
1

4

(

1 − β2

4

)2 (√
6c1

)5
/c2

3
r (1 − α) c1

c2

√
6a(1 − a/2) − 4

[

(1 + c2t)
−4 − (1 + c2t)

− 3

r
(1−α)

c1
c2

√
6a(1−a/2)

]

.

We now discuss the behavior of g according to the sign of
3

r
(1 − α)

c1

c2

√
6 a(1 − a/2) − 4.

• When 4 <
3

r
(1 − α)

c1

c2

√
6a(1 − a/2): we get

(53) g(t) ∼ Cst

(1 + c2t)4
.

This is the situation when thermal exchanges are predominant:
√

g(t) then converges to
zero as rapidly as the temperature T (t) (note that

√
g has the same dimension as an energy).

• When 4 >
3

r
(1 − α)

c1

c2

√
6a(1 − a/2),

we get

g(t)∼ Cst

(1 + c2t)
3

r
(1−α)

c1
c2

√
6a(1−a/2)

,

so that
√

g(t) still converges towards 0, but this convergence is slower than that of the
temperature T (t). It can even be very slow when a is close to 0 (that is, when the exchanges
of internal energy are of small amplitude).

Note finally that the exceptional case
3

r
(1 − α)

c1

c2

√
6 a(1 − a/2) = 4 leads to a formula close to

(53) [but with a logarithmic correction].

The previous computations show (though not rigorously) that the only stable equilibrium of
∂tf = Q(f, f) in the case of inelastic collisions (β ∈ [0, 1[) are functions defined by (44).

We now detail a numerical simulation which confirms the approximate computations presented
above.
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4.3. Numerical results for the convergence towards the Dirac mass w.r.t. internal en-

ergy and velocity.

We present some numerical tests for the spatially homogeneous Boltzmann equation ∂tf =
Q(f, f), when Q is the inelastic collision kernel defined by (20), with a and β fixed constants.

The computations are performed thanks to a particle method (Cf. [Bar04a, PR04]), where
the density f := f(t, up, ep) is approximated by a sum of Dirac masses with the same numerical

weight (that is, f(t, up, ep) ∼ w
∑N

i=1 δup=upi;ep=epi
). This set of numerical particles then evolves

according to Bird’s method (Cf. [Bir94]). The tests which are presented correspond to the following
parameters:

r = 10−4, f(0, up, ep) = Cst 1up∈[−104,104]3;ep∈[5.105,5.106].

About 104 numerical particles are used.

First test: Convergence towards the Dirac mass w.r.t. velocity; Haff’s law

We check that Haff’s law holds for a = 1 and β = 0.99, 0.95, 0.8: we plot the results in logarithm
scale: we expect to get a (asymptotically) straight line whose slope is −2 (since Haff’s law means
that T (t) ∼ t−2).

It is indeed what we observe in the figure below. Note also that, as expected, the convergence is
slower when β increases.

−18 −16 −14 −12 −10 −8 −6 −4 −2 0 2
−15

−10

−5

0

5

10

15

20

ln(t)

ln
 T

(t
)

β=0.8
β=0.95
β=0.99

Figure 1. Behavior of kinetic temperature: ln T as a function of ln t for different β

Second test: Convergence towards the Dirac mass w.r.t. the internal energy

We now check the convergence towards the Dirac mass w.r.t internal energy. We fix β = 0.99 and
let a vary between 0.01 and 1.0. We plot

W = ln

(
∫∫

f(t, up, ep)|ep − e(t)|depdup/

∫∫

f(t, up, ep)depdup

)

as a function of ln(t).

As can be seen in figure 2, the more a increases, the more the coefficients of the asymptotic
straight line tend to −2. More precisely (in accordance with the theoretical computation), we see
that there exists a critical a (around 0.06) which separates a zone in which the behavior of W seems
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(∫ 
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e(
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e pdu
p)

Convergence of  f towards a Dirac mass in energy

a=1
a=0.1
a=0.08
a=0.06
a=0.04
a=0.01

Figure 2. Convergence towards the Dirac mass w.r.t. the internal energy:

ln

(
∫∫

f(t, up, ep)|ep − e(t)|depdup/

∫∫

f(t, up, ep)depdup

)

as a function of ln t for

various values of parameters

to be in t−2, and a zone in which it is rather in t−θ, with θ ∈]0, 2[ depending on a. Finally, we observe
that for small a, the function W increases during a certain amount of time: thermal exchanges are
then not significant enough to completely counterbalance the positive term in equation (51) (that
is, the transfer of kinetic energy to internal energy) at all times.

5. Fluid of particles: non closed form

According to the dimensional analysis of section 3, we end up with the following set of scaled
equations for the spray:

∂t(α
ερε

g) + ∇x · (αερε
gu

ε
g) = 0 ,(54)

∂t(α
ερε

gu
ε
g) + ∇x · (αερε

gu
ε
g ⊗ uε

g) + ∇xp
ε = −Aε,(55)

∂t(αρε
gE

ε
g) + ∇x ·

(

αερε
g

(

Eε
g +

pε

ρε
g

)

uε
g

)

+ pε∂tα
ε = −Bε

1 − Bε
2,(56)

(57) ∂tf
ε + uε

p · ∇xf ε + ∇up
· (f εΓε) + ∂ep

(f εφε) =
1

ε
Q(f ε, f ε),

where

(58) mpΓ
ε = −mp

ρp
∇xp

ε − D(up − uε
g); mpφ

ε = Φ (T ε
g − Tp),

(59) Aε =

∫∫

up,ep

mpΓ
ε f ε dupdep,

(60) Bε
1 =

∫∫

up,ep

mp (Γε +
∇xpε

ρp
) · up f ε dupdep,

15



(61) Bε
2 =

∫∫

up,ep

mpφ
ε f ε dupdep.

In this section, we present the computations which enable to pass to the limit at the formal level
in eq. (54) – (61), when ε → 0. These formal computations are based on the same principle as the
traditional Hilbert expansion for fluid mechanics: we first take moments of eq. (57) in this section,
and then close the corresponding equations thanks to the study (in section 4) of the solutions of
Q(f, f) = 0 in next section.

We define the following quantities associated with the moments of order zero (mass), one (mo-
mentum), two (energy, pressure (Reynolds’) tensor) and three (flux of energy) of the fluid of particles
(the notations used here are coherent with those of section 1):

(1 − α)ρ =

∫∫

up,ep

fmp dupdep, (1 − α)ρv =

∫∫

up,ep

fmpup dupdep,

(1 − α)ρ ec =

∫∫

up,ep

1

2
fmp|up|2 dupdep, (1 − α)ρ e =

∫∫

up,ep

fmpep dupdep,

(1 − α)ρE =

∫∫

up,ep

f

{

1

2
mp|up|2 + mpep

}

dupdep,

(1 − α)P ′ =

∫∫

up,ep

fmp(v − up) ⊗ (v − up) dupdep,

(1 − α)q =

∫∫

up,ep

fmp(v − up)
2(up − v) dupdep.

Note that the pressure tensor P ′ will appear in our set of equations because the fluid of droplets does
not "see" the same pressure as the gas. This extra term of pressure, sometimes called interfacial
pressure, appears (usually in a non tensorial form) in many works concerned with the modeling of
two-phase flows (see [Sai95] and [GHS04] for example). This pressure tensor vanishes when all the
droplets have the same velocity.

We now integrate the Boltzmann equation against mpdupdep (mass conservation) and mpupdupdep

(momentum conservation). We use properties (23) and (24) of the collision kernel. This leads to

∂t(1 − α) + ∇x · ((1 − α)v) = 0.

∂t((1 − α)ρv) + ∇x · ((1 − α)ρv ⊗ v) + (1 − α)∇xp + ∇x ·
(

(1 − α)P ′) =

−
∫∫

up,ep

D (up − ug)fdupdep.

We next integrate the Boltzmann equation against mpepdupdep. This leads to the balance equa-
tion for internal energy

∂t ((1 − α)ρe) + ∇x · ((1 − α)ρev) =

∫∫

up,ep

Φ (Tg − Tp)fdupdep
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+

∫∫

up,ep

Q(f, f)mpepdupdep.

Finally, we integrate the Boltzmann equation against
1

2
mpu

2
pdupdep and

get the balance equation for kinetic energy:

(62) ∂t ((1 − α)ρec) + ∇x ·
(

(1 − α)(ρec + P ′)v
)

+ (1 − α)v · ∇xp + ∇x · ((1 − α)q) =

−
∫∫

up,ep

Dp(up − ug) · upfdupdep +

∫∫

up,ep

Q(f, f)
1

2
mpu

2
pdupdep.

Adding the two last equations and using the conservation of mass, we get the equation of conser-
vation of total energy:

(63) ∂t ((1 − α)ρE) + ∇x ·
(

(1 − α)ρ

(

E +
p

ρ

)

v

)

+ p∂t(1 − α) + ∇x · ((1 − α)(P ′v + q))

= −
∫∫

up,ep

D (up − ug) · upfdupdep +

∫∫

up,ep

Φ (Tg − Tp)fdupdep.

6. Macroscopic equations: closed form

6.1. Macroscopic system in case of elastic collisions.

We now close the equations of the previous section by formally letting ε go to 0 in (54) – (61),
first supposing that all collisions are elastic (β = 1).

According to the results of subsection 4, we end up with f ε → f , where

(64) f(t, x, up, ep) =
Z(t, x)

(2πT (t, x))
3

2

exp

(

−(up − v(t, x))2

2T (t, x)

)

δep=e(t,x)(ep).

We can now compute the moments and close the system. One can note that the set of independent
variables for the fluid of particles is now (1 − α)ρ, v, e and T . Therefore, we need a set of seven
equations. Using (64) in the computations of the moments, we see that

Z = (1 − α)
ρ

mp
,

(1 − α)P ′ = (1 − α)ρT I,

(1 − α)ρec =
1

2
(1 − α)ρv2 +

3

2
(1 − α)ρT, (1 − α)q = 0.

We now write down the expressions of the transfer of momentum and energy between the two
phases. We obtain integrals with parameters which depend on ug, v, ρ, (1 − α) and T :

• transfer of momentum:
17



M(ρ, 1 − α, v, T, ug ,D)

:=

∫∫

up,ep

D(up − ug)
Z

(2πT )
3

2

exp

(

−(up − v)2

2T

)

δep=e(ep)dupdep

=
(1 − α)ρ

mp (2πT )
3

2

∫

up

D (up − ug) exp

(

−(up − v)2

2T

)

dup.

(65)

This expression cannot in general (that is, when D depends on |up − ug|) be simplified.
• transfer of energy due to drag force :

I(ρ, 1 − α, v, T, ug ,D)

:=

∫∫

up,ep

D(up − ug) · up
Z

(2πT )
3

2

exp

(

−(up − v)2

2T

)

δep=e(ep) dup dep

=
(1 − α)ρ

mp (2πT )
3

2

∫

up

D (up − ug) · up exp

(

−(up − v)2

2T

)

dup.

(66)

Thanks to the computations above, we eventually obtain a closed set of seven equations for seven
unknowns, that is

(67) ∂t(αρg) + ∇x · (αρgug) = 0,

(68) ∂t((1 − α)ρ) + ∇x · ((1 − α)ρv) = 0,

(69) ∂t(αρgug) + ∇x · (αρgug ⊗ ug) + α∇xp = M(ρ, 1 − α, v, T, ug ,D),

(70) ∂t((1−α)ρv)+∇x ·((1−α)ρv⊗v)+(1−α)∇xp+∇x ((1 − α)ρT ) = −M(ρ, 1−α, v, T, ug ,D),

(71) ∂t(αρgEg) + ∇x ·
(

αρg

(

Eg +
p

ρg

)

ug

)

+ p∂tα =

I(ρ, 1 − α, v, T, ug ,D) − Φ (Tg − T )
(1 − α)ρ

mp
,

∂t ((1 − α)ρec) + ∇x · ((1 − α)ρ(ec + T )v) + (1 − α)v · ∇xp = −I(ρ, 1 − α, v, T, ug ,D),(72)
18



(73) ∂t ((1 − α)ρe) + ∇x · ((1 − α)ρev) + p (∂t(1 − α) + ∇x · ((1 − α)v)) =

Φ (Tg − T )
(1 − α)ρ

mp
,

where Eg = eg + 1
2 |ug|2, ec = 3

2 T + 1
2 |v|2.

Remember also that the following equations of state are added to (67) – (73).

(74) p = P1(ρg, eg), Tg = T1(ρg, eg), Tp = T2(e), ρ = ρp.

This system is not found in textbooks about multiphase flows since usually the collisions between
droplets are considered to be inelastic, so that their kinetic and internal energy are not separately
conserved.

6.2. Macroscopic system in case of inelastic equations.

We now close the equations when the collision kernel is inelastic (that is, β ∈ [0, 1[). We formally
let ε go to 0 in (54) – (61). According to the results of subsection 4, we know (at the formal level)
that f ε → f , with

(75) f(t, x, up, ep) = G(t, x) δup=v(t,x)(up) δep=e(t,x)(ep).

We end up with a system of 6 equations which write (remember that eg = Eg − 1
2u2

g and e =

E − 1
2v2).

∂t(αρg) + ∇x · (αρgug) = 0,(76)

∂t((1 − α)ρ) + ∇x · ((1 − α)ρv) = 0,(77)

∂t(αρgug) + ∇x · (αρgug ⊗ ug) + α∇xp = −Ã,(78)

∂t((1 − α)ρv) + ∇x · ((1 − α)ρv ⊗ v) + (1 − α)∇xp =(79)

Ã,(80)

∂t(αρgEg) + ∇x ·
(

αρg

(

Eg +
p

ρg

)

ug

)

+ p∂tα = −B̃1 − B̃2,(81)

∂t ((1 − α)ρE) + ∇x ·
(

(1 − α)ρ

(

E +
p

ρ

)

v

)

+ p∂t(1 − α) = B̃1 + B̃2,(82)

where Ã, B̃1 and B̃2 are defined in the introduction, the functions D̃ and Φ̃ being the same as D,
Φ, but taken at points v, e instead of up, ep.

We recall the equations of state which complete this system:

(83) p = P1(ρg, eg), Tg = T1(ρg, eg),

(84) ρ = ρp, T = T2(e).

Finally, the assumption that the collisions are inelastic leads to the derivation of the model for
multiphase flows described in the introduction (see [GHS04, Bou98, Rov06] for more details about
two-phase flow models and [Duf05, Lau02] for other ways to obtain this system using the multi-fluid
approach).
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7. An example of evaluation of the parameters α and β

We briefly explain in this section how it is possible to estimate the parameters a and β which
appear in our model of collisions, under the assumption that viscosity is the main reason why
kinetic energy is lost during collisions. A more complete description of the procedure together with
numerical values in a typical experiment in the context of the nuclear industry can be found in
[Mat06].

7.1. Probability laws of exchange of energy.

We first explain the process of transfer of energy during the collisions. We obtain a hint of the
expression of a.

A collision of droplets can be considered as a coalescence of two particles which split after some
time. The droplets remain stuck together for a while, and they exchange energy through thermal
conduction.

The time ∆τcoll of collision between two droplets p (with velocity up, internal energy ep and
temperature Tp) and p∗ (with velocity up∗, internal energy ep∗ and temperature Tp∗) is generally

assessed as ∆τcoll =
2r

|up − up∗ |
(see [Cer88, Hyl99]).

Because of heat transfers, an amount 4πrλp(Tp − Tp∗) of internal energy is exchanged by unit of
time (with λp the thermal conductivity of the droplets, supposed to be constant) from p towards
p∗. The 4π factor might not be the good geometric factor because one particle does not surround
the other during the collision as the gas surrounds a particle, but this quantity gives the right order
of magnitude. Hence, we get

d

dt
(ep∗ − ep) =

4πrλp

mp
(Tp − Tp∗).

Supposing that the specific heat Cp of the liquid is a constant, we end up with the following
evolution for the difference of internal energy between the two droplets during the collision:

(ep∗ − ep) (t) = exp

(

−4πrλp

Cpmp
t

)

× (ep∗ − ep) (0).

Using the last equality for t = ∆τcoll, one gets

a = 1 − exp

(

−4πrλp

Cpmp

2r

|up − up∗|

)

.(85)

7.2. Estimate of the inelasticity.

We assess the effect of inelasticity through some computations using the T.A.B. model (Taylor
Analogy Break-up model) used in the Kiva code (see [Bar04a] and [AO89]), under the assumption
that viscosity is the main factor of loss of kinetic energy during collisions between liquid droplets
([JUL92] and [WO03]). More precisely, the distortion of sphericity y satisfies the following ordinary

differential equation (see [Bar04a]),

ÿ =
2

3

ρg

ρp

|up − ug|2
r2

− 8σT

ρpr3
y − 10µp

ρpr2
ẏ,

where σT is the surface tension of the liquid constituting the droplets, and µp is the dynamic
viscosity of this same liquid. Under the approximation when the surface tension plays a negligeable
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role (w.r.t. the viscosity) in the loss of kinetic energy during a collision, we find a characteristic
time τc (viscous time):

τc = 1

/

10µp

ρpr2
.

Since oscillatory energy is proportional to ẏ2, we get that the kinetic energy (in the center of

mass) of the two droplets E(t) =
1

4
(up(t) − up∗(t))

2 is controlled through an exponential evolution

of parameter
τc

2
, that is

E(t) = E(0) exp

(

−2t

τc

)

,

so that the loss of kinetic energy ∆E during a collision is

∆E = E(0)

(

1 − exp

(

−2∆τcoll

τc

))

.

Since we also know that

∆E =

(

1 − β2

4

)

(up(0) − up∗(0))
2,

we end up with

β = exp

(

−∆τcoll

τc

)

= exp

(

− 20µp

ρpr|up − up∗ |

)

.(86)

This procedure of course only provides an order of magnitude for β. This is nevertheless enough
to determine if the regime of collision is elastic or not.

7.3. Instability of equilibria of the form δv(up) × µ(ep) when µ is not a Dirac mass with

a, β defined above. We (briefly) present here a formal computation showing that the results of
subsection 4.2 obtained when a and β are constant still hold when a and β are given by (85) and
(86).

The computation performed in subsection 4.2 for the evolution of temperature (with the approx-

imation |up − up∗| ∼
√

6T ) leads to the following ODE, when β is given by formula (86):

d

dt
T ∼ −C

r

(

1 − exp

(

−2
∆τcoll

τc

))

(1 − α)T
3

2

∼ −C

r

(

1 − exp

(

− 4r√
6T τc

))

(1 − α)T
3

2 ,(87)

for some C strictly positive that we do not compute.

When T is large,
d

dt
T ∼ −4C

τc
(1 − α)T so that T decays exponentially.

When T becomes small enough, T satisfies
d

dt
T ∼ −C

r
(1 − α)T

3

2 and we are back to the situation

that we studied in subsection 4.2 with β constant (and close to 0).

We now present a numerical simulation which sustains those computations.
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7.4. Convergence towards the Dirac masses for a, β defined above: Numerical test.

We use the expression of a and β found in subsections 7.1 and 7.2. The numerical code is similar
to the code used previously.

As one can see in figure 3, the temperature T (t) does converge to zero. At the beginning, this
convergence is exponential, whereas as soon as T becomes small enough, the rate of convergence

corresponds to Haff’s law, i.e. is in
1

t2
.
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Figure 3. Convergence towards the Dirac mass in velocity: ln T as a function of ln t

Next we observe the convergence of the internal energy in figure 4.
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We see that the internal energy indeed converges to a Dirac mass in this simulation.

8. Conclusion and perspectives

We have presented here a formalism analogous to the Hilbert expansion of rarefied gases which
enables to link the equations of thick monodisperse sprays with the "one pressure" equations of
multiphase flows. We now wish to briefly comment some of the issues related to this presentation.

Firstly, we wish to explain what can be the extensions of the asymptotics presented in this
work: the presence of (molecular or turbulent) diffusion in the gas equations does not change
the computations. Then, it is possible in principle to take into account chemistry terms (e.g.
combustion terms) in the equations, this leads however to serious complications. Finally, it is
known that polydispersion plays a decisive role in the construction of macroscopic models starting
from spray equations (Cf. [DMV03]). In general, it is not possible to guess the evolution of
droplets w.r.t. radius, and one has to cut into "sections" the various possible radiuses r. It however
happens sometimes that processes of coagulation/breakup lead to such specific profiles (Cf. for
example [AB79]). In such (unfortunately unrealistic when sprays are concerned) situations, 2-phase
macroscopic equations can be obtained (at the formal level) by an asymptotics.

Secondly, we would like to emphasize the extreme difficulty of making rigorous the passage to the
limit that we propose (even in a "small time" setting). This is related to the very bad mathematical
behavior of the limiting eq. (12) – (19). Those equations are not written in conservative form and
have a domain of non hyperbolicity (Cf. [Ram00]). Moreover, the set of eq. (1) – (11) has not been
studied from the mathematical point of view. It might indeed present a behavior as bad as the
limiting system [though this guess is not yet sustained by convincing arguments]. One possibility
could be to try to pass to the limit in an analogous system, where the molecular viscosity of the gas
is not neglected (then the limiting equations are better behaved, Cf. [Ram00]).
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