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Abstract

Nonconvex nonsmooth regularization has advantages over convex regularization for restoring images with neat

edges. However, its practical interest used to be limited by the difficulty of the computational stage which requires

a nonconvex nonsmooth minimization. In this paper, we study a fast nonconvex nonsmooth minimization method

for image restoration and reconstruction. Our theoretical results show that the solution of the nonconvex nonsmooth

minimization problem can be composed of constant regions surrounded by closed contours and neat edges. The

main aim of this paper is to develop a fast minimization algorithm to solve the nonconvex nonsmooth minimization

problem. Our experimental results show that the effectiveness and efficiency of the proposed method.

Index Terms

image restoration, image reconstruction, nonconvex nonsmooth regularization, total variation, fast Fourier trans-

form

I. INTRODUCTION

Digital image restoration and reconstruction plays an important part in various applied areas such as medical

and astronomical imaging, film restoration, image and video coding and many others [30], [10], [44], [3], [27]. We

focus on the most common data production model where the observed data g ∈ Rq are related to the underlying

n×m image, rearranged into a vector f ∈ Rp, p = mn as:

g = Hf + n, (1)
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where n accounts for the perturbations and H is a q×p matrix representing for instance optical blurring, distortion

wavelets in seismic imaging and nondestructive evaluation, a Radon transform in X-ray tomography, a Fourier

transform in diffraction tomography. Usually the information provided by the forward model (1) alone is not

sufficient to find an acceptable solution f̂ . Prior information on the underlying image is needed to restore a convenient

f̂ – which is close to data production model (1) and satisfies some prior requirements. A flexible means to define

such a solution is regularization, e.g., [4], [13], [17], [1], where f̂ is a minimizer of a cost function J(f) of the

form

J(f) = Θ(Hf − g) + βΦ(f). (2)

In this expression, Θ forces closeness to data according to (1), Φ embodies the priors and β > 0 is a parameter

that controls the trade-off between these two terms. The most usual choice for Θ is

Θ(v) = ‖v‖22. (3)

In a statistical setting, this Θ corresponds to assume that n is white Gaussian noise. Our computational method

is designed for Θ as given in (3), or for any smooth and convex function Θ. Recently, data terms of the form

Θ(v) = ‖v‖1 were shown to be useful if some data entries have to be preserved, which is appreciable for instance

if n is impulse noise [35], [11], [23] or to image decomposition [2] Our method is straightforward to extend to

this situation, see for instance [20].

A. Choice of energy: nonconvex nonsmooth regularization

In many image processing applications, the regularization term Φ reads

Φ(f) =
∑

i∈I

ϕ(‖Dif‖2) (4)

where I the set of all pixels of the image,

I = {1, · · · , p},

Di : Rp → Rs, for s ≥ 1 is a linear operator yielding a vector containing the differences between pixel i and its

neighbors, and ϕ is called a potential function (PF). Each Di can be seen as an s × p matrix. If {Di : i ∈ I}
correspond to the forward discretization of the gradient operator, we have Di ∈ R2×p and in particular,

D1
i f =





fi+1 − fi if i 6∈ {n, 2n · · · ,mn}
0 else

(5)

D2
i f =





fi+n − fi if i 6∈ {(m− 1)n + 1, (m− 1)n + 2, · · · ,mn}
0 else

(6)

September 1, 2009 DRAFT



3

In this case, 



i 6∈ {n, 2n · · · ,mn} ⇒ D1
i [i] = −1, D1

i [i + 1] = +1, D1
i [j] = 0, ∀j 6∈ {i, i + 1}

otherwise ⇒ D1
i [j] = 0, ∀j = 1, · · · , p





i 6∈ {(m− 1)n + 1, (m− 1)n + 2, · · · ,mn} ⇒ D2
i [i] = −1, D2

i [i + n] = 1,

D1
i [j] = 0, ∀j 6∈ {i, i + n}

otherwise ⇒ D2
i [j] = 0 ∀j = 1, · · · , p

For any s ≥ 1 and for any i ∈ I , we define the s× p matrix Di as given below:

Di =




D1
i

· · ·
Ds

i


 (7)

Remark 1: When ϕ(t) = |t| and {Di} corresponds to the discrete analog of the gradient operator, (4) is the well-

known Total Variation (TV) regularization function [43]. In a continuous setting, regularization involving ‖∇kf‖2,

k = 1, 2, · · · , is rotation invariant. In order to lighten the numerical intricacies relevant to the discrete variant

‖Dif‖2, a common approach is to replace it by functions of the form:

Φ(f) =
r∑

i=1

ϕ(|dT
i f |) (8)

where the superscript .T stands for transpose, and di ∈ Rp, for i = 1, · · · , r, usually yield the first-order differences

between each pixel and its 4 or 8 adjacent neighbors. Note that this kind of regularizer are customary in Markov

Random Field modeling, see e.g. the classical survey paper [4]. Even though rotation invariance is not well defined

in the discrete setting, it is usually observed that the use of the `2 norm of the discrete gradient, i.e. ‖Dif‖2 instead

of |dT
i f | yields image restorations of better quality.

Various potential functions (PFs) ϕ have been used in the literature, a complete review can be found for instance

in [5]. An important requirement is that ϕ allows the recovery of large differences ‖Dif‖2 at the right locations of

edges and smooth the other differences. It is well known that this requirement cannot be met by ϕ(t) = t2 which

was originally used in [46]. Since the pioneering work of Geman & Geman [17], different non-convex functions ϕ

have been considered either in a statistical or in a variational framework [1], [4], [18], [15], [16], [26], [29], [40]. In

order to avoid the numerical intricacies arising with nonconvex regularization, an important effort was done to derive

convex edge-preserving PFs [19], [25], [43], [45], [8], [12]. Nevertheless, nonconvex nonsmooth regularization offers

much richer possibilities to restore high quality images with neat edges: for regularizer functions of the form (8)

a theoretical explanation was provided in [36], [37] while numerical examples can be found in numerous articles,

see e.g. [15], [16], [32], [42], [38],

This papers provides two main contributions. The theoretical one is to prove that the minimizers of cost functions

of the form (3)-(4), where ϕ(‖.‖2) is nonconvex and nonsmooth, are composed of constant regions surrounded by

closed contours and neat edges (Section 2). The practical contribution is quite challenging: we derive fast algorithms

to approximate faithfully the global minimizer of these nonconvex and nonsmooth cost functions (Section 3). Our
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ϕ ϕ′′ T M ϕ′′(t±), t ∈ M

(f1) tα, α ∈ (0, 1) α(α− 1)tα−2 ∞ ∅

(f2)
αt

1 + αt

−2α2

(1 + αt)3
∞ ∅

(f3) log (αt + 1)
−α2

(1 + αt)2
∞ ∅

(f4)





tα, α ∈ (0, 1) t < 1

tγ , γ ∈ (0, α min{1, 1−α
α
}) t ≥ 1

ϕ′′(t) =





α(α− 1)tα−2 t < 1

γ(γ − 1)tγ−2 t ≥ 1
∞ {1} ϕ′′(1−) = α(α− 1)

ϕ′′(1+) = γ(γ − 1)

(f5)





tα, α ∈ (0, 1) t < 1

1 else
ϕ′′(t) =





α(α− 1)tα−2 t < 1

0 else
1 {1} ϕ′′(1−) = α(α− 1)

ϕ′′(1+) = 0

TABLE I

SEVERAL PFS YIELDING NONSMOOTH AND NONCONVEX REGULARIZATION AND SATISFYING H2, H3 AND H4. NOTE THAT FOR (F4) AND

(F5) WE HAVE ϕ′′(1+) > ϕ′′(1−).

experimental results (Section 4) show clearly the effectiveness and efficiency of the proposed numerical schemes.

Concluding remarks and perspectives are sketched in Section 5.

II. ESSENTIAL PROPERTIES OF MINIMIZERS OF J

In this section, we study the properties of minimizers of J defined according to (3)-(4) under customary, weak

assumptions. We will assume the following:

H1: ker(H) ∩ ker(Di) = {0}, ∀i ∈ I ;

H2: ϕ′(0+) > 0 and ϕ is increasing on R+ ;

H3: ϕ : R+ → R+ is C2 on R+ \M where M 63 0 is a finite set of points (possibly empty) such that if t ∈ M

then ϕ′(t−) > ϕ′(t+) ;

H4: ϕ′′(0) < 0, for all t ∈ R+ \M we have ϕ′′ increasing with ϕ′′(t) ≤ 0, and lim
t→∞

ϕ′′(t) = 0, while if t ∈ M ,

ϕ′′(t−) and ϕ′′(t+) are finite and ϕ′′(t−) < ϕ′′(t+).

Examples of PFs ϕ : R+ → R satisfying these assumptions are given in Table I and illustrated in Fig. 1. In

particular, ϕ′′ on RR+ \M for all these functions in plotted in Fig. 2. The constant T and the set M are defined

in (10) and in H3. Note that by H2, all terms of Φ such that ‖Dif‖2 = 0 are non-differentiable.

The first theorem basically addresses PFs ϕ as those given in (f4) and (f5) in Table I. The proof of this theorem

can be found in Appendix A.

Theorem 1: Let J be of the form (2) for β > 0 and all assumptions H1, H2, H3 and H4 hold. Given g ∈ Rq ,

let f̂ be any (local) minimizer of J . Then we have:

‖Dif̂‖2 > 0 ⇒ ‖Dif̂‖2 6∈ M, (9)
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Fig. 1. The potential functions from Table I applied to |t|.
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Fig. 2. ϕ′′ : R+ \M → R for all the potential functions in Table I.

where M is the set described in H3.

Given a PF ϕ as described by H2, H3 and H4, we define T ∈ (0,∞] by

t ≥ T ⇒ ϕ′′(T ) = 0 . (10)

The lemma stated below is of great use in the proof of our main result, namely Theorem 2. The multifunction

considered is illustrated on Fig. 3.

Lemma 1: Let ϕ : R+ → R+ satisfy the assumptions H2, H3 and H4 in page 4. Consider the multifunction ξ

as defined below:

ξ : [0, T ] 7→ the subsets of R ,

ξ(t) =





ϕ′′(t)
t

if t 6∈ M ,[
ϕ′′(t−)

t
,

ϕ′′(t+)
t

]
if t ∈ M ,

(11)

where M is the finite set described in H3 and T is given in (10). Then

(i) ξ(t) < 0 for all t ∈ [0, T ) and ξ is strictly increasing on [0, T ] ;

(ii) ∀ c ∈ (0,∞), there is a unique θc ∈ (0, T ) such that

ξ(θc) + c = 0 .

(iii) The function c → θc ∈ (0, T ) increases when c decreases on (0,∞).
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Fig. 3. The multifunction ξ in (11) for each PF in Table I. Remind that for (f5) we have T = 1

The proof of this lemma can be found in Appendix B. Using these preliminary results, we can state a spectacular

property of the (local or global) minimizers of the cost-function J , namely that minimizers f̂ are composed of

constant regions surrounded by closed contours and neat edges higher than θ. The solution f̂ is hence a segmented

image, for any operator H in (2)-(3). Note that different bounds θ can be derived under slightly different conditions.

The proof of Theorem 2 can be found in Appendix C.

Theorem 2: Let J be of the form (2) for β > 0 and all assumptions H1, H2, H3 and H4 hold. Given g ∈ Rq ,

let f̂ be any (local) minimizer of J . Then for M as defined in H3 we have:

either ‖Dif̂‖2 = 0 or ‖Dif̂‖2 ≥ θ, ∀i ∈ I, (12)

where 0 < θ < T and the inequality above is strict if θ ∈ M . The alternative (12) holds always true for the unique

θ that solves

ξ(θ) = −2 α ‖H f̂‖22
βK

, K = #{i ∈ I : ‖Dif̂‖2 > 0}, (13)

where ξ is the multifunction in (11) and α
def= max

{
1,

(
min{‖Dif̂‖2 > 0})−3

}
.

(i) If in addition we have: rank(H) = p or ϕ strictly increasing on R+, then (12) holds true for the unique θ that

solves

ξ(θ) = −2 α ‖g‖22
βK

, K = #{i ∈ I : ‖Dif̂‖2 > 0}. (14)

(ii) Whenever K ≥ 1, (12) holds as well if we set K = 1 in (13) and in (14), for a smaller value of θ.

Example 1: In order to illustrate Theorem 2, we consider a simple example where the underlying f is a point in

R2, D and H are the identity matrices and ϕ(t) = |t|1/2. We realized 10 000 independent trials where an original

f ∈ R2 is sampled from p(f) ∝ exp(−λϕ(||f ||2)) for λ = 2 and then g = f + n for n ∼ Normal(0, σ2) with

σ = 0.8. The histogram of all f and g are shown in Figures 4(a) and 4(b). After this, the solution f̂ is calculated

by minimizing J(f) = (f −g)2 +ϕ(||f ||) for β = 2σ2λ. For every g 6= 0 the function J has two local minimizers,

f̂1 = (0, 0) and f̂2 satisfying |f̂2| > θ for θ ≈ 0.47, and the global minimizer f̂ is found by searching the minimizer

over the x− y grid with the step size 0.01 in the x− and y− range between -10 and 10. The empirical histogram
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(a) (b)

(c) (d)

Fig. 4. (a) The samples of f ; (b) the observed samples of g by adding the noise to f ; (c) the restored samples and (d) the zoomed version of

the restored samples.

of all solutions f̂ , shown in Figure 4(c) and its zoomed version in Figure 4(d), these results illustrates the theorem,

and we have f̂ = 0 in 27% of the trials while the smallest non-zero |f̂ | is 1.18 > θ.

III. MINIMIZATION METHODS

The minimization of nonconvex function J involves three major difficulties that drastically restrict the methods

that can be envisaged. Because of the nonconvexity of ϕ, J may exhibit a large number of local minima which

are not global. In addition, J is usually nonsmooth at the minimizers, and thus usual gradient-based methods

are inappropriate for local minimization. Finally, the matrix H can have numerous nonzero elements beyond the

diagonal and is often ill-conditioned. Global minimization of J can be considered using either stochastic algorithms

or continuation-based deterministic relaxation.

September 1, 2009 DRAFT



8

Stochastic algorithms can be used to minimize nonconvex function is simulated annealing (SA) or Metropolis

annealing. Since [24], asymptotically convergent global minimization of nonconvex functions has been conducted

using stochastic schemes, such as simulated annealing or Metropolis annealing. However, the computational cost

of such algorithms is huge when H is not an identity, where in our problems, H may be a blurring operator or

a reconstruction matrix which are not an identity. Therefore, it is not suitable to handle image restoration and

reconstruction problems. Recently, Robini et al. [41] studied some inexpensive acceleration techniques that do

not alter the theoretical convergence properties of annealing algorithms. They employed restriction of the state

space to a locally bounded image space and increasing concave transform of the cost functional to speed up the

convergence. However, the number of new parameters required in acceleration techniques must be handled properly.

According to [48] , the idea of continuation is a good deterministic alternative to deal with nonconvex energies

J . Even though there is no guarantee for global convergence, extensive experiments have shown that for a finite

number of iterations the graduated nonconvexity (GNC) algorithm [6] leads to minimizers f̂ having a lower (hence

better) energy than SA [7]. However, this approach cannot properly address the nonsmoothness of J . Recently,

Robini et al. [42] introduced a new class of hybrid algorithms that combines simulated annealing with deterministic

continuation. Numerical experiments have shown that this approach outperforms standard simulated annealing.

Nevertheless, stochastic algorithms cannot yield solutions that incorporate one of the main properties of nonsmooth

regularization, namely the presence of constant regions in the restored image.

In [38], a nonsmooth GNC continuation method is proposed to solve the nonconvex nonsmooth minimization

problem. Consider a sequence

ε0 = 0 < ε1... < εn = 1,

i.e. limn→∞ εn = 1 , ϕ is approximated by a sequence of ϕε s.t. ϕ0 is convex and ϕ1 = ϕ. Therefore the function

J can be approximate by a sequence of function Jε correspondingly:

Jε(f) = ‖Hf − g‖22 + β
∑

ϕε(‖Dif‖2). (15)

By splitting ϕε into two terms, where the first one is a smooth but nonconvex term ψε and the second one is

a convex but nonsmooth total variational type regularization term |t| , i.e ϕε(t) = ψε(t) + αε|t| where ψε(t) =

ϕε(t)− ϕε
′(0+)|t| and αε = ϕε

′(0+) , Jε(f) can be further rewritten as:

Jε(f) = ‖Hf − g‖22 + β
∑

ψε(‖Dif‖2) + βαε

∑
‖Dif‖2 (16)

which contains a data fidelity term with `2 norm, a nonconvex term and a nonsmooth TV regularization term. The

main aim of this paper is to use a nonsmooth GNC continuation method for (15).

We remark in [38] that ψε(‖Dif‖2) and ‖Dif‖2 are approximated by ψε(dT
i f) and |dif | respectively, where

dT
i : Rp → R, for i = 1, · · · , r, are linear operators. Usually they are the first-order differences between each

pixel and its 4 or 8 adjacent neighbors. In such case, the problem can be reformulated using linear programming

techniques. More precisely, this nonconvex nonsmooth minimization problem is given as the minimization of a

nonconvex differentiable objective function under a set of linear constraints and it can be solved by the modified
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primal-dual interior point method, which guarantees the descent direction at each step. Experimental results showed

that this method can provide better performance compared to a simulated annealing method with significantly less

computational cost. In this paper, the use of the `2 norm of the discrete gradient, i.e. ‖Dif‖2 instead of |dT
i f | yields

image restorations of better quality.

A. The proposed algorithm

Our idea is to tackle the difficulty for minimizing the function consists of both a nonconvex term and a nonsmooth

term, we use variable-splitting and penalty technique to separate them with respect to two different variables. Based

on the idea of [21], an auxiliary variable u is used to transfer the nonsmooth TV term from f . A fitting term is

then added to Jε to ensure the closeness of f and u. Therefore, we have

Jε(f ,u) = ‖Hf − g‖22 + β
∑

ψε(‖Dif‖2) + ω‖f − u‖22 + βαε

∑
‖Diu‖2 (17)

where ω is the regularization parameter for the fitting term ‖f−u‖22 . By fixing the variable u, Jε is a smooth function

with respect to f so that it can be minimized by gradient-based methods. By fixing the variable f , minimizing Jε

is equal to a TV denoising problem which can be solved by existing method efficiently [9]. We will demonstrate

that the computational cost of this proposed method is greatly reduced compared with that of interior point method

while the qualities of restored images are competitive by the experimental results in Section 4. We remark that

another alternating minimization algorithm for TV restoration is proposed in [47]. This algorithm also based on

variable-splitting and penalty technique to transfer the nonsmooth term out of J with respect to f . The difference

between the method in [21] and this method is that it fits f by Diu rather than u.

Let us state the algorithm in detail. For each ε, starting from an initial guess u(0) , this method computes a

sequence of iterates:

f (1),u(1), f (2),u(2)..., f (i),u(i), ...

such that

Sh
ε (u(i−1)) = f (i) = arg min

f
Jh

ε (f ,u(i−1)) (18)

where Jh
ε (f ,u) = ‖Hf − g‖22 + β

∑
ψε(‖Dif‖2) + ω‖f − u‖22

Stv
ε (f (i)) = u(i) = arg min

u
J tv

ε (f (i),u) (19)

where J tv
ε (f ,u) = ω‖f − u‖22 + βαεTV (u)

for i = 1, 2, · · · . The first step of this algorithm is to minimize Jh
ε . For ε = 0, we have

∑
ψε(‖Dif‖2) = 0, ∀f ,

minimizing Jh
ε is exactly the same as the total-variation deblurring problem in [21]. Therefore, we can follow the

framework of [21] to minimize Jh
ε . For ε > 0, since all the terms in Jh

ε are differentiable, we can find out the

gradient vector and the Hessian of Jh
ε to tackle the minimization problem:

∇fJ
h
ε = 2HT (Hf − g) + βψε

′∑ (‖Dif‖2) · ∂(‖Dif‖2) + 2ω(f − u(i−1)) (20)
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where ∂(‖Dif‖2) is the subgradient of ‖Dif‖2, i.e.

∂(‖Dif‖2) =




−div(Dif/‖Dif‖2), if‖Dif‖2 6= 0

0, otherwise

and

∇2
f J

h
ε = 2HT H + 2ωI + β

∂2

∂f2
ψε(‖Dif‖)2.

For the Hessian matrix of quasi-Newton method, ∇2
f J

h
ε may be not positive definite since involving the term

∂2

∂f2 ψε(‖Dif‖)2. In order to ensure the convergence of the algorithm, we simply use the positive definite part of

the Hessian matrix in the optimization procedure. Because of the term 2ωI , the coefficient matrix 2HT H + 2ωI

is always positive definite even if HT H is singular. The Quasi-Newton method can then be used to solve Jh
ε

[39]. We remark that in image restoration H is usually a blurring matrix generated by a symmetric point spread

function. The computational cost of the quasi-Newton method is dominated by three fast transforms for performing

matrix-vector multiplication with H [31]. The computational cost for each fast transform is only O(n2log2n) for

a n2 × n2 blurring matrix [31]. After finding out the descent direction ∆f (j) by solving

(2HT H + 2ωI)∆f (j−1) = ∇fJ
h
ε ,

the step size τ of the method is then determined by line search method in order to find out f (j) = f (j−1)+τ∆f (j−1).

Three different conditions have been considered, including Armijo rule, Goldstein rule and a fixed τ [39]. However,

the experimental results suggest us to use a fixed τ as it requires less computational cost compared with the other

two line search methods. The second step of this method is to apply an exact TV denoising problem scheme to

f (i). Since the function J tv
ε is identically the same as that in [21], we employ the Chambolle projection algorithm

[9] to solve this problem. For εk, we simply choose a linear increase εk in our experiments as suggested in [38].

Let us summarize the proposed algorithm as follows:

• Let ε0 = 0 < ε1 < · · · < εn = 1. Start from ε(0). Initialize u(0).

• For k = 0 → n, ε = εk

j = 1

While residual > tol do

If k = 1

Minimize Jh
ε (f ,u(j−1)) based on [21];

Otherwise

Solve (2HT H + 2ωI)∆f (j−1) = ∇fJ
h
ε for ∇f (j−1);

f (j) = f (j−1) + ∆f (j−1);

End If;

Minimize J tv
ε for u(j);

j = j + 1;

September 1, 2009 DRAFT
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End While

u(0) = u(j−1);

ε(k + 1) = ε(k) + ∆ε;

• End For

In the next section, we will test the performance of this proposed algorithm.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results to demonstrate the efficiency of the proposed method. Signal

to noise ratio (SNR) is used to measure the quality of the restored images while CPU time is also used to compare

the efficiency of the restoration method. The stopping criterion of our proposed method is that the relative difference

between the successive iterate of the restored image should satisfy the following inequality:

‖f (i+1) − f (i)‖2
‖f (i+1)‖2

< 10−4 (21)

The PF used in all the illustrations is:

ϕ(t) =
α|t|

1 + α|t| , ϕε(t) =
α|t|

1 + εα|t| , 0 ≤ ε ≤ 1 (22)

where it has been tested in [38]. We compare the proposed method to the modified interior point method in [38].

Conjugate gradient method is used to solve inner linear systems arising from outer iterations, and the stopping

criterion of the conjugate gradient method is that the residual should be less than 10−5. We remark our proposed

method does not require to solve any inner linear systems.

Six images are tested, which are all gray images with intensity values ranging from 0 to 1. The first image is an

artificial circles image of size 64 × 64 , and the second one is cameraman of size 256 × 256. These two images

have been tested in [38]. The third and fourth images are F16 and tank images of size 512× 512. To generate the

observed images, we added Gaussian noise with the standard deviation of 0.05 with blurring. The blurring function

is chosen to be a two dimensional gaussian function

h(i, j) = e−2(i/3)2−2(j/3)2 ,

, which is truncated such that the function has a support of 7 × 7. The fifth image is the modified Shepp-Logan

image of size 50 × 50 The sixth image is the modified Shepp-Logan image of size 1000 × 1000 . We use this

large image to demonstrate the efficiency of the proposed method. To generate the observed images for these two

images, we added Gaussian noise with the standard deviation of 0.05. Radon transform is used to construct the

degradation matrix H . These images are further transformed by back-projection so that H can be reformulated as

a convolution operator.

Different initial guesses have been considered, including the observed image, the least squares solution and a flat

image (all the pixel values are 0.5). From our experimental results, both of the methods were insensitive to all of

the initial guesses. Therefore, we only demonstrate the results which the initial guesses are the observed images.
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TABLE II

RESTORED SNRS AND CPU TIMES FOR DIFFERENT IMAGES.

Interior point method The proposed method

Image Computational time SNR Computational time SNR

Circle 32.44 19.85 3.73 19.29

Cameraman 674.95 22.82 19.78 23.50

F16 3617.12 27.45 55.16 27.79

Tank 3467.75 31.00 39.75 30.73

According to the potential function, we can set αε = 0.5. We tested different values of β and ω in order to find

out the restored image with the highest SNR among the tested values. Similarly, we also tested different values of

the regularization parameter in the modified interior point method to find out the restored image with the highest

SNR.

A. Test of blurred images

Figures 5-8(a) show the original images. Figures 5-8(b) show their corresponding images with blur and noise as

described in the above settings respectively. Figures 5-8(c) and 5-8(d) show the images restored by the modified

interior point method and the proposed method respectively. For simplicity, we use the same set of parameters for

restoring images in Figures 5-8(c) and 5-8(c), and also in Figures 5-8(d) and 5-8(d). We see from the figures that

the images restored by the modified interior point method and the proposed method are visually about the same.

In Table II, we show their SNR results, and find that they are about the same. However, the computational time

(in seconds) required by the proposed method is significantly lower than the interior point method. These results

demonstrate the proposed method is quite efficient for restoring images.

B. Test of Radon transform images

Radon transform is a two-dimensional integral transform that integrate the function along straight lines. Images

can be reconstructed by the inverse of the transform. Those resulting images are widely used for guiding medical

treatment decisions [49].

In this subsection, the reconstruction of the images transformed by the Radon transform using our proposed

method is presented. The modified Shepp-Logan image is applied to illustrate the efficiency of our algorithm.

Following the example in [38], we set the image to be of size 50× 50. Figure 9(a) is the original modified Shepp-

Logan image. The image is transformed along the angles from 0 to 180 of the increasing of 6 degrees to create

the size of 75 × 31 Radon transform of the original image. The noise from normal distribution with mean zero

and standard deviation 0.05 is added to this transformed image to generate the observed image in Figure 9(b).

The degradation matrix H in this example is the discrete Radon transform matrix and cannot be reformulated as a

convolution operator. In order to restore the image and maintain the efficiency of the proposed method, we make
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(a) (b)

(c) (d)

Fig. 5. (a) The original circle image; (b) the observed image; (c) the image restored by the interior point method with β = 0.015; (d) the

image restored by the proposed method with ω = 0.5 and β = 0.003.

use of the back-projection operator B [22]. It can be shown that the back-projected Radon transform is an image

of f blurred by the point spread function of the form (x2 + y2)−
1
2 which can be used to construct the convolution

matrix H . Now we solve

Jε(f ,u) = ‖Hf −Bg‖22 + β
∑

ψε(‖Dif‖2) + ω‖f − u‖22.

The back-projected Radon transform Bg is shown in Figure 9(c). Figure 9(d) shows the resulting image that is

reconstructed from Figure9(b) by the interior point method. Figure 9(e) shows the resulting image reconstructed

from Figure 9(c) by the proposed method. Both of the methods provide high quality restored images. However, as

conjugate gradient method is required to solve the linear system, the interior point method took more time (1860

seconds) to reconstruct the image. The proposed method only takes 0.5 seconds to restore about the same quality

of the reconstructed image. The SNRs of the reconstructed image by the interior point method and the proposed

method are 41.96dB and 42.52dB.

In the next experiment, we test a larger image. Figure 10(a) shows the original modified Shepp-Logan image

of size 1000 × 1000. The corresponding back-projected Radon transform image is shown in Figure 10(b). Figure
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(a) (b)

(c) (d)

Fig. 6. (a) The original cameraman image; (b) the observed image; (c) the image restored by interior point method with β = 0.04; (d) the

image restored by the proposed method with ω = 2.0 and β = 0.007.

10(c) shows the reconstructed image of the proposed method. The computational time required is 277 seconds, and

the SNR is 46.78dB. However, the result of the interior point method is not obtained to this case as the required

computational time takes more than 2 hours.

V. CONCLUDING REMARKS

Nonconvex regularization has advantages over convex regularization for restoring images with neat edges, see

[38] and the section 2 of this paper. The main aim of this paper is to study a fast nonconvex and nonsmooth

regularization on the `2 norm of the discrete gradient of the image minimization method for image restoration and

reconstruction. Our theoretical results show that the solution of the nonconvex and nonsmooth regularization on the

`2 norm of the discrete gradient of the image minimization problem can be composed of constant regions surrounded

by closed contours and neat edges. We have developed a fast minimization algorithm to solve the nonconvex total

variation minimization problem. Our experimental results show that the effectiveness and efficiency of the proposed

method.
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(a) (b)

(c) (d)

Fig. 7. (a) The original F16 image; (b) the observed image; (c) the image restored by interior point method with β = 0.04; (d) the image

restored by the proposed method with ω = 2.0 and β = 0.007.
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APPENDIX

A. Proof of Theorem 1

With f̂ we associate the following subsets:

Î0 = {i ∈ I : ‖Dif̂‖2 = 0} and Î1 = I \ Î0, (23)

as well as the vector subspace K(Î0) given below:

K(Î0)
def=

{
v ∈ Rp : ‖Div‖2 = 0, ∀i ∈ Î0

}
(24)

≡ {
v ∈ Rp : Dk

i v = 0, 1 ≤ k ≤ s, ∀i ∈ Î0

}
.

If Î1 = ∅, then ‖Dif̂‖2 = 0, ∀i ∈ I , hence (9) is trivially true. In what follows we consider that Î1 6= ∅. Note that

if Î0 = ∅, then K(Î0) = Rp.

Given a point v ∈ Rp and a constant ρ > 0, we denote by B(v, ρ) the open ball in Rp centered at v of radius

ρ. We will exhibit ρ > 0 such that the function J given below

J (f) = ‖Hf − g‖22 + β
∑

i∈Î1

ϕ(‖Dif‖2), for f ∈ K(Î0) ∩B(f̂ , ρ)

is the restriction of J on K(Î0) ∩B(f̂ , ρ). Put1

ρ
def= min

i∈Î1

‖Dif̂‖2 1
maxi∈I ‖Di‖2 .

By (23) we see that ρ > 0. For every v ∈ B(f̂ , ρ) we can hence write down that

i ∈ Î1 ⇒ ‖Di(f̂ + v)‖2 ≥ ‖Dif̂‖2 − ‖Div‖2 ≥ min
i∈Î1

‖Dif̂‖2 −max
i∈I

‖Di‖2‖v‖2
= (ρ− ‖v‖2)max

i∈I
‖Di‖2 > 0

which shows that f̂ and f̂ + v share the same set Î1. Since f̂ ∈ K(Î0), we have

v ∈ K(Î0) ⇒ ‖Di(f̂ + v)‖2 = ‖Di(f̂)‖2 = 0, ∀i ∈ Î0

and then

v ∈ K(Î0) ∩B(0, ρ) ⇒ ϕ(‖Di(f̂ + v)‖2) = ϕ(‖Di(f̂)‖2) = ϕ(0), ∀i ∈ Î0.

It follows that

v ∈ K(Î0) ∩B(0, ρ) ⇒ J (f̂ + v) = J(f̂ + v), (25)

where K(Î0) is defined in (24). Thus J is the restriction of J on K(Î0)∩B(f̂ , ρ) which entails that it has a (local)

minimum at f̂ .

1Remind that for any matrix A ∈ Rk,` we have ‖A‖2 = max‖v‖2≤1 ‖Av‖2 where v ∈ R`, see e.g. [28]. Hence ‖Av‖2 ≤ ‖A‖2‖v‖2.
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Let d+
v J(f) and d−v J(f) denote the right-side and the left-side derivatives of J at f in the direction of v,

respectively2. Then the first-order necessary condition for J : K(Î0)∩B(f̂ , ρ) 7→ R to have a local minimum at f̂ ,

namely

d−v J (f̂) ≤ 0 ≤ d+
v J (f̂), ∀v ∈ K(Î0) \ {0}, (26)

must hold.

Let us denote

ÎM =
{
i ∈ Î1 : ‖Dif̂‖2 = t for t ∈ M

}
,

where M is the set in H3, p. 4. For any i ∈ Î1 \ ÎM and ∀v ∈ Rp we have3

〈∇ϕ(‖Dif̂‖2), v〉 = ϕ′(‖Dif̂‖2) 〈Div,Dif̂〉
‖Dif̂‖2

(27)

and in particular 〈∇ϕ(‖Dif̂‖2), f̂〉 = ϕ′(‖Dif̂‖2)‖Dif̂‖2. Note that the gradient operator ∇ is considered with

respect to f̂ .

Using H2 and H3 it is easy to find that for all i ∈ ÎM we have 4

d+

f̂
ϕ(‖Dif̂‖2) = ϕ′(‖Dif̂‖+2 ) and d−

f̂
ϕ(‖Dif̂‖2) = ϕ′(‖Dif̂‖−2 ),

where again the side derivatives are considered with respect to f̂ .

Considering the necessary condition (26) for v = f̂ ∈ K(Î0) yields

2f̂T HT (H f̂ − g) + β
∑

i∈Î0\ÎM

ϕ′(‖Dif̂‖2)‖Dif̂‖2 + β
∑

i∈ÎM

ϕ′(‖Dif̂‖−2 ) ≤ 0 ≤

≤ 2f̂T HT (f̂ − g) + β
∑

i∈Î0\ÎM

ϕ′(‖Dif̂‖2)‖Dif̂‖2 + β
∑

i∈ÎM

ϕ′(‖Dif̂‖+2 )

This is equivalent to

β
∑

i∈ÎM

ϕ′(‖Dif̂‖−2 ) ≤ −2f̂T HT (H f̂ − g)− β
∑

i∈Î0\ÎM

ϕ′(‖Dif̂‖2)‖Dif̂‖2 ≤ β
∑

i∈ÎM

ϕ′(‖Dif̂‖+2 ).

2Let us remind that these are defined by

d+
v J(f) = lim

t↘0

J(f + tv)− J(f)

t
and d−v J(f) = lim

t↘0

J(f − tv)− J(f)

−t

Note that if J is differentiable at f , then d+
v J(f) = d−v J(f) = 〈∇J(f), v〉.

3More precisely, ∀i ∈ Î1 \ ÎM we have

〈∇‖Di f̂‖2, v〉 =
d

dt

√√√√
s∑

k=1

(
Dk

i (f̂ + tv)
)2

∣∣∣∣∣∣
t=0

=

∑s
k=1 Dk

i f̂ Dk
i v

‖Di f̂‖2
=
〈Di f̂ , Div〉
‖Di f̂‖2

.

4In detail, the calculation is

d+

f̂
ϕ(‖Di f̂‖2) = lim

t↘0

ϕ
(‖Di(f̂ + tf̂)‖2

)− ϕ(‖Di f̂‖2)

t
= lim

t↘0

ϕ
(
(1 + t)‖Di f̂‖2

)− ϕ(‖Di f̂‖2)

t
= ϕ′(‖Di f̂‖+2 ) ;

d−
f̂

ϕ(‖Di f̂‖2) = lim
t↘0

ϕ
(‖Di(f̂ − tf̂)‖2

)− ϕ(‖Di f̂‖2)

−t
= lim

t↘0

ϕ
(
(1− t)‖Di f̂‖2

)− ϕ(‖Di f̂‖2)

−t
= ϕ′(‖Di f̂‖−2 ) .
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In particular, we must have
∑

i∈ÎM

ϕ′(‖Dif̂‖−2 ) ≤
∑

i∈ÎM

ϕ′(‖Dif̂‖+2 ).

This is clearly impossible since by H3 we have
∑

i∈ÎM
ϕ′(‖Dif̂‖−2 ) >

∑
i∈ÎM

ϕ′(‖Dif̂‖+2 ). It follows that

ÎM = ∅ and Î0 \ ÎM = Î0.

The proof is complete.

B. Proof of Lemma 1

By H4, ϕ′′(t) < 0 for all t ∈ [0, T ) \M while ∀t ∈ M , ϕ′′ has finite left and right (negative) limits. Noticing

also that 0 6∈ M shows that ξ in (11) is well defined and strictly negative on [0, T ).

By the same assumption,

ε > 0, (t, t + ε) ∈ (R+ \M)2 ⇒ 0 ≤ |ϕ′′(t + ε)| ≤ |ϕ′′(t)| ,

t ∈ M ⇒ 0 < |ϕ′′(t+)| < |ϕ′′(t−)| < ∞.

On the other hand,

0 ≤ 1
t + ε

<
1
t
, ∀t ≥ 0, ∀ε > 0.

Then

ε > 0, (t, t + ε) ∈ (R+ \M)2 ⇒ 0 ≤ |ξ(t + ε)| = |ϕ′′(t + ε)|
t + ε

≤ |ϕ′′(t)|
t

= |ξ(t)| ,

t ∈ M ⇒ |ξ(t)| =
[ |ϕ′′(t−)|

t
,
|ϕ′′(t+)|

t

]
, (28)

and in particular,

ε > 0, (t, t + ε) ∈ ([0, T ] \M)2 ⇒ |ξ(t + ε)| = |ϕ′′(t + ε)|
t + ε

<
|ϕ′′(t)|

t
= |ξ(t)| .

Note that the multifunction in (28) is strictly decreasing at t. If t = T ∈ M , we have |ϕ′′(T+)| = 0 and

|ϕ′′(T−)| > 0. It follows that |ξ(.)| is strictly decreasing on [0, T ]

Using that ϕ′′(t) = −|ϕ′′(t)| on R+ \M , and that ϕ′′(t−) = −|ϕ′′(t−)| and ϕ′′(t+) = −|ϕ′′(t+)| on M shows

that ξ(t) = −|ξ(t)|, ∀t ∈ R+. In particular, we deduce that ξ is strictly increasing on [0, T ].

The proof of statement (i) is complete.

Noticing that lim
t→∞

1
t
↘ 0 and using H4 yet again shows that

lim
t→∞

ξ(t) = 0.

It is obvious that

lim
t↘0

ξ(t) = −∞.

Combining the last two limits with statement (i) leads immediately to (ii).

Statement (iii) is a straightforward consequence of (i) and (ii).
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C. Proof of Theorem 2

With f̂ , we associate the subsets Î0 and Î1, as in (23), as well as the subspace K(Î0) as introduced in (24). If

Î1 = ∅, then ‖Dif̂‖2 = 0, ∀i ∈ I in which case (12) is trivially satisfied. In what follows we consider that Î1 6= ∅.

From Theorem 1 we know that J : K(Î0) ∩ B(f̂ , ρ) 7→ R is C2-continuous on a neighborhood of f̂ ∈ K(Î0).

Hence ∇J (f̂) and ∇2J (f̂) are well defined in the usual sense. The second-order necessary condition for a (local)

minimum of J at f̂ must also hold and reads

〈∇2J (f̂)v, v〉 ≥ 0, ∀v ∈ K(Î0). (29)

Next we derive the expression of 〈∇2J (f̂)v, v〉. Using (27), we get

〈∇2ϕ(‖Dif̂‖2)v, v〉 = ϕ′′(‖Dif̂‖2)
(
〈Dif̂ ,Div〉
‖Dif̂‖2

)2

+ ϕ′(‖Dif̂‖2)‖Div‖22‖Dif̂‖22 − 〈Dif̂ ,Div〉2
‖Dif̂‖32

The necessary condition (29) in detail reads

〈∇2J (f̂)v, v〉 = 2‖Hv‖22 + β
∑

i∈Î1

ϕ′′(‖Dif̂‖2) 〈Dif̂ ,Div〉2
‖Dif̂‖22

+ β
∑

i∈Î1

ϕ′(‖Dif̂‖2)‖Div‖22‖Dif̂‖22 − 〈Dif̂ , Div〉2
‖Dif̂‖32

≥ 0, ∀v ∈ K(Î0). (30)

It might be useful to remind that Dif̂ ∈ Rs as well as that Div ∈ Rs, hence 〈Dif̂ , Div〉 ∈ R.

The core of the proof is conducted by contradiction. We will exhibit a θ > 0 and a direction v such that

〈∇2J (f̂)v, v〉 < 0 if there exists j ∈ Î1 such that 0 < ‖Dj f̂‖ < θ.

Let j ∈ Î1 be such that

‖Dj f̂‖2 ≤ ‖Dif̂‖2, ∀i ∈ Î1 (31)

and set

κ
def= ‖Dj f̂‖2 . (32)

Then κ > 0 by the definition of Î1 and κ is finite since #Î1 ≤ p. Consider v̂ given by

v̂[i] = f̂ [i] κ−3/2, ∀i ∈ I.

Clearly v̂ ∈ K(I0). Using Schwarz inequality,

〈Dif̂ , Div̂〉 = ‖Dif̂‖ ‖Div̂‖,

so the numerator in the last term in (30) is null:

〈∇2J (f̂)v̂, v̂〉 = 2‖Hv̂‖22 + β
∑

i∈Î1

ϕ′′(‖Dif̂‖2) 〈Dif̂ , Div̂〉2
‖Dif̂‖22

.

Furthermore

〈Dif̂ , Div̂〉2 = ‖Dif̂‖
(
κ−1‖Dif̂‖

)3

≥ ‖Dif̂‖, ∀i ∈ Î1.
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Let us also define

α
def= max

{
1, κ−3

}
, (33)

where κ is defined in (32). Using that ϕ′′(‖Dif̂‖2) ≤ 0, ∀i ∈ Î1, we get

〈∇2J (f̂)v̂, v̂〉 ≤ 2 κ−3 ‖H f̂‖22 + β
∑

i∈Î1

ϕ′′(‖Dif̂‖2)
‖Dif̂‖2

≤ 2 α ‖H f̂‖22 + β#Î1
ϕ′′(‖Dj f̂‖2)
‖Dj f̂‖2

(34)

= 2 α ‖H f̂‖22 + β#Î1ξ(‖Dj f̂‖2) , (35)

where the element ‖Dj f̂‖2 is defined in (31) and ξ is the multifunction in (11) considered in Lemma 1.

Define θ ∈ (0, T ) to solve

ξ(θ) = −2 α ‖H f̂‖22
β#Î1

, (36)

where α is defined in (33). By Lemma 1, this θ is well defined and unique. Suppose that

0 < ‖Dj f̂‖ = κ < θ.

According to Lemma 1

−∞ = lim
t↘0

ξ(t) < ξ(‖Dj f̂‖) < ξ(θ) < 0. (37)

This, jointly with (35) yields

〈∇2J (f̂)v̂, v̂〉 ≤ 2α ‖H f̂‖22 + β#Î1ξ(κ) < 2α ‖H f̂‖22 + β#Î1ξ(θ) = 0.

The obtained result clearly contradicts the necessary condition stated in (30). It follows that

‖Dj f̂‖2 ≥ θ, (38)

where the inequality is strict if θ ∈ M . Hence the result for θ as in (13).

Next we focus on the conditions given in (i). Combining [37, Theorem 2.3.] with Theorem 1 immediately yields

that for any (local) minimizer f̂ we have

‖H f̂‖2 ≤ ‖g‖2.

Inserting this result into (34) yields

〈∇2J (f̂)v̂, v̂〉 ≤ 2 α ‖g‖22 + β#Î1
ϕ′′(‖Dj f̂‖2)
‖Dj f̂‖2

In this case we consider θ ∈ (0, T ) that solves

ξ(θ) = −2 α ‖g‖22
β#Î1

. (39)

Then we apply the same reasoning that led us to (38) above. This proves statement (ii).

Statement (iii) comes from the observation that

β#Î1
ϕ′′(‖Dj f̂‖2)
‖Dj f̂‖2

≤ β
ϕ′′(‖Dj f̂‖2)
‖Dj f̂‖2

,
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where the equality takes place only if #I1 = 1. In such a case we choose θ that solves (36) or (39) where #I1 is

replaced by 1. The resultant θ is smaller according to Lemma 1(iii).
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