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ABSTRACT
This paper sketches a computational theory of perception.
Perception is the process of acquisition of information about
the environment by the senses. In this proposal, a model of
the world and models of how information is projected into
the senses are needed. Given these models, perception is the
process of finding one configuration of the known world that
corresponds well to the sensed information. The key point is
how to validate a perception: a configuration of the environ-
ment is validated as a perception if the expected sensory in-
formation (the projection from the tested configuration into
the senses) is similar to the observed one, up to the precision
of the senses. Learning the models for the world and the
senses is considered as different process from perception.A
complete computational implementation is presented for a
toy example of visual perception in a world of flat and su-
perposed squares.
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INTRODUCTION
The aim of perception is to obtain information about the en-
vironment. However, only information from the senses is
available. How is it possible to integrate local tactile infor-
mation and say that an object is round? How can visual and
auditory information be merged? How is it possible for an
animal to make global decisions based on the local informa-
tion provided by the senses? This paper sketches an algo-
rithmic theory of perception and shows a complete compu-
tational implementation for a toy example.

This paper states that perception is dependent upon both, a
model of the external world and models for the senses. The
perception process tries to find a configuration of the model
of the world that is coherent with the sensed information.
To validate a configuration, knowledge about the sensors is
used to project the configuration under evaluation to obtain
the expected measurements in the sensors. The configura-
tion is accepted as a perception only if the measurements in
the sensors correspond with those expected, up to the sen-
sor’s precision. Depending on the situation, one, many or
no configuration could be accepted. An accepted configu-
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ration contains the perceived information about the environ-
ment expressed in terms of the model of the world.

A fundamental aspect is the validation step. The projection
to the senses ensures that an accepted interpretation is in-
deed compatible with the sensed information (and not just
the more probable one given the current knowledge) and will
reject a configuration that is not. It is crucial for an agent
acting on the environment to have reliable perception, even
incomplete.

To give a simple example, the model of the world could
be three dimensional Euclidean space where flat surfaces,
spheres and cubes are possible. A configuration of that model
could be a sphere of a given size placed over flat ground
along with the relative position of the observing agent. Let
say the agent has an eye (or camera). Then the light source(s)
must be included in the model. If the configuration “a cube
over the ground” is to be tested, then the corresponding reti-
nal image is simulated and compared to the measured one. If
the difference lies within the same order of magnitude as the
noise level, then the configuration is accepted. On the other
hand, if a flower is shown to this agent, no configuration will
be coherent and thus the result will be no perception. Similar
descriptions could be made for other sensors.

This does not implies that the configuration of the model has
to beviewed by an homunculus (a little human) inside our
brain. The configuration of the world is not are-presentation
as in a picture, but aninterpretation. A perceived config-
uration, for example “two cubes and one sphere over the
ground”, is an interpretation in terms of objects and its re-
lations of the near environment, and is expressed in the right
way to be analyzed by the decision making procedures.

It is important to note that it is not possible to perceive some-
thing that is not included in the model of the world. For
instance, to perceive that an object is round, “roundness”
should be included in the model. The perception of new
things is possible if they can be expressed in terms of exist-
ing concepts. For example, when I see Figure 1 I perceive
an arrangement of a box, some tubes, some wires, maybe
a microphone. My perception is made in term of concepts
I know. But someone familiar with that object will see di-
rectly “an instrument to measure air quality”. That kind of
fractioned perception can eventually lead to learning a new
concept. In the example, a new concept for that instrument
could be added. Learning is a related butdifferent process
from perception.
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Figure 1.

For some scenes multiple interpretations are possible. It may
be useful to add selection criteria. One possibility is to se-
lect the simplest one. For example, given a valid configura-
tion, adding an object in a hidden position will not change
sensory information; in this case it is natural to prefer the
minimal configuration compatible with the senses. In other
cases, as in ambiguous figures, two or more interpretations
are equally valid. With more context (that should be part of
the configuration) it could be decidable, but in an isolated
figure there is no way to select.

Sensing does not happen instantaneously, the information is
obtained in the course of our actions. Also, we get infor-
mation from many senses at the same time. The diversity
of sensor types and timing is naturally handled here: for
a configuration to be accepted, it needs to be validated by
every sensor. The result is the integration of diverse infor-
mation into one coherent configuration of the environment.
The main reason to have a global model of the world is, pre-
cisely, to be able to integrate different information sources at
different times into one coherent picture of the environment.

The information gained by perception is used to decide fu-
ture actions. Part of the selected actions are aimed at direct
vital needs: to escape, to eat, to reproduce. But actions can
also be aimed at obtaining more information: turn the head
toward some point of interest, walk to have a better point of
view, move the hand to follow the shape of an object. All
this is compatible with the proposition of this paper.

Perception and learning about the external world are differ-
ent processes. Perception is a fast process that gets informa-
tion about the configuration of the world now, while learn-
ing takes more time and gradually obtains information about
persistent properties of the world. Part of the model of the
world is common for many animals and was developed by
natural selection over an extensive period of time. Another
part is learned by each individual during its life. Good mod-
els of the world are crucial for useful perception. But this
paper will focus on perception, assuming that the model of
the world is known. We can think of it as analyzing an ani-
mal for just a few second or minutes, a time short enough so
we can neglect any process of learning.

The proposal is unrealistic in its full form; it is computation-
ally too expensive to be applied by animals or robots. It is
more likely that animals use shortcuts to reduce the compu-
tational burden. For example, instead of projecting the entire
configuration on each sensor, it could be performed part by
part. Also, not every possible hypothesis can be tested, the
search must be done by someexploring methods. Gestalt
laws are examples of such methods in human perception.
These heuristics should be regarded as approximations of
ideal perception.

To illustrate the ideas, a complete implementation for a toy
example in visual perception will be presented. The sys-
tem’s knowledge is restrained to superimposed squares of
different sizes, positions and colors on a flat scene. The algo-
rithm is able to find a correct interpretation of scenes made of
squares, and finds a partial interpretation on a mixed scene.
When no interpretation with squares is coherent (as for most
images) the output is “no understanding”.

RELATIONS WITH OTHER THEORIES OF PERCEPTIONS
The theory sketched in this paper is a variation of the “sense-
data” theory [1]. When I see a tomato my perceptual system
found that the configuration “a tomato in front of me” cor-
responds well to the sensed information. But I could not
directly perceive the tomato, because there isno tomato in
the physical world as the one I perceive. According to cur-
rent physical theories, there is nothing like a red smooth sur-
face. The “tomato” in front of me is almost empty and the
concept of “red” does not exist in physics. Our model of
the world and concepts like “tomato” are, strictly speaking,
false; thus “tomato” can only be a mental concept. At the
same time, our model is good enough to describe the world
at the level of details that we need. As Arthur Eddington put
it in a famous passage in the introduction to “The Nature of
the Physical World”:

I have settled down to the task of writing these lectures
and have drawn up my chairs to my two tables. Two
tables! Yes; there are duplicates of every object about
me – two tables, two chairs, two pens.

[. . . ]

One of them has been familiar to me from earliest years.
It is a commonplace object of that environment which I
call the world. How shall I describe it? It has extension;
it is comparatively permanent; it is coloured; above all
it is substantial. [. . . ]

Table No. 2 is my scientific table. It is a more recent ac-
quaintance and I do not feel so familiar with it. It does
not belong to the world previously mentioned – that
world which spontaneously appears around me when
I open my eyes, though how much of it is objective and
how much subjective I do not here consider. It is part of
a world which in more devious ways have forced itself
on my attention. My scientific table is mostly empti-
ness. Sparsely scattered in that emptiness are numer-
ous electric charges rushing about with great speed; but
their combined bulk amounts to less than a billionth of
the bulk of the table itself. [. . . ]
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However, in a sense, perception is not indirect either. When
we see a tomato there is no internal mental image of a tomato
that should be thenseen by an internal perceptual system.
The result of perception is not a “picture” produced by a con-
figuration of the world, but information about objects present
in the near environment. There is no need of further steps,
except for those that analyze possible actions and decide the
best one.

Richard L. Gregory proposed that perception is essentially
like the process of discovery by hypotheses in science [12,
5]. The proposal of this paper is roughly in this line of
thoughts. Cognitive systems function essentially like sci-
ence; but perception is only one part of it. Here, perception
is just the process of finding the configuration of the world
that matches the sensory information; the process of learn-
ing about the world – in the analogy a substantial part of the
discovery by science – would be a different but related pro-
cess. A second difference is that Gregory see in perception
a Bayesian strategy, while, as will be discussed, this paper
proposes a different validation mechanism.

Another important theory of perception was introduced by
James J. Gibson, [4, 12]. He claims that perception is an
exploratory process of the external environment, where in-
formation is sensed in the form of structural invariants. He
pointed out important critics about other theories. For exam-
ple, information is not only present on the sensory measure-
ment; much is added when analyzed in conjunction with the
configuration of the body and its actions. Also, the senses act
more like sampling devices than like a photographic cam-
era that gives a fixed image. However, the main point of
his theory is thedirect character of perception in the sense
of not being mediated by visual sensations or sense data.
This is barely achievable in the proposed framework: Imag-
ine someone in complete darkness touching with one hand
a large plate. The observer will never be in contact with the
whole object; in spite of that, she or he would conclude that
the object is round by integrating the information in time.
The concept of “roundness” must be involved in this pro-
cess.

Recently, J. Kevin O’Regan and Alva Noë put forward a
“sensorimotor” theory of perception [13, 11]. According to
them, perception is a way of acting, a way of exploring the
environment. Perception happen when the organism masters
the sensorimotor laws that relates how the actions of the or-
ganism affects the sensory input. The proposal of this paper
is similar to the theory of O’Regan and Noë with a differ-
ence in point of view. Understanding the environment also
imply an understanding of how actions affect the sensed in-
formation. But here, the sensorimotor laws are implicit in
the model of the world and the models for the senses. When
models are good enough, action leads, in the short term, to
expected configurations, that should correspond well to ex-
pected sensory information. This is equivalent to having sen-
sorimotor laws for the different perceived facts. However,
that would only be important when it fails, as that would be
a sign that learning is needed.

Another difference is that in the proposed framework learn-
ing is regarded as a different process from perception, while
for O’Regan and Noë perceptionis a kind of learning, where
the sensorimotor laws are deduced.1 The reason to distin-
guish perception and learning is that most of the time an
adult is perceiving, no learning process is involved. More-
over, perception is involved when one listen to recorded mu-
sic or see a film, but no relevant action is involved, and no
sensorimotor learning. The learning process involved in ob-
taining models of the world and for the senses require pro-
cesses of deducing and adjusting models for space and sen-
sors (for example as presented in [15]), as well as processes
for learning new concepts. The learning process is funda-
mental, and far from trivial, but it will not be analyzed in
this paper.

Bayesian theory is a widespread mathematical theory of per-
ception, see [10]. It involves a probabilistic model of the
world where some variables describe the configuration,x,
and other variables represents observations,y. The model
provides a probability distributionP (x), and the law con-
cerning observations,P (y|x). Given all this, the perception
process consist in finding the configurationx that correspond
to an observationy. In Bayesian theory, knowledge about
the environment is given by the so-calledposterior proba-
bility P (x|y), which can be computed using Bayes’ rule:

P (x|y) =
P (y|x) · P (x)

P (y)
.

The factorP (y) does not depend onx and just implies a
multiplicative factor. Finally the perception depends on the
sensor’s lawP (y|x) and in theprior probabilityP (x).

The general schema of Bayesian theory is similar to the one
presented in this paper. The details, however, are different.
Both theories need a model of the world, but the nature is
somewhat different. Bayesian theory ask for aprior distri-
bution that gives to some configurations of the world “more
probability” than others. The “sensing” or “projecting” rules
are also different, even if related. However, the real differ-
ence is the nature of the result. In its pure form, Bayesian
theory gives the perceived information as a probability dis-
tribution on the configurations of the world. A way of using
this information is needed. Often the configuration that max-
imizeP (x|y) is selected as perception. This last criterion al-
ways produces a perception and only one. With insufficient
knowledge, the best configuration may produce inconsistent
perceptions, and in an ambiguous scene only one configu-
ration would be perceived. As we will see, the validation
criterion proposed here is different. The result could be one,
many or no configuration of the environment. And an ac-
cepted configuration must be coherent with the sensed in-
formation. Finally, Bayesian theory implicitly assumes that
all possibles configurationsx will be evaluated (or that the
problem is sufficiently regular to be able to use shortcuts).
In this proposal it is explicitly assumed that it is not possible
to be sure that the best configuration was found because its

1They mention the use of ready made sensorimotor patterns that
avoid learning all every time; in a sense these patterns are like con-
cepts in the model of the world.
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space is huge and not regular. Thus, a configuration explo-
ration process is needed and its quality affect the result.

A THEORY OF PERCEPTION
Lower animals possess limited capacity for action and sim-
ple sensors that give them some information about the en-
vironment. A set of special detectors triggering ready-made
actions probably guide most of their behavior. On the other
hand, higher animals’ range of actions is large and possess
sophisticate sensors. More important, the life of each being
is a big investment; thus, it makes sense to spend energy in
selecting good actions to try to preserve its life.

To be able to make useful global decisions, an animal must
integrate all the information about the near environment into
one coherent structure. Moreover, higher animals proba-
bly possess a mental mechanism that is isomorphic, at some
level of details, to the near environment. That mechanism
let them try in their mind actions before actually take them.
Like a chess player, they look ahead some moves before de-
ciding its action.2 In this view, that mechanism includes a
model of the world, and perception is the process that keeps
track of sensory information and tries to have, at each time,a
configuration of that model that is isomorphic to the near en-
vironment. The result of perception is not “a picture” of that
configuration of model of the world; the result of perception
is the set of objects and relations between them described in
the accepted configuration of the world. The configuration
is then used to test and evaluate possible actions.

Let us callS the sensory input. Depending on the animal or
robot, and on the level of description, the informationS can
be expressed in different ways. For example, it could be a
vectorS = (s1, . . . , sn), wheresi is related to the activation
of the neuron numberi in the input system. Orsi could
be the value measured at positioni in some sensor. Also,
different sensors may have different timing. The particular
coding or organization forS is not important here.

Given a model of the worldE , perception is a process by
which a configuration of itE is selected, hopefully one that
corresponds at some level of accuracy with the environment.
This configuration should include the pose and position of
the observer, a list of object with some properties, their po-
sition relative to the observer, etc. Again, the details of the
model of the world and the particular coding forE or orga-
nization ofE are not important. Only things and properties
included in the modelE will be able to be coded inE.

Perception also depends on models for the sensors. This
information is needed to build a rule of projection to the
senses,

Ŝ = Project(E),

which, given a configuration of the model of the environment
E, gives the expected measurements on the sensesŜ. For
example, ifE represents a cube over a plane, and the sensor
2What we call consciousness is probably a part of that mechanism
in which the known information is evaluated, some “moves” are
played in the mind, and action is decided.

is a camera,̂S should be the image formed by the projective
transformation from the point of view indicated inE (the
observer is considered to be part of the environment, so its
position and pose is part ofE).

Given the observed informationS, the process of perception
tries to find a configurationE for which S ≈ Ŝ. There are
some reasons that make that it would be rarely the case thatS

andŜ are actually equal. The sensors, as any measurement
system, are subject to some accuracy and precision. SoS
could be slightly different from the expected values even if
E is the right one. Also, the model of world is surely not
perfect.

To cope with this, the perception process also needs some
informationσs about the precision of the senses. Differ-
ent senses have different precision; soσs could be a vector
(σ1, . . . , σn), σi being the precision ofsi. But again, the de-
tail are not important here.3 As a first approximation we will
say that an interpretationE will be accepted if

|S − Ŝ| < σs.

This validation method is, however, insufficient as the next
section will discuss. The validation method is a fundamental
point as it determines when a perception is valid and when
not. It is not just the best interpretation that is perceived; an
interpretation mustalso be good enough to match the sensed
information.

What configurationsE should be tried? A brute force mech-
anism would test every possibleE. Nevertheless, that would
require too much time (infinity?) to get a valid perception.
Some shortcuts may be possible by exploiting restrictions of
the environment or the senses. However, in the general case,
anexploration mechanism based on shortcuts and heuristics
is needed. This mechanism can be iterative, using previous
(successful or not) tested configurations and the information
of the error committed, to refine into a new guess. The ex-
ploring mechanism is the more difficult mechanism in per-
ception.

Algorithm 1 suggest a perception loop that tries to analyze
the sensory informationS. This is an extremely simple ver-
sion just to illustrate the idea. In a more realistic one the
loop may also stop after a certain time or when new sensory
information is available. The process of evaluating actions
should also be considered here.

Algorithm 1: Perception
repeat

Eold ← E
Ŝold ← Ŝ
E ← ExploreConfiguration(S, Eold, Ŝold)

Ŝ ← Project(E)

until(|S − Ŝ| < σs)

3
σs may be dependent onS. For example, in low light conditions

visual information is much more noisy.
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THE VALIDATION STEP
The validation step is crucial as it determines the result of
perception. This section will show that the criterion pre-
sented in the last section is insufficient. The desired proper-
ties for a satisfactory one will be described and a way to a
solution suggested.

Figure 2. The validation step should guarantee that there isenough
evidence to support a configuration. The nine images shown here were
produced by drawing black triangles of different sizes overa gray back-
ground, and then adding of noise. In each case the observation is com-
patible with the presence of a triangle under noise, but onlyin some of
them the evidence is enough to accept that interpretation.

As pointed in the last section, a configuration should be ac-
cepted when the sensed information is compatible with it,
given the knowledge of the sensors used. But that is not
enough. Figure 2 illustrates the problem. The nine images
shown in the figure are compatible with the hypothesis of a
black triangle over a gray background plus a certain quan-
tity of noise (different on each column). Only in some of
them, however, evidence is enough to accept that interpre-
tation. On the first row we see the same triangle with in-
creasing noise added. In the first case the triangle is clearly
visible; in the second image the triangle is still visible, but
we notice a strong noise. In the last case, the hypothesis of
the triangle seems as good as many others. A similar effect
but in another sense happen when we analyze the first col-
umn, where no noise is present but the triangles appear at
decreasing sizes. In the last image (left-bottom) the “trian-
gle” is so small that there is not enoughevidence to support
that hypothesis. A good validation criterion should accept
a configuration only when the measurements are compatible
and the evidence is enough to support the hypothesis.

In [2] Desolneux, Moisan and Morel introduced a theory of
detection that satisfy the desired properties. Their method
is based on a what they claim is a general perception princi-
ple, the Helmholtz principle, according to which an observed
geometric structure is perceptually meaningful when its ex-
pectation in noise is small, see [3]. Detection is treated as

a simplified hypothesis testing problem. In the classic deci-
sion framework, two probabilistic models are required: one
for the background and one for the objects to be detected.
In thea contrario approach (as it is called), however, the ob-
jects are directly detected as outliers of the noise model.4 No
probabilistic model is needed for the objects.

Figure 3 shows the result of line segment detection on the
images of Figure 2 by LSD [7], an algorithm based on Des-
olneux, Moisan and Morel theory. The detection criterion
did a good job giving detection only in cases where evidence
is enough.

Figure 3. The result of applying LSD, a line segment detector, to the
images of Figure 2. As desired, the algorithm only produces detection
when there is enough evidence for that.

Desolneux, Moisan and Morel theory was successfully ap-
plied to many detection problems [3] and more are envis-
aged. However, the formulation of a general criterion for
perceptual validation needs further development.

REMARKS
The theory sketched makes a clear-cut difference between
perception andlearning. Perception is the process by which
the sensory information is interpreted in terms of an already
present model of the environment; learning is the process by
which the model of the environment is created or updated.
Perception and learning are related. Perception clearly de-
pends on learning for the model of environment. Part of
the learning process happened by natural selection over huge
periods of time. More learning and fine adjustments of the
model also occurs on each individual since the beginning of
its life.5 Learning processes also use the perceived infor-
4The article “A statistical information theory of visual thresholds”
by Violet Cane and R.L. Gregory in [6] suggests that perceptual
thresholds are adapted according the noise levels in the senses.
Desolneux, Moisan and Morel also performed psychophysicalex-
periments that give support to their theory, [3].
5In [15], Philipona et al. presented an algorithm to learn informa-
tion about the world by directly analyzing the sensory information
resulting from random actions.
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mation as raw material: a pattern of already known elements
can be assembled into a new concept when repetitive appear-
ance or inferred meaning suggest its utility. But learning is
not analyzed in this paper.

Note that the model of the world needs to be accurate to
some degree in order to be useful. However, a model do
not need to be perfect to be useful. For example, Euclidean
space is good enough for any animal needs. Yet, according
to the general relativity theory it is only an approximation.
A reasonable balance between the complexity and accuracy
of the model of the world (including models of the senses) is
needed. A model too accurate implies more energy spent in
the perceptive system; an inaccurate one entails more predic-
tion errors, thus poor decisions. The right balance is adjusted
in each species by natural selection.

Different sensors provide different kind of information. The
projection rules must deal with the particularities of eachone
of them. This includes different type of information pro-
jected, different timing, different dynamic, etc. The config-
uration perceived must match all of them, providing a way
of fusion for the heterogeneous sensory information. Also,
the environment is usually not static; accordingly, the con-
figuration of the world has to include dynamic aspects. For
example, if the scene is a sphere rolling, what is perceived
is not a series of static configurations of the sphere at differ-
ent position; the configuration perceived is a spheremoving
in some direction and at some speed. The projection to the
senses must consider the dynamic aspects.

The objective of perception is to get information about the
environment to be able to decide actions. Among the possi-
ble actions are some that will improve the information of the
environment. Thus, perception can guide action to be able
perceive, to be able to act. For example, one can turn the
head to point to a previously unseen point. Or one can walk
to approach something in order to see details or be able to
touch. Algorithm 2, suggest a variant of the perception loop
including this kind of action. The process “ExplorativeAc-
tion” selects an actionA to be done, based on the current
perceived configurationE and evaluating the error between
S andŜ. The criterion for selectingA is not discussed here.

Algorithm 2: Perception with Explorative Action
do forever:

S ← New Sensory Information
Eold ← E
Ŝold ← Ŝ
E ← ExploreConfiguration(S, Eold, Ŝold)

Ŝ ← Project(E)

A← ExplorativeAction(E, S, Ŝ)

Perception is aninterpretation process, and as such, it can
makes mistakes. The perceived scene is at mostone possi-
ble interpretation. Human perceptual system is very good,
and the information sensed very redundant, hence mistakes
are rare. We call it illusions or hallucinations when percep-
tion goes wrong. During an illusion, our perception system
found an interpretation that is coherent with the sensory in-

formation, so itcould be true, but it is not. Hallucinations
can arise in different ways. They could be rooted in a bad
or insufficient model of the world, or caused by inadequate
sensor projection rules, as in Figure 4. Another possible rea-
son is validation thresholds too permissive, that would ac-
cept any proposed configuration.

Figure 4. The pencil seems to be broken. Our projections rules does
not consider the refraction of light at the water/air transitions. Thus,
the perceptual system uses projections rules that would be well adapted
for an empty glass; in that case the result would have been correct, as
only a broke pencil could produce that observation.

Ambiguous illustrations, as in Figures 5, deserve a com-
ment. These figures were conceived in purpose to have more
than one interpretation. In contrast with illusions, here none
of the interpretations is wrong. When people are shown
this kind of pictures they usually see only one interpreta-
tion and stop there unless they are encouraged to continue
searching for more. Normal environment is generally very
complex and sensory information redundant enough that is
hardly possible that a wrong configuration match; so it is rea-
sonable to stop the exploration when a valid configuration is
found.

Figure 5. Two images with multiple interpretations.

In some cases no interpretation can be found for a scene.
Even if rare, this happen to humans too; it produces a sensa-
tion of not being able to figure out what is being seen. Usu-
ally this situation ends when a clear interpretation appear,
either spontaneously after a change of view, or suggested by
someone.6

In a sense, every scene can have multiple interpretations:
given a valid interpretation, a new one can be built by hiding
6This happen often in language perception, and particularlywhen
exposed to a foreign language not perfectly mastered: sometimes
we hear something that we fail to understand; often, the meaning
appears clear after some minutes of reflection.
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an element behind an object. This new interpretation would
be as valid as the first one. However, it seems sound to apply
Occam’s razor and keep the more simpler interpretation, the
one that involves less elements (and specially the smallest
number of unobserved elements).

The most difficult part of perceptual systems is probably
the mechanism for exploring the space of configurations in
search for a good interpretation. Provided with the right in-
terpretation the validation system will acknowledge it. But
to spot it in limited time among a huge number of possibil-
ities is a difficult task. Human mechanisms are extremely
good. In challenging conditions, however, the search for
configurations is less effective, as illustrates the famouspic-
ture shown in Figure 6. When people see this picture for the
first time, usually fail to get a full understanding, or it takes
considerable time. Yet, when signaled that a Dalmatian dog
is present at the center, with the lowered head facing away
and left, most people manage to see it well. This suggests
that the problem is rooted in the exploration of configura-
tions rather than in the validation.

Figure 6. What do you see in the picture?

The first stages of the visual system and its specialized mech-
anisms are probably part of the configuration exploring sys-
tem, as well as the mechanisms described by Gestalt theory
[8, 9]. The structures and patterns detected are used to re-
strain the search. Geometric features help to organize sen-
sor information: occlusions are detected, projective geome-
try inferred, isolated information is grouped, etc. There are
probably some specialized detectors, for example for faces.
Gradually, the configuration of the world is unraveled.

Ideally, a configuration to be validated should be fully pro-
jected to the senses. This is probably unrealistic as it is too
expensive to be done in animals or robots. Some shortcut
are likely to be needed. The heuristics needed to handle
the computational burden should be regarded as approxima-
tions, as good as possible, to ideal perception. For example,
a configuration may be projected to the sensors, object by
object in a modular way. Or the projection can be some-
what local. That could also help in the gradual process of
discovering the configuration, by validating already found
elements. Projection by parts would also make possible the
perception of impossible objects [14] as the ones shown in
Figure 7. There is no object that corresponds as a whole to

these pictures. But parts of these figures do correspond to
parts of objects. When we try to perceive these pictures as
a whole the result is flat; when looked by parts, perception
changes as we see different parts of them.

Figure 7. Impossible objects: the Penrose triangle and devil’s tuning
fork.

A TOY EXAMPLE: SQUARES

Perception of Fixed Images
The following experiments deals with fixed images. It is of-
ten argued that to analyze one fixed image is a far cry from
the process of perception. Certainly, human or animal per-
ception is much more rich. In natural life, animals never ana-
lyzeone fixed image. To start with, animals usually have two
eyes and process a flux of visual information. Also, the im-
age on the retina is irregularly sampled, and needs constant
eye movements to cover even part of a scene. Moreover, we
are rarely exposed only to visual information. More often
we can hear, touch, smell and taste at the same time. And
more information is obtained by acting. True.

But this does not means that perception isonly possible with
all these capacities. A blind person can perceive even if vi-
sual information is missing; a deaf person can perceive with-
out hearing; a paraplegic person can perceive with very lim-
ited capacity for moving. Reducing the information sources
makes perception more difficult, less efficient and limited.
But it is still perception. We are all capable of perceiving
music by listening to records, while the only relevant stimu-
lus is auditory.

The objective of computer vision is to understand and du-
plicate natural vision by computer algorithms. There has
been some research using on-board cameras and computers
on robots capable of action. But most of the work is done on
fixed images; the reason is just the simplicity of the setting
needed to work. It is clear that a lot of information is lost
and many of the problems addressed by computer vision are
much harder than they could be with more redundant infor-
mation. However, there is still much to be learned by the
analysis of fixed images. Humans have no problem under-
standing photos and we could expect that algorithms could
understand at least a small fraction of what humans can with
exactly the same information: the one contained in a fixed
photo.7

7It is hard to believe that, for example, eye movements is funda-
mental to understand a photo and not just part of how human visual
system works. Computer vision algorithms often use an equivalent
mechanism to eye movements when they detect edges and spend
more time analyzing the regions of the image near them.
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A full-fledged perception system, useful for an animal, prob-
ably needs many sources of redundant information and the
capacity for action. But we can use fixed image perception
as a very simple case of study, as a test bed for perception.
This somewhat isolated problem is to perception as the pen-
dulum or the canon balls are to physics. The very same fun-
damental problems are involved as in general perception.

A World of Squares
To have a perceptual setting we need a model of the world
and models for the sensors. Here we will set a very simple
context so as to be able to show a full implementation. This
will be, no doubt, a toy example, but hopefully one that will
illustrate the ideas.

The “world” known to our system is composed of squares
of different sizes and colors, superposed one to another on
a flat scene. The sensor gets a digital image of the scene
by sampling the flat world. It is assumed that the sensor
introduces some blurring and noise.

The exploring mechanism starts by applying a line segment
detector, LSD [7], to the image. Then, every combination of
four line segments is tested looking for possible sets com-
patibles with a square. That is, two pairs of parallel line
segments, both pairs roughly equally spaced, and one pair
orthogonal to the other. The criteria used to decide if two
line segments are parallel, orthogonal, or equally spaced are
arbitrary but reasonable. A last condition required is that
each of the sides is covered, in part, by one of the line seg-
ments. The result is a set of candidates for square.

The second step tries to build a configuration of candidates
for square, with a certain order and color for each one, that
would produce the sensed image. For this aim, a mask of
occluded pixels is used. At the beginning the mask is empty
as all the pixels are visible. Then, each one of the candidates
is tested. If one of them has a more or less constant color, it
is temporary accepted as visible. Thus, it is stored as the first
square and its pixels are marked as occluded in the mask.

The same procedure is repeated in the search for a second
square, then a third square, and so on. But, when checking
if candidates present a constant color, only pixels that are
marked as visible in the mask should be considered (the rest
being occluded by previous squares). To be accepted, a can-
didate must also have a minimal number of visible pixels,
otherwise we could accept completely occluded squares.

This process continues iteratively until there is no candidate
left or there is no candidate that can be accepted. In each
iteration of this process, more than one candidate may sat-
isfy the criterion of visibility and uniformity. Each time a
multiple option is possible a new branch is added to the tree
of configuration to be tested; all the nodes must be tested for
validation.

The expected sensory information (the image) can be synthe-
sized for given configuration: an ordered list of squares with
its position, size, orientation and color. For this toy exam-

ple, the synthesis is trivially obtained by drawing the squares
into an image. The validation step consists in comparing the
synthesized image to the observed one. Pixels where the dif-
ference in color exceeds the noise level are considered as
not explained. If all pixels are explained the configuration is
valid. Inversely, if most pixels are not explained the config-
uration is rejected. Between this extremes, a configuration
could be partially valid when some of its squares are fully
covered by explained pixels (these areexplained squares).

Among the valid or partially valid configurations, the ones
with more explained pixels are selected. Among them, the
ones with less unexplained squares are kept. And among
them, the one with the smallest number of squares (in a
sense, simpler) is considered the best interpretation. As the
experiments of the next section will show, further researchis
needed to get a good criterion.

In this simple case of squares, the “evidence” problem men-
tioned when discussing the validation step is handled by the
use of LSD, a line segment detector based on Desolneux,
Moisan and Morel detection theory. Candidates for square
are built based on the detected line segments; therefore a val-
idation criterion with the right properties is implicitly used.
Otherwise, unsatisfactory configurations could be accepted.
For example, tiny squares could be validated, and any image
could be interpreted as composed of tiny squares of the right
color, as when images are represented by pixels. This is not
possible when using LSD, the side of a pixel is too small to
be detected and no candidate for it will be generated.

The selected configuration of explained squares is the per-
ception.

Experiments
This section shows experiments made with the implementa-
tion described before. A first set of experiments is shown
in Figure 8. For each row, the first column shows the in-
put image, i.e., the sensory information. The middle col-
umn shows the synthesized image from the best configura-
tion found, that is, the re-projection into the senses from the
obtained configuration. The last column shows on black the
pixels that were rejected.

On the experiment on the first row the scene can be inter-
preted as a supposition of squares, and this is what the al-
gorithm found. There is some noise in the input image and
some imperfections in the size and position of squares on
the synthesized image. For that reason both images are not
identical, but the difference is small enough to be accepted.
No pixel was rejected. The perceived configuration is a rea-
sonable interpretation of the scene. It is important to note
that the result of perceptionis not the synthesized image but
the information about the set of squares and its relation. For
example, a described could be “a white square of sizeA and
angleθ, at position(X, Y ); behind it, a light gray square of
size. . . ”. For this scene two interpretations are equally valid
as in the world known to the system only one square is possi-
ble per depth level. In one interpretation the large dark gray
square is behind the large light gray one, and in the other
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interpretation is the opposite.

On the second row we see almost the same scene as before,
except for some dark marks. The best configuration found
is the same as before, but this time the algorithm found that
there are some zones of the sensory input that were not ex-
plained. What we get is an incomplete perception of four
squares and a zone yet to be explained. The scene of the
third row is still the same with different dark marks. In this
case the algorithm manage to understand two squares (that
are detected without rejected pixels). The algorithm fails,
however, to understand the light gray square with marks: due
to the dark marks, it is not, indeed, a constant color square,
the only element know to the system. As a consequence,
the black square is not understood either. The algorithm was
programmed to assume the background to be uniform, so it
is set to the mean gray level of the remaining pixels. In this
case we should say that the algorithm partially perceived the
scene, understanding only two squares. For similar reasons
as before, the algorithm fails to make sense of the scene on
the last row. No pixel is validated and no perception results.

Figure 9 shows an experiment on a natural image. As ex-
pected, the algorithm do not manage to make sense of it: no
configuration of squares corresponds to it. The synthesized
image is uniform of the mean color of the image. Then, al-
most all pixels are rejected, except for some of them that
have more or less the mean gray value. The scene is not
understood and the result is no perception.

Even if the setting of squares is very simple, some interest-
ing configurations are possibles. Some of the visual exper-
iments developed by the Gestalt psychologist can be dupli-
cated using only squares [8, 9]. Two of them can be seen
in Figure 10. The first experiment was created to study how
objects are ordered in the presence of subjective contours.
Is the triangle in front or behind the square? One hypoth-
esis is that vision choose, other conditions being equal, the
configuration that requires less subjective contours. In the
version made of squares, the algorithm gives both results
equally valid. But the subjective contour criterion could be
implemented and tested extensively and different variations
compared.

Figure 11 shows two configurations found by the algorithm
for second experiment: the Kanizsa square. The resulting
squares were drawn in different grays to indicate the depth:
light means near foreground, dark near background. The
two configurations shown are equally valid, the only dif-
ference being the order of the two foremost squares. Both
squares are white in the interpretation, thus the contours be-
tween them are subjective and both configurations produce
the same image. In fact, there are many more configura-
tions that are equally valid; for example, changing the rel-
ative depth of the four small squares will not change the
synthesized image. In the original figure, the big horizon-
tal square is perceived as a white square with a black border.
Our algorithm only knows solid squares without border, so
it can only make sense of it as two superposed squares, one
black (that makes the border) and one white. For this reason

Figure 8. An experiment with pictures made with four squaresand
some dark spots. Left column: the observed image. Middle column:
the synthesized image from the perceived configuration. Right column:
validation mask, white pixels where accepted, black pixelswhere re-
jected.

Figure 9. House image experiment. As before, at the left is the orig-
inal image; in the middle is the synthesized image from the percep-
tion; at right is the mask of validated pixels (white means validated;
black means rejected). As expected for this image, no configuration of
squares can reproduce the image. Thus, the synthesized image is just
constant, and almost all pixels are rejected.

9



Figure 10. Two visual experiments of Gestalt theory. Left: original
picture. Right: version using only squares.

too, the configuration on the right is valid, and equally valid
to the other one.8 According to this theory, the Kanizsa tri-
angle is perceived because is the simplest configuration that
makes sense of the figure. A detailed study of this kind of
experiments could lead us to a better understanding of the
factors involved in each one of the figures resulting from
Gestalt theory.

Figure 11. Two possibles configurations of squares that explain the
Kanizsa square shown in Figure 10. Different shade of gray are used
to represent the depth of each square: light is on the foreground, dark
on the background. The difference between the two configurations is
the order of the two foremost squares (the two squares that should be
white). A priori there is no reason to prefer one configuration over the
other.

CONCLUSION
This paper sketched a computational theory of perception.
More work is needed to go from the outline presented here
to a complete theory. A full implementation was presented
for a toy example. Even if simple, the implementation can
be used to study a subset of the rich family of experiments
created by the Gestalt psychologist. Moreover, a simple ex-
tension of the model would allow to handle a larger subset
of Gestaltic experiments. This setting provides a simple test
bed for developing and experimenting, hopefully leading to
a complete formal theory of perception.
8As a curious comment, the criterion of minimum subjective con-
tours will give the standard interpretation.
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