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ABSTRACT ration contains the perceived information about the emviro
This paper sketches a computational theory of perception.ment expressed in terms of the model of the world.
Perception is the process of acquisition of informationsbo

the environment by the senses. In this proposal, a model ofA fundamental aspect is the validation step. The projection
the world and models of how information is projected into to the senses ensures that an accepted interpretation is in-
the senses are needed. Given these models, perception is thédeed compatible with the sensed information (and not just
process of finding one configuration of the known world that the more probable one given the current knowledge) and will
corresponds well to the sensed information. The key point is reject a configuration that is not. It is crucial for an agent
how to validate a perception: a configuration of the environ- acting on the environment to have reliable perception, even
ment is validated as a perception if the expected sensory in-incomplete.

formation (the projection from the tested configuratiomint

the senses) is similar to the observed one, up to the pracisio To give a simple example, the model of the world could
of the senses. Learning the models for the world and the be three dimensional Euclidean space where flat surfaces,
senses is considered as different process from perception. spheres and cubes are possible. A configuration of that model
complete computational implementation is presented for a could be a sphere of a given size placed over flat ground
toy example of visual perception in a world of flat and su- along with the relative position of the observing agent. Let

perposed squares. say the agent has an eye (or camera). Then the light source(s)
must be included in the model. If the configuration “a cube

Author Keywords over the gr_ound” is to be tested, then the corresponding reti

perception, computational theory, computer vision nal image is simulated and compared to the measured one. If

the difference lies within the same order of magnitude as the
noise level, then the configuration is accepted. On the other
hand, if a flower is shown to this agent, no configuration will
be coherent and thus the result will be no perception. Simila
descriptions could be made for other sensors.

INTRODUCTION

The aim of perception is to obtain information about the en-
vironment. However, only information from the senses is
available. How is it possible to integrate local tactileonf
mation and say that an object is round? How can visual and
auditory information be merged? How is it possible for an
animal to make global decisions based on the local informa-
tion provided by the senses? This paper sketches an algo
rithmic theory of perception and shows a complete compu-
tational implementation for a toy example.

This does not implies that the configuration of the model has
to beviewed by an homunculus (a little human) inside our
brain. The configuration of the world is not@presentation

as in a picture, but aimterpretation. A perceived config-
uration, for example “two cubes and one sphere over the
ground”, is an interpretation in terms of objects and its re-
Aations of the near environment, and is expressed in the righ

This paper states that perception is dependent upon both, ivay to be analyzed by the decision making procedures.

model of the external world and models for the senses. The
perception process tries to find a configuration of the model
of the world that is coherent with the sensed information.

To validate a configuration, knowledge about the sensors isinstance to perceive that an object is round, “roundness”
used to project the configuratilon under evaluation to ob_tain should b’e included in the model. The percéption of new
the (_axpected measurements in the SEnsors. The Conflgurat'hings is possible if they can be expressed in terms of exist-
tion is accepted as a perception only if the measurements 'ning concepts. For example, when | see Figure 1 | perceive
the sensors correspond with those expected, up to the sen - arrangemént of a box s,,ome tubes, some wires, maybe
sor’s precision. Depending on the situation, one, many or ' ' '

; . .~ a microphone. My perception is made in term of concepts
no configuration could be accepted. An accepted configu | know. But someone familiar with that object will see di-

rectly “an instrument to measure air quality”. That kind of
fractioned perception can eventually lead to learning a new
concept. In the example, a new concept for that instrument
could be added. Learning is a related Hifferent process
from perception.

Itis important to note that it is not possible to perceive sem
thing that is not included in the model of the world. For
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Figure 1.

For some scenes multiple interpretations are possibleayt m
be useful to add selection criteria. One possibility is to se
lect the simplest one. For example, given a valid configura-
tion, adding an object in a hidden position will not change
sensory information; in this case it is natural to prefer the
minimal configuration compatible with the senses. In other
cases, as in ambiguous figures, two or more interpretation
are equally valid. With more context (that should be part of
the configuration) it could be decidable, but in an isolated
figure there is no way to select.

Sensing does not happen instantaneously, the information i
obtained in the course of our actions. Also, we get infor-
mation from many senses at the same time. The diversity

S

The proposal is unrealistic in its full form; it is computaii

ally too expensive to be applied by animals or robots. Itis
more likely that animals use shortcuts to reduce the compu-
tational burden. For example, instead of projecting theent
configuration on each sensor, it could be performed part by
part. Also, not every possible hypothesis can be tested, the
search must be done by soregloring methods. Gestalt
laws are examples of such methods in human perception.
These heuristics should be regarded as approximations of
ideal perception.

To illustrate the ideas, a complete implementation for a toy
example in visual perception will be presented. The sys-
tem’s knowledge is restrained to superimposed squares of
different sizes, positions and colors on a flat scene. The alg
rithm is able to find a correctinterpretation of scenes médide o
squares, and finds a partial interpretation on a mixed scene.
When no interpretation with squares is coherent (as for most
images) the output is “no understanding”.

RELATIONS WITH OTHER THEORIES OF PERCEPTIONS
The theory sketched in this paper is a variation of the “sense
data” theory [1]. When | see a tomato my perceptual system
found that the configuration “a tomato in front of me” cor-
responds well to the sensed information. But | could not
directly perceive the tomato, because thereadsomato in

the physical world as the one | perceive. According to cur-
rent physical theories, there is nothing like a red smooth su
face. The “tomato” in front of me is almost empty and the
concept of “red” does not exist in physics. Our model of
the world and concepts like “tomato” are, strictly speaking

of sensor types and timing is naturally handled here: for fa/S€; thus “tomato” can only be a mental concept. At the
a configuration to be accepted, it needs to be validated byS@Me time, our model is good enough to describe the world
every sensor. The result is the integration of diverse infor &t the level of details that we need. As Arthur Eddington put

mation into one coherent configuration of the environment, It in @ famous passage in the introduction to “The Nature of

The main reason to have a global model of the world is, pre-
cisely, to be able to integrate different information s@asrat
different times into one coherent picture of the environtnen

The information gained by perception is used to decide fu-
ture actions. Part of the selected actions are aimed attdirec

vital needs: to escape, to eat, to reproduce. But actions can

also be aimed at obtaining more information: turn the head
toward some point of interest, walk to have a better point of
view, move the hand to follow the shape of an object. All
this is compatible with the proposition of this paper.

Perception and learning about the external world are differ
ent processes. Perception is a fast process that gets aform
tion about the configuration of the world now, while learn-
ing takes more time and gradually obtains information about
persistent properties of the world. Part of the model of the
world is common for many animals and was developed by
natural selection over an extensive period of time. Another
part is learned by each individual during its life. Good mod-
els of the world are crucial for useful perception. But this
paper will focus on perception, assuming that the model of
the world is known. We can think of it as analyzing an ani-
mal for just a few second or minutes, a time short enough so
we can neglect any process of learning.

the Physical World":

| have settled down to the task of writing these lectures
and have drawn up my chairs to my two tables. Two

tables! Yes; there are duplicates of every object about
me — two tables, two chairs, two pens.

[..]

One of them has been familiar to me from earliest years.
Itis a commonplace object of that environment which |
call the world. How shall | describe it? It has extension;
it is comparatively permanent; it is coloured; above all
it is substantial. [...]

Table No. 2 is my scientific table. It is a more recent ac-
quaintance and | do not feel so familiar with it. It does
not belong to the world previously mentioned — that
world which spontaneously appears around me when
| open my eyes, though how much of it is objective and
how much subjective | do not here consider. It is part of
a world which in more devious ways have forced itself
on my attention. My scientific table is mostly empti-
ness. Sparsely scattered in that emptiness are numer-
ous electric charges rushing about with great speed; but
their combined bulk amounts to less than a billionth of
the bulk of the table itself. [...]



However, in a sense, perception is not indirect either. When Another difference is that in the proposed framework learn-
we see a tomato there is no internal mental image of a tomatoing is regarded as a different process from perception gvhil
that should be theseen by an internal perceptual system. for O’'Regan and Noé perceptiosa kind of learning, where
The result of perception is not a “picture” produced by a con- the sensorimotor laws are deduced.he reason to distin-
figuration of the world, but information about objects pritse  guish perception and learning is that most of the time an
in the near environment. There is no need of further steps,adult is perceiving, no learning process is involved. More-
except for those that analyze possible actions and decaéde th over, perception is involved when one listen to recorded mu-
best one. sic or see a film, but no relevant action is involved, and no
sensorimotor learning. The learning process involved in ob
Richard L. Gregory proposed that perception is essentially taining models of the world and for the senses require pro-
like the process of discovery by hypotheses in science [12, cesses of deducing and adjusting models for space and sen-
5]. The proposal of this paper is roughly in this line of sors (for example as presented in [15]), as well as processes
thoughts. Cognitive systems function essentially like sci for learning new concepts. The learning process is funda-
ence; but perception is only one part of it. Here, perception mental, and far from trivial, but it will not be analyzed in
is just the process of finding the configuration of the world this paper.
that matches the sensory information; the process of learn-
ing about the world — in the analogy a substantial part of the Bayesian theory is a widespread mathematical theory of per-
discovery by science — would be a different but related pro- ception, see [10]. It involves a probabilistic model of the
cess. A second difference is that Gregory see in perceptionworld where some variables describe the configuratign,
a Bayesian strategy, while, as will be discussed, this paperand other variables represents observatignsThe model
proposes a different validation mechanism. provides a probability distributio®(x), and the law con-
cerning observations?(y|z). Given all this, the perception
Another important theory of perception was introduced by process consist in finding the configuratiothat correspond
James J. Gibson, [4, 12]. He claims that perception is anto an observatios. In Bayesian theory, knowledge about
exploratory process of the external environment, where in- the environment is given by the so-callpdsterior proba-
formation is sensed in the form of structural invariants. He bility P(z|y), which can be computed using Bayes' rule:
pointed out important critics about other theories. Fonexa
ple, information is not only present on the sensory measure- Plzly) = Ply|z) 'P(x)_
ment; much is added when analyzed in conjunction with the P(y)
configuration of the body and its actions. Also, the senses ac
more like sampling devices than like a photographic cam-
era that gives a fixed image. However, the main point of
his theory is thalirect character of perception in the sense
of not being mediated by visual sensations or sense data
This is barely achievable in the proposed framework: Imag-
ine someone in complete darkness touching with one hand
a large plate. The observer will never be in contact with the
whole object; in spite of that, she or he would conclude that
the object is round by integrating the information in time.
The concept of “roundness” must be involved in this pro-
cess.

The factor P(y) does not depend om and just implies a
multiplicative factor. Finally the perception depends ba t
sensor’s lawP(y|x) and in theprior probability P(x).

The general schema of Bayesian theory is similar to the one
presented in this paper. The details, however, are differen
Both theories need a model of the world, but the nature is
somewhat different. Bayesian theory ask fqoréor distri-
bution that gives to some configurations of the world “more
probability” than others. The “sensing” or “projecting’les

are also different, even if related. However, the real diffe
ence is the nature of the result. In its pure form, Bayesian
theory gives the perceived information as a probability dis
tribution on the configurations of the world. A way of using
this information is needed. Often the configuration thatmax
émize P(x|y) is selected as perception. This last criterion al-
ways produces a perception and only one. With insufficient
knowledge, the best configuration may produce inconsistent
perceptions, and in an ambiguous scene only one configu-
ration would be perceived. As we will see, the validation
criterion proposed here is different. The result could be, on
many or no configuration of the environment. And an ac-
cepted configuration must be coherent with the sensed in-
formation. Finally, Bayesian theory implicitly assumeatth

all possibles configurations will be evaluated (or that the
problem is sufficiently regular to be able to use shortcuts).
In this proposal it is explicitly assumed that it is not pbési

to be sure that the best configuration was found because its

Recently, J. Kevin O’Regan and Alva Noé put forward a
“sensorimotor” theory of perception [13, 11]. According to
them, perception is a way of acting, a way of exploring the
environment. Perception happen when the organism master
the sensorimotor laws that relates how the actions of the or-
ganism affects the sensory input. The proposal of this paper
is similar to the theory of O’Regan and Noé with a differ-
ence in point of view. Understanding the environment also
imply an understanding of how actions affect the sensed in-
formation. But here, the sensorimotor laws are implicit in
the model of the world and the models for the senses. When
models are good enough, action leads, in the short term, to
expected configurations, that should correspond well to ex-
pected sensory information. This is equivalent to havimg se
sorimotor laws for the different perceived facts. However,
that would only be important when it fails, as that would be
a sign that learning is needed. They mention the use of ready made sensorimotor patterns tha

avoid learning all every time; in a sense these patternsiaredn-
cepts in the model of the world.




space is huge and not regular. Thus, a configuration explo-is a camera$ should be the image formed by the projective
ration process is needed and its quality affect the result. transformation from the point of view indicated it (the
observer is considered to be part of the environment, so its

A THEORY OF PERCEPTION position and pose is part df).

Lower animals possess limited capacity for action and sim- _. . . .

ple sensors thaFt) give them some Fi)nfon)’/nation about the en-Civen the observed informaticy the process of perception

vironment. A set of special detectors triggering ready-enad tries to find a configuratiod’ for which S ~ S. There are

actions probably guide most of their behavior. On the other Some reasons that make that it would be rarely the casg'that

hand, higher animals’ range of actions is large and possesandS are actually equal. The sensors, as any measurement

sophisticate sensors. More important, the life of eachdein System, are subject to some accuracy and precisionsS So

is a big investment; thus, it makes sense to spend energy incould be slightly different from the expected values even if

selecting good actions to try to preserve its life. E i? the right one. Also, the model of world is surely not
perfect.

To be able to make useful global decisions, an animal must

integrate all the information about the near environmetatin ~ To cope with this, the perception process also needs some

one coherent structure. Moreover, higher animals proba- informationo about the precision of the senses. Differ-

bly possess a mental mechanism that is isomorphic, at someent senses have different precision;csocould be a vector

level of details, to the near environment. That mechanism (o1, ..., 0y), o; being the precision of;. But again, the de-

let them try in their mind actions before actually take them. tail are notimportant hergAs a first approximation we will

Like a chess player, they look ahead some moves before de-say that an interpretatioll will be accepted if

ciding its actior? In this view, that mechanism includes a .

model of the world, and perception is the process that keeps IS — S| < os.

track of sensory information and tries to have, at each tame, _ . _ . -

configuration of that model that is isomorphic to the near en- 1hiS validation method is, however, insufficient as the next

vironment. The result of perception is not “a picture” ofttha section V\_II|| dlscus§. The validation met_hoq is af.undan’ienta

configuration of model of the world; the result of perception POINt as it determines when a perception is valid and when

is the set of objects and relations between them described i1t Itis not just the best interpretation that is percejed

the accepted configuration of the world. The configuration INterpretation musilso be good enough to match the sensed

is then used to test and evaluate possible actions. information.

Let us callS the sensory input. Depending on the animal or What configuration&' should be tried? A brute force mech-
robot, and on the level of description, the informati$ean anism would test every possible Nevertheless, that would

be expressed in different ways. For example, it could be a '€quire too much time (infinity?) to get a valid perception.
vectorS = (s1,. .., sn), wheres; is related to the activation Some s_hortcuts may be possible by explo!tlng restrictidns o
of the neuron number in the input system. Os; could the environment or the senses. However, in the general case,

be the value measured at positibin Some sensor. Also anexploration mechanism based on shortcuts and heuristics
different sensors may have different timing. The particula 1S N€€ded. This mechanism can be iterative, using previous
coding or organization fof is not important here. (successful or not) tested configurations and the infoonati

of the error committed, to refine into a new guess. The ex-

Given a model of the world, perception is a process by plori_ng mechanism is the more difficult mechanism in per-
which a configuration of if2 is selected, hopefully one that ~ C€Ption.

corresponds at some level of accuracy with the environment. . . .
This configuration should include the pose and position of Algorithm 1 suggest a perception loop that tries to analyze

the observer, a list of object with some properties, their po [N€ S€nsory informatiof. This is an extremely simple ver-
sition relative to the observer, etc. Again, the detailshef ¢t~ SION just to illustrate the idea. In a more realistic one the

model of the world and the particular coding fBror orga- ~ '00P may also stop after a certain time or when new sensory
nization of £ are not important. Only things and properties information is available. The process of evaluating action
included in the modef will be able to be coded ifk. should also be considered here.

Perception also depends on models for the sensors. Thighlgorithm 1: Perception
information is needed to build a rule of projection to the repeat

senses, Eog — E

A . Sotd — S .

S = ProjectE), E « ExploreConfiguratiofs, E,;q, Soiq)
which, given a configuration of the model of the environment S « Prgjec(E)
E, gives the expected measurements on the sesisé<or until(|S — S| < gs)

example, ifE’ represents a cube over a plane, and the sensor

2What we call consciousness is probably a part of that meshani
in which the known information is evaluated, some “moves ar “o, may be dependent ofl. For example, in low light conditions
played in the mind, and action is decided. visual information is much more noisy.

3



THE VALIDATION STEP a simplified hypothesis testing problem. In the classic-deci
The validation step is crucial as it determines the result of sion framework, two probabilistic models are required: one
perception. This section will show that the criterion pre- for the background and one for the objects to be detected.
sented in the last section is insufficient. The desired prope Inthea contrario approach (as itis called), however, the ob-
ties for a satisfactory one will be described and a way to a jects are directly detected as outliers of the noise mb .
solution suggested. probabilistic model is needed for the objects.

Figure 3 shows the result of line segment detection on the
images of Figure 2 by LSD [7], an algorithm based on Des-
olneux, Moisan and Morel theory. The detection criterion

did a good job giving detection only in cases where evidence
is enough.

JANR VAN

Figure 2. The validation step should guarantee that there i€nough
evidence to support a configuration. The nine images shown hewere
produced by drawing black triangles of different sizes ovela gray back-
ground, and then adding of noise. In each case the observatias com-
patible with the presence of a triangle under noise, but onlyn some of
them the evidence is enough to accept that interpretation.

Figure 3. The result of applying LSD, a line segment detectorto the
images of Figure 2. As desired, the algorithm only producesetection

As pointed in the last section, a configuration should be ac- when there is enough evidence for that.

cepted when the sensed information is compatible with it,
given the knowledge of the sensors used. But that is not
enough. Figure 2 illustrates the problem. The nine images
shown in the figure are compatible with the hypothesis of a
black triangle over a gray background plus a certain quan-
tity of noise (different on each column). Only in some of

them, however, evidence is enough to accept that interpre-
tation. On the first row we see the same triangle with in-
creasing noise added. In the first case the triangle is glearl
visible; in the second image the triangle is still visiblet b

Desolneux, Moisan and Morel theory was successfully ap-
plied to many detection problems [3] and more are envis-
aged. However, the formulation of a general criterion for
perceptual validation needs further development.

REMARKS

The theory sketched makes a clear-cut difference between
perception andlearning. Perception is the process by which
ithe sensory information is interpreted in terms of an alyead

we notice a strong noise. In the last case, the hypothesis o ; i o
the triangle seems as good as many others. A similar effectPréSent model of the environment; learning is the process by
which the model of the environment is created or updated.

but in another sense happen when we analyze the first col- . ; :
umn, where no noise is present but the triangles appear af erception and learning are related. Perception clearly de
pends on learning for the model of environment. Part of

decreasing sizes. In the last image (left-bottom) the itria : .
the learning process happened by natural selection over hug

gle” is so small that there is not enoughidence to support i0ds of ti M | . d fi di f th
that hypothesis. A good validation criterion should accept periods of time. More learing and fine adjustments of the
model also occurs on each individual since the beginning of

a configuration only when the measurements are compatible, "~-~"¢ ; ; :
and the evidence is enough to support the hypothesis. its life.> Learning processes also use the perceived infor-

4The article “A statistical information theory of visual #gholds”
In [2] Desolneux, Moisan and Morel introduced a theory of by Violet Cane and R.L. Gregory in [6] suggests that percaptu
detection that satisfy the desired properties. Their mitho thresholds are adapted according the noise levels in theesen
is based on a what they claim is a general perception princi- Desolneux, Moisan and Morel also performed psychophysixal

. ? . periments that give support to their theory, [3].
ple, the Helmholtz principle, according to which an obsdrve s [15], Philipona et al. presented an algorithm to learinfa-

geometric structure is perceptually meaningful when its €X  tion about the world by directly analyzing the sensory infation
pectation in noise is small, see [3]. Detection is treated as resulting from random actions.



mation as raw material: a pattern of already known elementsformation, so itcould be true, but it is not. Hallucinations
can be assembled into a new concept when repetitive appearean arise in different ways. They could be rooted in a bad
ance or inferred meaning suggest its utility. But learngg i or insufficient model of the world, or caused by inadequate
not analyzed in this paper. sensor projection rules, as in Figure 4. Another possilae re
son is validation thresholds too permissive, that would ac-
Note that the model of the world needs to be accurate to cept any proposed configuration.
some degree in order to be useful. However, a model do
not need to be perfect to be useful. For example, Euclidean
space is good enough for any animal needs. Yet, according
to the general relativity theory it is only an approximation
A reasonable balance between the complexity and accuracy
of the model of the world (including models of the senses) is
needed. A model too accurate implies more energy spent in
the perceptive system; an inaccurate one entails moregredi
tion errors, thus poor decisions. The right balance is aglgls
in each species by natural selection.

Different sensors provide different kind of informatiorh&
projection ruI_es_must deal W'th the partlcularltles of_eanb Figure 4. The pencil seems to be broken. Our projections rule does
of them. This includes different type of information pro- not consider the refraction of light at the water/air transitions. Thus,
jected, different timing, different dynamic, etc. The corfi the perceptual system uses projections rules that would beell adapted
uration perceived must match all of them, providing a way for an empty glas_s; in that case the result Woulq have been cmect, as
of fusion for the heterogeneous sensory information. Also, ™Y & broke pencil could produce that observation.

the environment is usually not static; accordingly, the-con
figuration of the world has to include dynamic aspects. For
example, if the scene is a sphere rolling, what is perceived
is not a series of static configurations of the sphere atrdiffe
ent position; the configuration perceived is a spheoeing

in some direction and at some speed. The projection to the
senses must consider the dynamic aspects.

Ambiguous illustrations, as in Figures 5, deserve a com-
ment. These figures were conceived in purpose to have more
than one interpretation. In contrast with illusions, heve@

of the interpretations is wrong. When people are shown
this kind of pictures they usually see only one interpreta-
tion and stop there unless they are encouraged to continue
searching for more. Normal environment is generally very
complex and sensory information redundant enough that is
hardly possible that a wrong configuration match; so itis rea
sonable to stop the exploration when a valid configuration is

found.
¢ _D
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The objective of perception is to get information about the
environment to be able to decide actions. Among the possi-
ble actions are some that will improve the information of the
environment. Thus, perception can guide action to be able
perceive, to be able to act. For example, one can turn the
head to point to a previously unseen point. Or one can walk
to approach something in order to see details or be able to
touch. Algorithm 2, suggest a variant of the perception loop
including this kind of action. The process “ExplorativeAc-
tion” selects an actiom to be done, based on the current
perceived configuratiol and evaluating the error between

S andS. The criterion for selectingl is not discussed here.

Algorithm 2: Perception with Explorative Action

do forever: Figure 5. Two images with multiple interpretations
S «— New Sensory Information ' '
Eoqg+— F . .
Soq — S In some cases no interpretation can be found for a scene.
(o]

: ; & Even if rare, this happen to humans too; it produces a sensa-
E — ExploreConfiguratiofs, E,q, S, . ' . g ;

g - p p 5 9 5, Eota, Sota) tion of not being able to figure out what is being seen. Usu-
« Project _> . . ally this situation ends when a clear interpretation appear
A < ExplorativeActiont £, S, 5) either spontaneously after a change of view, or suggested by

someoné.

Perception is amnterpretation process, and as such, it can

makes mistakes. The perceived scene is at mEspossi- In a sense, every scene can have multiple interpretations:
ble interpretation. Human perceptual system is very good, given a valid interpretation, a new one can be built by hiding
and the information sensed very redundant, hence mistakes,s_l_his happen often in language perception, and particutahgn

are rare. We call it illusions or hallucinations when percep exposed to a foreign language not perfectlil mastered: somet

tion goes wrong. During an illusion, our perception system e hear something that we fail to understand; often, the ngan
found an interpretation that is coherent with the sensory in appears clear after some minutes of reflection.




an element behind an object. This new interpretation would these pictures. But parts of these figures do correspond to
be as valid as the first one. However, it seems sound to applyparts of objects. When we try to perceive these pictures as
Occam’s razor and keep the more simpler interpretation, thea whole the result is flat; when looked by parts, perception
one that involves less elements (and specially the smallestchanges as we see different parts of them.

number of unobserved elements).

The most difficult part of perceptual systems is probably
the mechanism for exploring the space of configurations in

search for a good interpretation. Provided with the right in aq N
terpretation the validation system will acknowledge it.t Bu q ‘
to spot it in limited time among a huge number of possibil-
ities is a difficult task. Human mechanisms are extremely
good. In challenging conditions, however, the search for
configurations is less effective, as illustrates the fanpas Figure 7. Impossible objects: the Penrose triangle and deké tuning
ture shown in Figure 6. When people see this picture for the fork.

first time, usually fail to get a full understanding, or it &k

considerable time. Yet, when signaled that a Dalmatian dog

is present at the center, with the lowered head facing awayA TOY EXAMPLE: SQUARES

and left, most people manage to see it well. This suggests
that the problem is rooted in the exploration of configura-
tions rather than in the validation.

Perception of Fixed Images

The following experiments deals with fixed images. It is of-
ten argued that to analyze one fixed image is a far cry from
the process of perception. Certainly, human or animal per-
ception is much more rich. In natural life, animals neverana
lyzeonefixed image. To start with, animals usually have two
eyes and process a flux of visual information. Also, the im-
age on the retina is irregularly sampled, and needs constant
eye movements to cover even part of a scene. Moreover, we
are rarely exposed only to visual information. More often
we can hear, touch, smell and taste at the same time. And
more information is obtained by acting. True.

But this does not means that perceptioarik/ possible with

all these capacities. A blind person can perceive even if vi-
sual information is missing; a deaf person can perceive-with
out hearing; a paraplegic person can perceive with very lim-
Figure 6. What do you see in the picture? ited capacity for moving. Reducing the information sources
makes perception more difficult, less efficient and limited.

The first stages of the visual system and its specialized mech But it is still perception. We are all capable of perceiving
anisms are probably part of the configuration exploring sys- Music by listening to records, while the only relevant stimu
tem, as well as the mechanisms described by Gestalt theoryus is auditory.
[8, 9]. The structures and patterns detected are used to re- L L
strain the search. Geometric features help to organize sen- € objective of computer vision is to understand and du-
sor information: occlusions are detected, projective geom plicate natural vision by computer algorithms. There has
try inferred, isolated information is grouped, etc. There a been some research using on-board cameras anld computers
probably some specialized detectors, for example for faces ON robots capable of action. But most of the work is done on
Gradually, the configuration of the world is unraveled. fixed images; the reason is just the simplicity of the setting
needed to work. It is clear that a lot of information is lost
Ideally, a configuration to be validated should be fully pro- @nd many of the problems addressed by computer vision are
jected to the senses. This is probably unrealistic as itds to Much harder than they could be with more redundant infor-
expensive to be done in animals or robots. Some shortcutMation. However, there is still much to be learned by the
are likely to be needed. The heuristics needed to handle@nalysis of fixed images. Humans have no problem under-
the computational burden should be regarded as approximaStanding photos and we could expect that algorithms could
tions, as good as possible, to ideal perception. For example Understand at least a small fraction of what humans can with
a configuration may be projected to the sensors, object byexactI;/ the same information: the one contained in a fixed
object in a modular way. Or the projection can be some- Photo!
what local. That could also help in the gradual process of — . )
discovering the configuration, by validating already found It is hard to believe that, for example, eye movements is dund

C . mental to understand a photo and not just part of how humasalis
elements. Projection by parts would also make possible theSystem works. Computer vision algorithms often use an et

perception of impossible objects [14] as the ones shown in mechanism to eye movements when they detect edges and spend
Figure 7. There is no object that corresponds as a whole tomore time analyzing the regions of the image near them.




A full-fledged perception system, useful for an animal, prob ple, the synthesis is trivially obtained by drawing the sgsa
ably needs many sources of redundant information and theinto an image. The validation step consists in comparing the
capacity for action. But we can use fixed image perception synthesized image to the observed one. Pixels where the dif-
as a very simple case of study, as a test bed for perceptionference in color exceeds the noise level are considered as
This somewhat isolated problem is to perception as the pen-not explained. If all pixels are explained the configuration is
dulum or the canon balls are to physics. The very same fun-valid. Inversely, if most pixels are not explained the config
damental problems are involved as in general perception. uration is rejected. Between this extremes, a configuration
could be partially valid when some of its squares are fully
covered by explained pixels (these axplained squares).
A World of Squares
To have a perceptual setting we need a model of the world Among the valid or partially valid configurations, the ones
and models for the sensors. Here we will set a very simple with more explained pixels are selected. Among them, the
context so as to be able to show a full implementation. This ones with less unexplained squares are kept. And among
will be, no doubt, a toy example, but hopefully one that will them, the one with the smallest number of squares (in a
illustrate the ideas. sense, simpler) is considered the best interpretationhés t
experiments of the next section will show, further resesch
The "world” known to our system is composed of squares needed to get a good criterion.
of different sizes and colors, superposed one to another on
a flat scene. The sensor gets a digital image of the scendn this simple case of squares, the “evidence” problem men-
by sampling the flat world. It is assumed that the sensor tioned when discussing the validation step is handled by the
introduces some blurring and noise. use of LSD, a line segment detector based on Desolneux,
Moisan and Morel detection theory. Candidates for square
The exploring mechanism starts by applying a line segment are built based on the detected line segments; therefole a va
detector, LSD [7], to the image. Then, every combination of idation criterion with the right properties is implicitlysad.
four line segments is tested looking for possible sets com- Otherwise, unsatisfactory configurations could be accepte
patibles with a square. That is, two pairs of parallel line For example, tiny squares could be validated, and any image
segments, both pairs roughly equally spaced, and one paircould be interpreted as composed of tiny squares of the right
orthogonal to the other. The criteria used to decide if two color, as when images are represented by pixels. This is not
line segments are parallel, orthogonal, or equally spaed a possible when using LSD, the side of a pixel is too small to
arbitrary but reasonable. A last condition required is that be detected and no candidate for it will be generated.
each of the sides is covered, in part, by one of the line seg-
ments. The result is a set of candidates for square. The selected configuration of explained squares is the per-
ception.
The second step tries to build a configuration of candidates P
for square, with a certain order and color for each one, that
would produce the sensed image. For this aim, a mask of Experiments
occluded pixels is used. At the beginning the mask is empty This section shows experiments made with the implementa-
as all the pixels are visible. Then, each one of the candidate tion described before. A first set of experiments is shown
is tested. If one of them has a more or less constant color, itin Figure 8. For each row, the first column shows the in-
is temporary accepted as visible. Thus, itis stored as tte fir put image, i.e., the sensory information. The middle col-
square and its pixels are marked as occluded in the mask. umn shows the synthesized image from the best configura-
tion found, that is, the re-projection into the senses frben t
The same procedure is repeated in the search for a seconébtained configuration. The last column shows on black the
square, then a third square, and so on. But, when checkingpixels that were rejected.
if candidates present a constant color, only pixels that are
marked as visible in the mask should be considered (the restOn the experiment on the first row the scene can be inter-
being occluded by previous squares). To be accepted, a canpreted as a supposition of squares, and this is what the al-
didate must also have a minimal number of visible pixels, gorithm found. There is some noise in the input image and
otherwise we could accept completely occluded squares. some imperfections in the size and position of squares on
the synthesized image. For that reason both images are not
This process continues iteratively until there is no caattid  identical, but the difference is small enough to be accepted
left or there is no candidate that can be accepted. In eachNo pixel was rejected. The perceived configuration is a rea-
iteration of this process, more than one candidate may sat-sonable interpretation of the scene. It is important to note
isfy the criterion of visibility and uniformity. Each time a  that the result of perceptids not the synthesized image but
multiple option is possible a new branch is added to the tree the information about the set of squares and its relation. Fo
of configuration to be tested; all the nodes must be tested forexample, a described could be “a white square of dizend
validation. angled, at position(X,Y); behind it, a light gray square of
size...”. For this scene two interpretations are equallglva
The expected sensory information (the image) can be synthe-as in the world known to the system only one square is possi-
sized for given configuration: an ordered list of squarebwit ble per depth level. In one interpretation the large darly gra
its position, size, orientation and color. For this toy exam square is behind the large light gray one, and in the other



interpretation is the opposite.

On the second row we see almost the same scene as beforg,
except for some dark marks. The best configuration found
is the same as before, but this time the algorithm found that
there are some zones of the sensory input that were not ex-
plained. What we get is an incomplete perception of four
squares and a zone yet to be explained. The scene of the
third row is still the same with different dark marks. In this
case the algorithm manage to understand two squares (that
are detected without rejected pixels). The algorithm fails
however, to understand the light gray square with marks: due | % : <
to the dark marks, it is not, indeed, a constant color square,
the only element know to the system. As a consequence,
the black square is not understood either. The algorithm was
programmed to assume the background to be uniform, so it
is set to the mean gray level of the remaining pixels. In this
case we should say that the algorithm partially perceived th
scene, understanding only two squares. For similar reasons|
as before, the algorithm fails to make sense of the scene on
the last row. No pixel is validated and no perception results

5

Figure 9 shows an experiment on a natural image. As ex-
pected, the algorithm do not manage to make sense of it: no
configuration of squares corresponds to it. The synthesized
image is uniform of the mean color of the image. Then, al-

most all pixels are rejected, except for some of them that

have more or less the mean gray value. The scene is not ] .

understood and the result is no perception.

Even if the setting of squares is very simple, some interest-
ing configurations are possibles. Some of the visual exper-
iments developed by the Gestalt psychologist can be dupli-
cated using only squares [8, 9]. Two of them can be seen
in Figure 10. The first experiment was created to study how
objects are ordered in the presence of subjective contours.
Is the triangl-e -in front or behind the S-quare? -One hypoth- Figure 8. An experiment with pictures made with four squaresand
esis IS tha_t vision Choo.se’ other COUdItI(_)ﬂS being equal, th some dark spots. Left column: the observed image. Middle comn:
configuration that requires less subjective contours. & th  the synthesized image from the perceived configuration. Rig column:
version made of squares, the algorithm gives both resultsvalidation mask, white pixels where accepted, black pixelsvhere re-
equally valid. But the subjective contour criterion coulel b jected.

implemented and tested extensively and different variatio

compared.

Figure 11 shows two configurations found by the algorithm
for second experiment: the Kanizsa square. The resulting
squares were drawn in different grays to indicate the depth:
light means near foreground, dark near background. The
two configurations shown are equally valid, the only dif-
ference being the order of the two foremost squares. Both
squares are white in the interpretation, thus the contoers b
tween them are subjective and both configurations produce
the same image. In fact, there are many more configura-
thns that are equally valid; for example,_changlng the rel- Figure 9. House image experiment. As before, at the left is thorig-
ative de_pth (_)f the four small_squar(_es will not qhangt_’-.\ the inal image; in the middle is the synthesized image from the peep-
synthesized image. In the original figure, the big horizon- tion; at right is the mask of validated pixels (white means véidated;
tal square is perceived as a white square with a black borderblack means rejected). As expected for this image, no configation of
Our algorithm only knows solid squares without border, so squares can reproduce the image. Thus, the synthesized imeags just
it can only make sense of it as two superposed squares, on&°nstant and aimost all pixels are rejected.

black (that makes the border) and one white. For this reason
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Figure 10. Two visual experiments of Gestalt theory. Left: oiginal
picture. Right: version using only squares. 4

1.

too, the configuration on the right is valid, and equally dali

to the other oné. According to this theory, the Kanizsa tri-
angle is perceived because is the simplest configuratian tha
makes sense of the figure. A detailed study of this kind of 6,
experiments could lead us to a better understanding of the
factors involved in each one of the figures resulting from
Gestalt theory.
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Figure 11. Two possibles configurations of squares that exah the
Kanizsa square shown in Figure 10. Different shade of gray a used
to represent the depth of each square: light is on the foregnand, dark
on the background. The difference between the two configuratns is
the order of the two foremost squares (the two squares that shuld be
white). A priori there is no reason to prefer one configuratian over the
other.

13.
CONCLUSION
This paper sketched a computational theory of perception.
More work is needed to go from the outline presented here
to a complete theory. A full implementation was presented =
for a toy example. Even if simple, the implementation can
be used to study a subset of the rich family of experiments
created by the Gestalt psychologist. Moreover, a simple ex- 15.
tension of the model would allow to handle a larger subset
of Gestaltic experiments. This setting provides a simgge te
bed for developing and experimenting, hopefully leading to
a complete formal theory of perception.

8As a curious comment, the criterion of minimum subjectiva-co
tours will give the standard interpretation.
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