Non-local interaction equations: Stationary states and stability analysis

GaËl Raoul
CMLA, ENS Cachan, CNRS, PRES UniverSud, 61 Av. du Pdt. Wilson, 94235 Cachan Cedex, France
Email: gael.raoul@cmla.ens-cachan.fr

Subject Class: 35B35, 35B20, 35Q80
Keywords: non-local evolution equation, interaction potential, stability analysis, numerical simulation
Abstract: In this paper, we are interested in the long-time behavior of solutions to a non-local interaction equation. We show that up to an extraction, the solution converges to a steady-state. Then, we study the structure of stable steady-states.

1 Introduction

We are interested in the asymptotic behaviour of a density $\rho(t, x)$ of particles or individuals at position $x \in \mathbb{R}^{d}(d \geq 1)$ and at time $t \geq 0$, which evolves according to the nonlocal aggregation equation:

$$
\begin{equation*}
\partial_{t} \rho=\nabla_{x} \cdot\left(\rho \nabla_{x}[W * \rho+V]\right), \text { for }(t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{d} . \tag{1}
\end{equation*}
$$

This equation can be seen as a many particles limit of discret processes where particles (or individuals) can interact at a large distance, through an interaction potential W (see $[20,15]$). Such equations appear in various biological phenomenons like swarming (see [5, 11]), distribution of actin-filament networks (see [12, 14]), as well as in physical problems, for example in the field of granular media (see [1, 26]).

Many of the above models couple the long-range interaction between particles with a diffusive term. Nevertheless, in this paper we shall not consider a diffusion term, and focus our study on the effect of a long-range interaction.

Let us now describe typical interaction potentials W which appear in the models quoted above:

- In [16, 22], interaction potentials are regular, repulsive at short range and attractive when particles are far apart, typically $W(x)=-x^{2}+x^{4}$. In this case, the solution typically concentrates and tends to a finite number of Dirac masses, when time goes to infinity. This type of potentials have been studied in [9, 7], but we don't know any general study of the case of regular interaction potentials so far.
- In Chemotaxis models (see $[21,17]$), interaction potentials are singular at $x=0$ and attractive, typically, in dimension $2, W(x):=-\frac{1}{2 \pi} \log |x|$. In this case, the solution usually (if there is no diffusion) blows-up in finite time. Potentials singular at $x=0$ and attractive have been widely studied both with a diffusion term (see $[4,6]$), or without diffusion (see $[8,18,10,3,2]$), for various types of attractive singularities.
- In swarming models (see [11, 19, 25]), interaction potentials are usually singular at $x=0$ and repulsive, typical examples are the repulsive Morse Potential $W(x)=$ $-e^{-|x|}$, or the attractive-repulsive Morse potentials $W(x)=-C_{a} e^{-|x| / l_{a}}+C_{r} e^{-|x| / l_{r}}$ and $W(x)=-C_{a} e^{-|x|^{2} / l_{a}}+C_{r} e^{-|x|^{2} / l_{r}}$. Related interpolation potentials in physics are, for instance, the Lennard-Jones potential [24]. We don't know any qualitative study of such models.

We will show in this article that the asymptotic behaviour of the solution of (1) highly depends on the type of singukarity of W at point $x=0$.

In the present article, we shall focus on the one-dimensional case. We aim at understanding the dynamical behavior presented by a non-local interaction operator with even potential:

Assumption 1:

$$
\begin{equation*}
\forall x \in \mathbb{R}, W(x)=W(-x) \tag{2}
\end{equation*}
$$

In this study, we shall focus on compactly supported densities, we shall thus only consider situations where a confinement exists, either from the external potential, or from the interaction potential itself. We shall assume that:

Assumption 2: One of the two following conditions is satisfied:
There exists $C>0$ such that

$$
\begin{equation*}
\left\|W^{\prime}\right\|_{L^{\infty}([-2 C, 2 C])}<\min \left(V^{\prime}(C),-V^{\prime}(-C)\right) \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
V=0, \quad \exists C_{1}, C_{2}>0, \forall x \geq C_{1}: \quad W^{\prime}(x) \geq C_{2} x, W^{\prime}(-x) \leq-C_{2} x . \tag{4}
\end{equation*}
$$

Assumption 3:

$$
\begin{equation*}
\rho^{0} \in M^{1}(\mathbb{R}), \text { supp } \rho^{0} \subset[-C, C] . \tag{5}
\end{equation*}
$$

where $C<\infty$. If $V \neq 0, C$ must satisfy (3).
Assumption 2 together with Assumption 3 ensure that the support of $\rho(t, \cdot)$ is (uniformly w.r.t. time) bounded (see Prop. 1).

Note that (1) formally conserves the total mass $\int \rho(t, x) d x$, which w.l.o.g. we shall assume to be normalized $\int_{\mathbb{R}} \rho(x) d x=1$. The quantity $\rho(t, \cdot)$ is then interpreted as a probability density. In particular in the one-dimensional case, this enables a change of variables in which one introduces the pseudo-inverse of the distribution function $\int_{-\infty}^{x} d \rho$, i.e.

$$
\begin{equation*}
u(t, z)=\inf \left\{x \in \mathbb{R}: \int_{(-\infty, x]} \rho(t, y) d y>z\right\} \quad z \in[0,1] \tag{6}
\end{equation*}
$$

which transforms the evolution equations (1) for measure solutions $\rho(t, \cdot)$ into an integral equation for the non-decreasing pseudo-inverse $u(t, z)$ satisfying (see, e.g. [7])

$$
\begin{equation*}
\partial_{t} u(t, z)=\int W^{\prime}(u(t, \xi)-u(t, z)) d \xi-V^{\prime}(u(t, z)), \quad \forall z \in[0,1] \tag{7}
\end{equation*}
$$

Since eq. (7) is much more convenient than eq. (1) for stability analysis, we shall often use it in this paper. In particular, atomic parts of measure solutions $\rho(x)$ correspond to constant parts of the pseudo-inverse $u(z)$. Notice also the useful change of variable $\int g(x) \rho(x) d x=\int_{0}^{1} g(u(\xi)) d \xi$, which holds for any $g \in L^{1}(\operatorname{supp} \rho)$.

In the absence of a confining potential V (and if W is symmetric), the center of mass $\int_{\mathbb{R}} x \rho(t, x) d x$ is conserved by eq. (1), or equivalently, $\int_{0}^{1} u$ is preserved by (7):

$$
\begin{equation*}
\frac{d}{d t} \int_{\mathbb{R}} x \rho(t, x) d x=0, \quad \frac{d}{d t} \int_{0}^{1} u(t, z) d z=0 \tag{8}
\end{equation*}
$$

Note that eq. (1) can be seen as a gradient-flow equation for the following energy (see [8]):

$$
\begin{equation*}
E(t):=\frac{1}{2} \iint \rho(t, x) \rho(t, y) W(x-y) d x d y+\int_{\mathbb{R}} \rho(t, x) V(x) d x \tag{9}
\end{equation*}
$$

In section 2, we shall consider regular interaction potentials W. We first prove the technical result Prop. 1, which shows that Assumptions 2 and 3 are sufficient to ensure that the support of $\rho(t, \cdot)$ remains uniformly bounded.

Then, Prop. 2 shows that $\rho(t, \cdot)$ converges (in a sense to be precised then) to a set of steady-states, as time goes to infinity. This result emphasizes the importance of steadystates, when one wishes to understand the long-time behavior of solutions to (1).

In subsection 2.3, we show that stable steady-states of (2) are generically sums of Dirac masses. More precisely, we show in Prop. 3 that for analytic V, W, the steadystates of (1) are necessarly finite sums of Dirac masses. If V, W are only C^{2}, continuous steady-states may exist, but they cannot be linearly stable.

In Section 3, we consider interaction potentials having a singularity at $x=0$.
In Subsection 3.1, we consider the steady-states of (1) for an interaction potential W having an attractive singularity at $x=0$. Since (1) may develop blow-ups in L^{∞} in finite
time (see [3, 2]), we consider (following [8]), the extension (24) of (1) to measure-valued solutions. In Prop. 3.1, we show that a steady-state $\bar{\rho}$ of (24) such that supp $\bar{\rho}$ has an accumulation point (and a bit more, see (26)) is nonlinearly unstable.

In Subsection 3.2, we consider the steady-states of (1) for an interaction potential W having a repulsive singularity at $x=0$. In Prop. 6, we provide an existence proof for (1) with a regular initial condition (until now, no existence result had been written down for such interaction potentials). In particular, Prop. 6 provides a uniform bound on the solution in $L^{\infty}(\mathbb{R})$. The situation is therefore completely different from the two other cases: no blow-up can occur.

2 Regular interaction potentials

In this first section, we make the following regularity assumptions on V and W :
Assumption 4:

$$
\begin{gather*}
V \in C^{2}(\mathbb{R}), W \in C^{2}(\mathbb{R}) \tag{10}\\
W \in W^{2, \infty}(\mathbb{R}) \tag{11}
\end{gather*}
$$

We shall use in the following the Measure Space

$$
\mathcal{P}_{\infty}(\mathbb{R}):=\left\{\rho \in M^{1}(\mathbb{R}) ; \text { supp } \rho \text { is bounded }\right\}
$$

together with the Wasserstein distance

$$
\begin{equation*}
W_{\infty}\left(\rho_{1}, \rho_{2}\right):=\left\|u_{1}-u_{2}\right\|_{\infty}, \tag{12}
\end{equation*}
$$

where u_{1}, u_{2} are the pseudo-inverses of ρ_{1}, ρ_{2}.
Under Assumption 1 to 4, it has been proven in [7] that a unique solution $\rho \in$ $\operatorname{Lip}_{\text {loc }}\left([0, \infty), \mathcal{P}_{\infty}(\mathbb{R})\right)$ to (1) exists.

2.1 Support of $\rho(t, \cdot)$

In this subsection, we show that Assumptions 1 to 4 are sufficient to ensure that the support of ρ is uniformly bounded w.r.t. time:

Proposition 1. Let ρ^{0}, V, W satisfy Assumption 1 to 4. Let $\rho \in \operatorname{Lip}_{\text {loc }}\left([0, \infty), \mathcal{P}_{\infty}(\mathbb{R})\right)$ be the unique solution of (1) given by [7]. Then,

$$
\begin{equation*}
\exists C>0, \forall t \geq 0, \quad \operatorname{supp} \rho(t, \cdot) \subset[-C, C] . \tag{13}
\end{equation*}
$$

Proof of Prop. 1

We consider separately the case when (3) is satisfied, and the case when (4) is satisfied. We denote $u(t, \cdot)$ the pseudo-inverse of $\rho(t, \cdot)$.

Step 1: If V, W satisfy (3).
Let $t=\inf \{\tau ; \max (|u(\tau, 0)|,|u(\tau, 1)|) \geq C\}$. if $u(t, 0)=-C$, then,

$$
\begin{aligned}
\partial_{t} u(t, 0) & =\int W^{\prime}(u(t, \xi)-u(t, 0)) d \xi-V^{\prime}(u(t, 0)) \\
& \geq-\left\|W^{\prime}\right\|_{L^{\infty}([-2 C, 2 C])}-V^{\prime}(u(t, 0)) \\
& \geq 0
\end{aligned}
$$

and similarly, if $u(t, 1)=C$, then $\partial_{t} u(t, 1) \leq 0$. Consequently, $t=\infty$, and at all times, $-C \leq u(0, \cdot) \leq u(1, \cdot) \leq C$, that is the support of $\rho(t, \cdot)$ is uniformly bounded.

Step 2: If V, W satisfy (4).
Assume w.l.o.g. that the center of mass of ρ^{0} (which is preserved by the equation, see (8)) is:

$$
\int_{\mathbb{R}} x \rho^{0}(x) d x=\int_{0}^{1} u^{0}(z) d z=0 .
$$

We shall show that if $\|u(t, \cdot)\|_{\infty} \geq \max \left(2 C_{1}, \frac{3}{C_{2}}\left\|W^{\prime}\right\|_{L^{\infty}\left(-C_{1}, C_{1}\right)}\right)$, then $t \mapsto\|u(t, \cdot)\|_{\infty}$ is non increasing.

Assume w.l.o.g. that $|u(t, 0)| \geq|u(t, 1)|$. We define $\Lambda:=\{\xi \in[0,1] ; u(t, \xi) \geq u(t, 0)+$ $\left.C_{1}\right\}$. Then,

- We assumed that $|u(0)| \geq|u(1)|$, so that

$$
u(t, z) \leq|u(t, 0)|
$$

on $[0,1]$, and in particular on Λ.

- $O n \Lambda^{c}$,

$$
u(t, z) \leq u(t, 0)+C_{1}=C_{1}-|u(t, 0)| .
$$

Since the center of mass of ρ is 0 ,

$$
\begin{aligned}
0 & =\int_{\Lambda} u+\int_{\Lambda^{c}} u \\
& \leq|u(0)||\Lambda|-\left(|u(0)|-C_{1}\right)(1-|\Lambda|) \\
& \leq\left(2|u(0)|-C_{1}\right)|\Lambda|-\left(|u(0)|-C_{1}\right) .
\end{aligned}
$$

Then, $|\Lambda| \geq\left(1+\frac{1}{1-\frac{C_{1}}{|u(0)|}}\right)^{-1}$, and since $|u(0)| \geq 2 C_{1}$,

$$
\begin{equation*}
|\Lambda| \geq \frac{1}{3} \tag{14}
\end{equation*}
$$

We use (4) to estimate $\partial_{t} u(t, 0)$:

$$
\begin{aligned}
\partial_{t} u(t, 0) & =\int W^{\prime}(u(t, \xi)-u(t, 0)) d \xi \\
& \geq-\left\|W^{\prime}\right\|_{L^{\infty}\left(-C_{1}, C_{1}\right)}+C_{2} \int_{\Lambda}[u(t, \xi)-u(t, 0)] d \xi \\
& \geq-\left\|W^{\prime}\right\|_{L^{\infty}\left(-C_{1}, C_{1}\right)}+C_{2}|\Lambda| \int_{\Lambda}[u(t, \xi)-u(t, 0)] \frac{d \xi}{|\Lambda|} \\
& \geq-\left\|W^{\prime}\right\|_{L^{\infty}\left(-C_{1}, C_{1}\right)}+C_{2}|\Lambda| \int_{0}^{1}[u(t, \xi)-u(t, 0)] d \xi
\end{aligned}
$$

since for $\left(\xi, \xi^{\prime}\right) \in \Lambda \times \Lambda^{c}, u(t, \xi)-u(t, 0) \geq u\left(t, \xi^{\prime}\right)-u(t, 0)$. Since $\int_{0}^{1} u(t, \xi) d \xi=0$, we get:

$$
\begin{aligned}
\partial_{t} u(t, 0) & \geq-\left\|W^{\prime}\right\|_{L^{\infty}\left(-C_{1}, C_{1}\right)}-C_{2}|\Lambda| u(t, 0) \\
& \geq-\left\|W^{\prime}\right\|_{L^{\infty}\left(-C_{1}, C_{1}\right)}+\frac{1}{3} C_{2}|u(t, 0)| \\
& \geq 0
\end{aligned}
$$

thanks to the assumption that $\|u\|_{\infty} \geq \max \left(2 C_{1}, \frac{3}{C_{2}}\left\|W^{\prime}\right\|_{L^{\infty}\left(-C_{1}, C_{1}\right)}\right)$. Then, $\|u\|_{\infty}$ is non increasing, which implies as in the previous case, that the support of $\rho(t, \cdot)$ is uniformly bounded.

2.2 Asymptotic behavior of the solution

In this subsection, we show that we cannot expect the solution to converge to anything else than a set of steady-states. In particular, no periodic limit cycles exist.

Proposition 2. Let ρ^{0}, V, W satisfy Assumptions 1 to 4. Let $\rho \in \operatorname{Lip}_{\text {loc }}\left([0, \infty), \mathcal{P}_{\infty}(\mathbb{R})\right)$ be the unique solution of (1) given by [7]. Then,
1.

$$
\int \rho(t, x)\left(\int W^{\prime}(x-y) \rho(t, y) d y+V^{\prime}(x)\right)^{2} d x \rightarrow 0 \text { as } t \rightarrow \infty
$$

2. For any sequence $t_{k} \rightarrow \infty$, there exists a subsequence, still denoted $\left(t_{k}\right)$, such that:

$$
\begin{equation*}
W_{1}\left(\rho\left(t_{k}, \cdot\right), \bar{\rho}\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty, \tag{15}
\end{equation*}
$$

where W_{1} denotes the 1 -Wasserstein distance, and $\bar{\rho}$ is a steady-state of (1).
Remark 1. The limit $\bar{\rho}$ of $\rho\left(t_{k}, \cdot\right)$ in (15) is not necessarily unique : it may depend both on the sequence $\left(t_{k}\right)$ and the extracted sequence.

Proof of Prop. 2

Step 1: Proof of 1.
We first show that the energy (9) is non-increasing in time, using integrations by parts:

$$
\begin{align*}
\frac{d E}{d t}(t)= & \int_{\mathbb{R}} \int_{\mathbb{R}} \partial_{x}\left(\rho(t, x)\left(\int W^{\prime}(x-z) \rho(t, z) d z+V^{\prime}(x)\right)(t, x)\right) \\
& \rho(t, y) W(x-y) d x d y \\
& +\int_{\mathbb{R}} \partial_{x}\left(\rho(t, x)\left(\int W^{\prime}(x-y) \rho(t, y) d y+V^{\prime}(x)\right)\right) V(x) d x \\
= & -\int \rho(t, x)\left(\int W^{\prime}(x-y) \rho(t, y) d y+V^{\prime}(x)\right)^{2} d x \\
\leq & 0 . \tag{16}
\end{align*}
$$

Next, we have the following estimate on the regularity of the energy dissipation:

$$
\begin{aligned}
\frac{d^{2} E}{d t^{2}}=- & \int \partial_{x}\left(\rho(t, x)\left(\int W^{\prime}(x-y) \rho(t, y) d y+V^{\prime}(x)\right)\right) \\
& \left(\int W^{\prime}(x-y) \rho(t, y) d y+V^{\prime}(x)\right)^{2} d x \\
- & 2 \int \rho(t, x)\left(\int W^{\prime}(x-y) \rho(t, y) d y+V^{\prime}(x)\right) \int W^{\prime}(x-y) \\
& \partial_{y}\left(\rho(t, y)\left(\int W^{\prime}(y-z) \rho(t, z) d z+V^{\prime}(y)\right)\right) d y d x \\
=2 & \int \rho(t, x)\left(\int W^{\prime}(x-y) \rho(t, y) d y+V^{\prime}(x)\right)^{2} \\
& \partial_{x}\left(\int W^{\prime}(x-y) \rho(t, y) d y+V^{\prime}(x)\right) d x \\
+ & 2 \int \rho(t, x)\left(\int W^{\prime}(x-y) \rho(t, y) d y+V^{\prime}(x)\right) \int \partial_{y}\left(W^{\prime}(x-y)\right) \\
& \left(\rho(t, y)\left(\int W^{\prime}(y-z) \rho(t, z) d z+V^{\prime}(y)\right)\right) d y d x .
\end{aligned}
$$

Since $V, W \in C^{2}(\mathbb{R})$, we can estimate $\frac{d^{2} E}{d t^{2}}$ as follows:

$$
\begin{align*}
\left|\frac{d^{2} E}{d t^{2}}\right| & \leq 2\left(\|V\|_{W^{2, \infty}(-C, C)}+\|W\|_{W^{2, \infty}(-2 C, 2 C)}\right)\left(\|W\|_{W^{2, \infty}(-2 C, 2 C)}+\|V\|_{W^{2, \infty}(-C, C)}\right)^{2} \\
& \leq C \tag{17}
\end{align*}
$$

where $C<+\infty$ is a constant.
Finally, notice that the energy is bounded from below:

$$
\begin{equation*}
E \geq-\left(\frac{1}{2}\|W\|_{L^{\infty}(-2 C, 2 C)}+\|V\|_{L^{\infty}(-C, C)}\right) \tag{18}
\end{equation*}
$$

To prove that $\frac{d E}{d t}(t) \rightarrow 0$, we use an interpolation between $E(t) \rightarrow \bar{E}$ and $\frac{d^{2}}{d t^{2}} E(t)$ bounded :

Let $\varepsilon>0$. Since the energy E is non increasing (16) and bounded from below (18), E has a limit \bar{E} when $t \rightarrow \infty$. Let $t>0$ and $\tau \in\left(0, \frac{t}{2}\right]$. Then,

$$
\begin{aligned}
\left|\frac{d E}{d t}(t)\right| & =\left|\frac{1}{\tau} \int_{t-\tau}^{t}\left[\frac{d E}{d t}(s)+\int_{s}^{t} \frac{d^{2} E}{d t^{2}}(\sigma) d \sigma\right] d s\right| \\
& =\left|\frac{1}{\tau}[E(t)-E(t-\tau)]+\frac{1}{\tau} \int_{t-\tau}^{t} \int_{s}^{t} \frac{d^{2} E}{d t^{2}}(\sigma) d \sigma d s\right| \\
& \leq \frac{2}{\tau}\|E-\bar{E}\|_{L^{\infty}\left(\left(\frac{t}{2}, \infty\right)\right)}+\tau\left\|\frac{d^{2} E}{d t^{2}}\right\|_{L^{\infty}([0, \infty))} .
\end{aligned}
$$

For $t>0$ large enough, $\tau:=\frac{\left.\|E-\bar{E}\|_{L^{\infty}}^{\frac{1}{2}}\left(\frac{t}{2}, \infty\right)\right)}{\left\|\frac{d^{2} E}{d t^{2}}\right\|_{L^{\infty}((0, \infty))}^{\frac{1}{2}}}<\frac{t}{2}$, and then,

$$
\left|\frac{d E}{d t}(t)\right| \leq 3\|E-\bar{E}\|_{L^{\infty}\left(\left(\frac{t}{2}, \infty\right)\right)}^{\frac{1}{2}}\left\|\frac{d^{2} E}{d t^{2}}\right\|_{L^{\infty}([0, \infty))}^{\frac{1}{2}}
$$

which implies $\frac{d E}{d t}(t) \rightarrow 0$ as $t \rightarrow \infty$.
Step 2: Proof of 2.
The pseudo-inverse $u(t, \cdot)$ of $\rho(t, \cdot)$ is an increasing function, and is uniformly bounded thanks to Prop. 1. The sequence $u\left(t_{k}, \cdot\right)$ is then a uniformly bounded sequence of $B V([0,1])$. There exists then a subsequence, still denoted $u\left(t_{k}, \cdot\right)$, that converges in L^{1} to a limit denoted by \bar{u} :

$$
\left\|u\left(t_{k}, \cdot\right)-\bar{u}\right\|_{L^{1}} \rightarrow 0
$$

Our aim is to prove that \bar{u} is a steady-state of (7). In order to prove that, we shall use the estimate obtained above, $\frac{d E}{d t}\left(t_{k}\right) \rightarrow 0$. Let us write this estimate in the pseudo-inverse setting:

$$
\begin{aligned}
\frac{d E}{d t}\left(t_{k}\right) & =-\int \rho\left(t_{k}, x\right)\left(\int W^{\prime}(x-y) \rho\left(t_{k}, y\right) d y+V^{\prime}(x)\right)^{2} d x \\
& =-\int_{0}^{1}\left(\int W^{\prime}\left(u\left(t_{k}, z\right)-u\left(t_{k}, \xi\right)\right) d \xi+V^{\prime}\left(u\left(t_{k}, z\right)\right)\right)^{2} d z
\end{aligned}
$$

We define $\bar{F}:=-\int_{0}^{1}\left(\int W^{\prime}(\bar{u}(z)-\bar{u}(\xi)) d \xi+V^{\prime}(\bar{u}(z))\right)^{2} d z$. Then,

$$
\begin{aligned}
\bar{F}-\frac{d E}{d t}= & \int_{0}^{1}\left(\int W^{\prime}(u(z)-u(\xi)) d \xi+V^{\prime}(u(z))\right)^{2} \\
& -\left(\int W^{\prime}(\bar{u}(z)-\bar{u}(\xi)) d \xi+V^{\prime}(\bar{u}(z))\right)^{2} d z \\
= & \int_{0}^{1}\left(\int W^{\prime}(u(z)-u(\xi)) d \xi+V^{\prime}(u(z))\right. \\
& \left.+\int W^{\prime}(\bar{u}(z)-\bar{u}(\xi)) d \xi+V^{\prime}(\bar{u}(z))\right) \\
& \cdot\left(\int W^{\prime}(u(z)-u(\xi)) d \xi-\int W^{\prime}(\bar{u}(z)-\bar{u}(\xi)) d \xi\right. \\
& \left.+V^{\prime}(u(z))-V^{\prime}(\bar{u}(z))\right) d z \\
\leq & C\left\|\int W^{\prime}(u(z)-u(\xi)) d \xi-\int W^{\prime}(\bar{u}(z)-\bar{u}(\xi)) d \xi\right\|_{L^{1}} \\
& +C\|u-\bar{u}\|_{L^{1}} \\
\leq & C\left\|W^{\prime}\right\|_{L^{\infty}(-2 C, 2 C)}\|u-\bar{u}\|_{L^{1}}+C\|u-\bar{u}\|_{L^{1}} .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\bar{F} & \leq \frac{d E}{d t}\left(t_{k}\right)+C\left\|u\left(t_{k}, \cdot\right)-\bar{u}\right\|_{L^{1}} \\
& \rightarrow 0 \text { as } k \rightarrow \infty
\end{aligned}
$$

Then, $\bar{F}=0$, that is:

$$
\operatorname{supp} \bar{\rho} \subset\left\{x \in \mathbb{R} ; \int W^{\prime}(x-y) \bar{\rho}(y) d y+V^{\prime}(x)=0\right\}
$$

and $\bar{\rho}$ is a steady-state of (1).

2.3 Study of the steady states.

In the previous subsection, we showed that for any regular potential W satisfying Assumption 4 , the sequence $\rho\left(t_{k}, \cdot\right)$ converges, up to an extraction, to a steady solution of (1). In this subsection, we shall try to characterize the steady-states of (1).

The following proposition characterizes the steady-states for analytical interaction potentials W :

Proposition 3. Assume W and V are analytical. Then, every steady state $\bar{\rho} \in M^{1}(\mathbb{R})$ of (1) with bounded support is a finite sum of Dirac masses:

$$
\bar{\rho}=\sum_{i=1}^{N} \bar{\rho}_{i} \delta_{\bar{u}_{i}},
$$

with $\bar{\rho}_{1}, \ldots, \bar{\rho}_{N}>0, \bar{u}_{1}, \ldots, \bar{u}_{N} \in \mathbb{R}$.

Proof of Prop. 3

Let us consider a steady solution $\bar{\rho}$ of (1), and the associated steady solution \bar{u} of (7). For $z \in[0,1]$,

$$
\begin{aligned}
0 & =\int W^{\prime}(\bar{u}(z)-\bar{u}(\xi)) d \xi-V^{\prime}(\bar{u}(z)) \\
& =\int_{0}^{1} W^{\prime}(\bar{u}(z)-\bar{u}(\xi)) d \xi-V^{\prime}(\bar{u}(z)) \\
& =-\left(W^{\prime} * \bar{\rho}+V^{\prime}\right)(\bar{u}(z)) .
\end{aligned}
$$

Since $u([0,1])=\operatorname{supp}(\bar{\rho})$, for any $x \in \operatorname{supp}(\bar{\rho})$,

$$
0=\left(W^{\prime} * \bar{\rho}\right)(x)+V^{\prime}(x) .
$$

Since W and V are analytic, so is $W^{\prime} * \bar{\rho}+V^{\prime}$, and if $\operatorname{supp}(\bar{\rho})$ has an accumulation point, then

$$
\forall x \in \mathbb{R}, \quad\left(W^{\prime} * \bar{\rho}\right)(x)+V^{\prime}(x)=0
$$

which is not possible since V, W satisfy (3) or (4). Then, $\operatorname{supp}(\bar{\rho})$ cannot have any accumulation point, and is thus a finite set of points.

For less regular potentials, for instance when W is only C^{2}, the same result cannot be expected to hold anymore, as the following example shows.

Example 1. Consider the interaction potential $W(x):=(\operatorname{dist}(x,[-1,1]))^{3}$, where $\operatorname{dist}(x, y):=$ $|x-y|$, and $V=0 . W$ is C^{2} (one could even consider a smoothed (C^{∞}) version of the potential), but (1) admits the $L^{1}(\mathbb{R})$ steady state:

$$
\bar{\rho}=\mathbb{I}_{\left[-\frac{1}{2}, \frac{1}{2}\right]} .
$$

Nevertheless, the following proposition shows that steady states which are linearly stable (in a sense made clear in the following Proposition) have to be sums of Dirac masses:

Proposition 4. Let V, W satisfy Assumptions 1 and 4. Let $\bar{\rho} \in M^{1}(\mathbb{R})$ be a compactly supported steady state of (1), and \bar{u} be its pseudo-inverse. If $\bar{\rho}$ is such that $\operatorname{supp}(\bar{\rho})$ has an accumulation point x_{0}, then the pseudo-inverse equation (7) linearized around \bar{u} in L^{1} has no spectral gap.
Remark 2. Since the perturbations u^{ε} of \bar{u} used in the proof of Prop. 4 satisfy $\int_{0}^{1} u^{\varepsilon}=$ $\int_{0}^{1} \bar{u}$, Prop. 4 remains true if we only consider perturbations preserving the center of mass $\int x \bar{\rho}(x) d x$ of $\bar{\rho}$ (this is important since (1) is invariant w.r.t. translations along x).
Remark 3. For a stability analysis of steady-states $\bar{\rho}$ that are sums of Dirac masses, see [13, 23]. In [13], we exhibit necessary and sufficient condition for local stability of such steady-states with respect to perturbations ρ of $\bar{\rho}$ such that $W_{\infty}(\bar{\rho}, \rho)$ is small (where W_{∞} denotes the ∞-Wasserstein distance). In [23] we show the orbital stability of $\bar{\rho}(\mathbb{R})$ in M^{1} for the usual topology of $M^{1}(\mathbb{R})$.

Proof of Prop. 4

We begin by linearizing (7) around \bar{u}, with $u=\bar{u}+\delta v, \delta>0$:

$$
\begin{aligned}
\partial_{t} u(t, z)= & \int_{0}^{1} W^{\prime}(u(t, \xi)-u(t, z)) d \xi-V^{\prime}(u(t, z)) \\
= & \int_{0}^{1} W^{\prime}(\bar{u}(t, \xi)-\bar{u}(t, z)) d \xi-V^{\prime}(\bar{u}(t, z)) \\
& +\delta\left(\int_{0}^{1} W^{\prime \prime}(\bar{u}(\xi)-\bar{u}(z))(v(t, \xi)-v(t, z)) d \xi-V^{\prime \prime}(\bar{u}(z)) v(t, z)\right)+o(\delta) \\
= & \delta\left(\int_{0}^{1} W^{\prime \prime}(\bar{u}(\xi)-\bar{u}(z)) v(t, \xi) d \xi-\int_{0}^{1} W^{\prime \prime}(\bar{u}(\xi)-\bar{u}(z)) d \xi v(t, z)\right. \\
& \left.-V^{\prime \prime}(\bar{u}(z)) v(t, z)\right)+o(\delta),
\end{aligned}
$$

so that the linearization of (7) around \bar{u} yields the linear operator $L: L^{1}([0,1]) \rightarrow$ $L^{1}([0,1])$:

$$
\begin{equation*}
L(v)(z)=\int_{0}^{1} W^{\prime \prime}(\bar{u}(\xi)-\bar{u}(z)) v(\xi) d \xi-\left[\int_{0}^{1} W^{\prime \prime}(\bar{u}(\xi)-\bar{u}(z)) d \xi+V^{\prime \prime}(\bar{u}(z))\right] v(z) \tag{19}
\end{equation*}
$$

We now shall show that if supp $\bar{\rho}$ has an accumulation point x_{0}, then we can build a sequence (v^{ε}) of perturbations of u such that:

$$
\frac{\left\|L\left(v^{\varepsilon}\right)\right\|_{L^{1}}}{\left\|v^{\varepsilon}\right\|_{L^{1}}} \rightarrow 0
$$

which shows that the linear operator L does not have any spectral gap. Since we are dealing with pseudo-inverses, we must however restrict to perturbations v such that for some $\alpha>0, u=\bar{u}+\alpha v$ is non decreasing.

We assume without any loss of generality that x_{0} is an accumulation point of $\operatorname{supp}(\bar{\rho}) \cap$ $\left[x_{0}, \infty\right)$. Then, for any $\varepsilon>0$,

$$
\begin{equation*}
\int_{\left(x_{0}, x_{0}+\varepsilon\right)} d \bar{\rho}>0 . \tag{20}
\end{equation*}
$$

For a given $\varepsilon>0$, we define

$$
\begin{gathered}
z_{0}:=\inf \left\{z \in(0,1) ; \bar{u}(z)>x_{0}\right\}, \\
z_{1}^{\varepsilon}:=\sup \left\{z \in(0,1) ; \bar{u}(z)<x_{0}+\varepsilon\right\}, \\
Z^{\varepsilon}:=\left[z_{0}, z_{1}^{\varepsilon}\right] .
\end{gathered}
$$

We define the following perturbation u^{ε} of \bar{u} :

$$
u^{\varepsilon}(z):=\left\lvert\, \begin{aligned}
& \bar{u}(z) \text { on }\left(Z^{\varepsilon}\right)^{c}, \\
& \frac{1}{\left|Z^{\varepsilon}\right|} \int_{Z^{\varepsilon}} \bar{u}(y) d y \text { on } Z^{\varepsilon},
\end{aligned}\right.
$$

and we write $v^{\varepsilon}:=u^{\varepsilon}-\bar{u}$. The function u^{ε} is then the pseudo-inverse of the measure:

$$
\rho^{\varepsilon}=\left.\bar{\rho}\right|_{\left[x_{0}, x_{0}+\varepsilon\right]^{c}}+\left(\int_{\left[x_{0}, x_{0}+\varepsilon\right]} \bar{\rho}(x) d x\right) \delta_{\tilde{x}},
$$

where $\tilde{x}=\frac{1}{\left|Z^{\varepsilon}\right|} \int_{Z^{\varepsilon}} \bar{u}(y) d y=\int_{\left[x_{0}, x_{0}+\varepsilon\right]} x \bar{\rho}(x) \frac{d x}{\int_{\left[x_{0}, x_{0}+\varepsilon\right]} \bar{\rho}(x) d x}$.

- We estimate $\int_{0}^{1} W^{\prime \prime}(\bar{u}(\xi)-\bar{u}(z)) v^{\varepsilon}(\xi) d \xi$:

$$
\begin{align*}
\int_{0}^{1} W^{\prime \prime}(\bar{u}(\xi)-\bar{u}(z)) v^{\varepsilon}(\xi) d \xi & =\int_{0}^{1} W^{\prime \prime}\left(\bar{u}(\xi)-x_{0}\right) v^{\varepsilon}(\xi) d \xi+\int_{0}^{1} o_{\varepsilon}(1) v^{\varepsilon}(\xi) d \xi \\
& =o_{\varepsilon}(1)\left\|v^{\varepsilon}\right\|_{L^{1}} \tag{21}
\end{align*}
$$

- We estimate $\left[\int_{0}^{1} W^{\prime \prime}(\bar{u}(\xi)-\bar{u}(z)) d \xi+V^{\prime \prime}(\bar{u}(z))\right] v^{\varepsilon}(z)$:

Since \bar{u} is a steady state of (7),

$$
\forall x \in \operatorname{supp} \bar{\rho}, \quad\left(W^{\prime} * \bar{\rho}\right)(x)+V^{\prime}(x)=0 .
$$

Thanks to Assumption 4, $W^{\prime} * \bar{\rho}+V^{\prime} \in C^{1}(\mathbb{R})$ is differentiable at $x=x_{0}$. Since x_{0} is an accumulation point of supp $\bar{\rho}$, there exists a sequence $\left(x^{k}\right)_{k} \in(\operatorname{supp} \bar{\rho})^{\mathbb{N}}$ such that $x^{k} \rightarrow x_{0}$. Then,

$$
\begin{aligned}
\left(W^{\prime \prime} * \bar{\rho}\right)\left(x_{0}\right)+V^{\prime \prime}\left(x_{0}\right) & =\lim _{k \rightarrow \infty} \frac{\left(\left(W^{\prime} * \bar{\rho}\right)\left(x_{0}\right)+V^{\prime}\left(x_{0}\right)\right)-\left(\left(W^{\prime} * \bar{\rho}\right)\left(x^{k}\right)+V^{\prime}\left(x^{k}\right)\right)}{x_{0}-x_{k}} \\
& =\lim _{k \rightarrow \infty} 0 \\
& =0 .
\end{aligned}
$$

Since $W^{\prime \prime} * \rho+V^{\prime \prime}$ is continuous, and thanks to the definition of $z_{0}, z_{1}^{\varepsilon}$, for any $z \in \operatorname{supp}(v) \subset\left[z_{0}, z_{1}^{\varepsilon}\right]$,

$$
\begin{equation*}
\left[\left(W^{\prime \prime} *_{x} \bar{\rho}\right)(\bar{u}(z))+V^{\prime \prime}(\bar{u}(z))\right] v^{\varepsilon}(z)=\left(0+o_{\bar{u}(z)-x_{0}}(1)\right) v^{\varepsilon}(z)=o_{\varepsilon}(1) v^{\varepsilon}(z) . \tag{22}
\end{equation*}
$$

Finally, using (22) and (21) in (19), we get:

$$
\left\|L\left(v^{\varepsilon}\right)\right\|_{L^{1}}=o_{\varepsilon}(1)\left\|v^{\varepsilon}\right\|_{L^{1}},
$$

which proves the proposition.

3 singular interaction potentials

In this section, we shall consider interaction potentials having a singularity at $x=0$:

- Interaction potentials having an attractive singularity at $x=0$, satisfying Assumption 5 (see below),
- Interaction potentials having a repulsive singularity at $x=0$, satisfying Assumption 6 (see below).

The proof of Prop. 1 extends to singular potentials satisfying either Assumption 5 or 6 instead of Assumption 4, we shall therefore only consider compactly supported solutions. We shall show that those two cases have a very different dynamics : If Assumption 5 is satisfied, every steady-state apart from sums of Dirac masses are nonlinearly unstable, whereas if Assumption 6 is satisfied, the solution (of the time-dependant equation) is uniformly bounded in $L^{\infty}(\mathbb{R})$.

3.1 interaction potentials having an attractive singularity at $x=$ 0.

We shall consider in this section potentials having an attractive singularity at $x=0$:
Assumption 5

$$
V \in C^{2}(\mathbb{R}), \quad W \in C^{0}(\mathbb{R}),
$$

and there exist $W^{\prime}\left(0^{+}\right)>0$ such that

$$
\begin{equation*}
x \mapsto \tilde{W}(x):=W(x)-W^{\prime}\left(0^{+}\right)|x| \in C^{2}(\mathbb{R}) . \tag{23}
\end{equation*}
$$

It is well known that in this case, classical solutions of (1) may blow up in finite time (see $[3,2]$). Following $[8]$, we extend (1) to measure-valued solutions with the following equation:

$$
\begin{equation*}
\partial_{t} \rho(t, x)=\partial_{x}\left[\rho(t, x)\left(\int_{y \neq x} W^{\prime}(x-y) \rho(t, y) d y+V^{\prime}(x)\right)\right], \tag{24}
\end{equation*}
$$

where we write (with a slight abuse of notation) $\rho(t, y) d y$ instead of $d \rho(t, \cdot)(y)$. If Assumptions 1 to 3 and 5 are satisfied, then it has been proven in [8] that a unique solution $\rho \in \operatorname{AC}_{l o c}\left([0, \infty), \mathcal{P}_{2}(\mathbb{R})\right)$ to (24) exist. Note that the energy (9) is also a Lyapounov functional for (24).

One can check that the pseudo-inverse $u(t, z)$ of the solution $\rho(t, x)$ to (24) satisfies:

$$
\begin{equation*}
\partial_{t} u(t, z)=\int_{\{\xi \in[0,1] ; u(t, \xi) \neq u(t, z)\}} W^{\prime}(u(t, \xi)-u(t, z)) d \xi-V^{\prime}(u(t, z)) . \tag{25}
\end{equation*}
$$

For regular potentials, we showed that if a (compactly supported) steady-state $\bar{\rho} \in$ $M^{1}(\mathbb{R})$ of (1) is such that supp $\bar{\rho}$ has an accumulation point, then $\bar{\rho}$ cannot be linearly stable (in a sense defined in Prop. 4). In the case of interaction potentials having an attractive singularity at $x=0$, we shall show that if a (compactly supported) steadystate $\bar{\rho} \in M^{1}(\mathbb{R})$ of (24) is such that supp $\bar{\rho}$ has an accumulation point (and a bit more, see (26)), then $\bar{\rho}$ is actually nonlinearly unstable in the sense of the Proposition below:

Proposition 5. Let V, W satisfy Assumptions 1 and 5. Let $\bar{\rho}$ be a compactly supported steady-state of (24). If supp $\bar{\rho}$ has an accumulation point x_{0} such that:

$$
\begin{equation*}
\exists C>0, \exists \eta>0, \forall \gamma \in(0, \eta), \quad \frac{1}{\gamma} \int_{x_{0}}^{x_{0}+\gamma} \bar{\rho}(y) d y \geq C \tag{26}
\end{equation*}
$$

(or the same estimate with $-\eta<\varepsilon<0$), then it is locally unstable: For any $\varepsilon>0$, there exists $\rho^{\varepsilon} \in M^{1}(\mathbb{R})$, such that $W_{1}\left(\rho^{\varepsilon}, \bar{\rho}\right) \leq \varepsilon$ and

$$
\begin{equation*}
E\left(\rho^{\varepsilon}\right)<E(\bar{\rho}), \tag{27}
\end{equation*}
$$

where E is the energy defined by (9).

Remark 4. As in the case of regular potentials, there may exist L^{1} steady-states of (24): For example, if $V(x):=\frac{-x^{2}}{2}, W(x):=|x|$,

$$
\begin{equation*}
\bar{\rho}:=\frac{1}{2} \mathbb{I}_{[-1,1]} \tag{28}
\end{equation*}
$$

is a steady-state of (24). Prop. 5 shows that such steady-states are unstable.
Eq. (25) is not linearisable around steady-states (in L^{1}) in general. As a consequence, in order to define the nonlinear instability of steady-states like (28), we use the energy E (which is a Lyapounov functional of (1)), see (27).

Proof of Prop. 5

Step 1 : We define a sequence of measures $\left(\rho^{\varepsilon}\right)$ approaching $\bar{\rho}$.
We assume w.l.o.g. that x_{0} is an accumulation point of $\operatorname{supp} \bar{\rho} \cap\left[x_{0}, \infty\right)$ such that (26) is satisfied. We define for $\varepsilon>0$ such that $x_{0}+\varepsilon \in \operatorname{supp} \bar{\rho}$:

$$
\begin{gathered}
z_{0}:=\inf \left\{z \in(0,1) ; \bar{u}(z) \geq x_{0}\right\} \\
z_{1}^{\varepsilon}:=\sup \left\{z \in(0,1) ; \bar{u}(z) \leq x_{0}+\varepsilon\right\}, \\
Z^{\varepsilon}:=\left[z_{0}, z_{1}^{\varepsilon}\right]
\end{gathered}
$$

Since $x_{0}, x_{0}+\varepsilon \in \operatorname{supp} \bar{\rho}$ and $\bar{\rho}$ is a steady-state of (24),

$$
\begin{aligned}
\int_{\left\{y \notin\left[x_{0}, x_{0}+\varepsilon\right]\right\}} W^{\prime}\left(x_{0}-y\right) \bar{\rho}(y) d y+V^{\prime}\left(x_{0}\right) & =-\int_{y \in\left(x_{0}, x_{0}+\varepsilon\right]} W^{\prime}\left(x_{0}-y\right) \bar{\rho}(y) d y \\
\int_{\left\{y \notin\left[x_{0}, x_{0}+\varepsilon\right]\right\}} W^{\prime}\left(x_{0}+\varepsilon-y\right) \bar{\rho}(y) d y+V^{\prime}\left(x_{0}+\varepsilon\right) & =-\int_{y \in\left[x_{0}, x_{0}+\varepsilon\right)} W^{\prime}\left(x_{0}+\varepsilon-y\right) \bar{\rho}(y) d y .
\end{aligned}
$$

If $\varepsilon>0$ is small enough, then, $\operatorname{sign}\left(W^{\prime}(x)\right)=\operatorname{sign}(x)$ for $x \in[-\varepsilon, \varepsilon]$. Then,

$$
\int_{\left\{y \notin\left[x_{0}, x_{0}+\varepsilon\right]\right\}} W^{\prime}\left(x_{0}-y\right) \bar{\rho}(y) d y+V^{\prime}\left(x_{0}\right)>0>\int_{\left\{y \notin\left[x_{0}, x_{0}+\varepsilon\right]\right\}} W^{\prime}\left(x_{0}+\varepsilon-y\right) \bar{\rho}(y) d y+V^{\prime}\left(x_{0}+\varepsilon\right) .
$$

On $\left[x_{0}, x_{0}+\varepsilon\right]$,

$$
\begin{aligned}
F(x)= & \int_{\left\{y \notin\left[x_{0}, x_{0}+\varepsilon\right]\right\}} W^{\prime}(x-y) \bar{\rho}(y) d y+V^{\prime}(x) \\
= & W^{\prime}\left(0^{+}\right) \int_{\left(-\infty, x_{0}\right)} \bar{\rho}(y) d y-W^{\prime}\left(0^{+}\right) \int_{\left(x_{0},+\infty\right)} \bar{\rho}(y) d y \\
& +\int_{\left\{y \notin\left[x_{0}, x_{0}+\varepsilon\right]\right\}} \tilde{W}^{\prime}(x-y) \bar{\rho}(y) d y+V^{\prime}(x)
\end{aligned}
$$

where \tilde{W} is defined in (23), and F is then continuous on $\left[x_{0}, x_{0}+\varepsilon\right]$. There exists then $\bar{x}^{\varepsilon} \in\left[x_{0}, x_{0}+\varepsilon\right]$ such that

$$
\begin{equation*}
\int_{\left\{y \notin\left[x_{0}, x_{0}+\varepsilon\right]\right\}} W^{\prime}\left(\bar{x}^{\varepsilon}-y\right) \bar{\rho}(y) d y+V^{\prime}\left(\bar{x}^{\varepsilon}\right)=0 . \tag{29}
\end{equation*}
$$

We define the following perturbation u^{ε} of \bar{u} :

$$
u^{\varepsilon}(z):=\left\lvert\, \begin{aligned}
& \bar{u}(z) \text { on }\left(Z^{\varepsilon}\right)^{c}, \\
& \bar{x}^{\varepsilon} \text { on } Z^{\varepsilon},
\end{aligned}\right.
$$

and we write $v^{\varepsilon}:=u^{\varepsilon}-\bar{u} . u^{\varepsilon}$ is then the pseudo-inverse of the measure:

$$
\rho^{\varepsilon}=\left.\bar{\rho}\right|_{\left[x_{0}, x_{0}+\varepsilon\right]^{c}}+\left(\int_{\left[x_{0}, x_{0}+\varepsilon\right]} \bar{\rho}(x) d x\right) \delta_{\bar{x}^{\varepsilon}} .
$$

Notice that $W_{1}\left(\rho^{\varepsilon}, \bar{\rho}\right) \leq \varepsilon$.
Step 2: We estimate $E\left(\rho^{\varepsilon}\right)-E(\bar{\rho})$.
We use the symmetry of W and the fact that $u^{\varepsilon}=\bar{u}$ on $\left(Z^{\varepsilon}\right)^{c}$ to compute:

$$
\begin{aligned}
E\left(\rho^{\varepsilon}\right)-E(\bar{\rho})= & \frac{1}{2} \iint_{\left(Z^{\varepsilon}\right)^{2}} W\left(u^{\varepsilon}(\xi)-u^{\varepsilon}(z)\right) d \xi d z-\frac{1}{2} \iint_{\left(Z^{\varepsilon}\right)^{2}} W(\bar{u}(\xi)-\bar{u}(z)) d \xi d z \\
& +\int_{Z^{\varepsilon}} \int_{\left(Z^{\varepsilon}\right)^{c}} W\left(u^{\varepsilon}(z)-u^{\varepsilon}(\xi)\right) d \xi d z-\int_{Z^{\varepsilon}} \int_{\left(Z^{\varepsilon}\right)^{c}} W(\bar{u}(z)-\bar{u}(\xi)) d \xi d z \\
& +\int_{Z^{\varepsilon}} V\left(u^{\varepsilon}(z)\right) d z-\int_{Z^{\varepsilon}} V(\bar{u}(z)) d z .
\end{aligned}
$$

Since u^{ε} is constant on Z^{ε}, the first term can be computed. We estimate the second term using the expansion $W(x)=W(0)+W^{\prime}(0)|x|+\tilde{W}^{\prime}(0) x+O\left(x^{2}\right)$ (thanks to Assumption 5), where we notice that $\tilde{W}^{\prime}(0)=0$ thanks to Assumption 1. We use Taylor expansions on the fourth and sixth terms to get:

$$
\begin{aligned}
E\left(\rho^{\varepsilon}\right)-E(\bar{\rho})= & W(0)\left(\left|Z^{\varepsilon}\right|^{2}-\left|Z^{\varepsilon}\right|^{2}\right) \\
& -\frac{W^{\prime}\left(0^{+}\right)+O(\varepsilon)}{2} \iint_{\left(Z^{\varepsilon}\right)^{2}}|\bar{u}(\xi)-\bar{u}(z)| d \xi d z \\
& +\int_{Z^{\varepsilon}}\left\{\left[\int_{\left(Z^{\varepsilon}\right)^{c}} W\left(u^{\varepsilon}(z)-u^{\varepsilon}(\xi)\right) d \xi\right]+V\left(u^{\varepsilon}(z)\right)\right\} d z \\
& -\int_{Z^{\varepsilon}}\left\{\left[\int_{\left(Z^{\varepsilon}\right)^{c}} W\left(\bar{x}^{\varepsilon}-\bar{u}(\xi)\right) d \xi\right]+V\left(\bar{x}^{\varepsilon}\right)\right\} d z \\
& +\int_{Z^{\varepsilon}}\left\{\left[\int_{\left(Z^{\varepsilon}\right)^{c}} W^{\prime}\left(\bar{x}^{\varepsilon}-\bar{u}(\xi)\right) d \xi\right]+V^{\prime}\left(\bar{x}^{\varepsilon}\right)\right\}\left(\bar{x}^{\varepsilon}-\bar{u}(z)\right) d z \\
& \left.-\frac{1}{2} \int_{Z^{\varepsilon}}\left\{\left[\int_{\left(Z^{\varepsilon}\right)^{c}} W^{\prime \prime}\left(\theta_{1}(\xi, z)-\bar{u}(\xi)\right)\right) d \xi\right]+V^{\prime \prime}\left(\theta_{2}(z)\right)\right\}\left(\bar{x}^{\varepsilon}-\bar{u}(z)\right)^{2} d z
\end{aligned}
$$

where $\theta_{1}(\xi, z), \theta_{2}(z) \in\left[\left(\bar{u}(z), \bar{x}^{\varepsilon}\right)\right]$. Since $u^{\varepsilon}(z)=\bar{x}^{\varepsilon}$ on Z^{ε}, the third and fourth line cancel. The fifth line is equal to 0 thanks to the definition of \bar{x}^{ε} (see (29)). Then,

$$
\begin{aligned}
E\left(\rho^{\varepsilon}\right)-E(\bar{\rho})= & -\frac{W^{\prime}\left(0^{+}\right)+O(\varepsilon)}{2} \iint_{\left(Z^{\varepsilon}\right)^{2}}\left|\bar{u}(\xi)-\bar{u}^{\varepsilon}(z)\right| d \xi d z \\
& -\frac{1}{2} \int_{Z^{\varepsilon}}\left\{\left[\int_{\left(Z^{\varepsilon}\right)^{c}} W^{\prime \prime}\left(\theta_{1}(\xi, z)-\bar{u}(\xi)\right) d \xi\right]+V^{\prime \prime}\left(\theta_{2}(z)\right)\right\}\left(\bar{x}^{\varepsilon}-\bar{u}(z)\right)^{2} d z
\end{aligned}
$$

Since $\bar{\rho}$ is compactly supported, $W^{\prime \prime}, V^{\prime \prime}$ are continuous, and $\theta_{1}(\xi, z), \theta_{2}(z) \in\left[\left(\bar{u}(z), \bar{x}^{\varepsilon}\right)\right]$, we have uniform estimates:

$$
\begin{align*}
& \sup _{\left\{\xi \in\left(Z^{\varepsilon}\right)^{c}, z \in Z^{\varepsilon}\right\}}\left|W^{\prime \prime}\left(\theta_{1}(\xi, z)-\bar{u}(\xi)\right)-W^{\prime \prime}\left(\bar{x}^{\varepsilon}-\bar{u}(\xi)\right)\right|=o_{\varepsilon}(1), \\
& \sup _{\left\{z \in Z^{\varepsilon}\right\}}\left|V^{\prime \prime}\left(\theta_{2}(z)\right)-V^{\prime \prime}\left(\bar{x}^{\varepsilon}\right)\right|=o_{\varepsilon}(1) . \tag{30}
\end{align*}
$$

Then, if we define $\omega^{\varepsilon}:=\int_{\left(Z^{\varepsilon}\right)^{c}} W^{\prime \prime}\left(\bar{u}(\xi)-\bar{x}^{\varepsilon}\right) d \xi+V^{\prime \prime}\left(\bar{x}^{\varepsilon}\right)$, we get:

$$
\begin{align*}
E\left(\rho^{\varepsilon}\right)-E(\bar{\rho})= & -\frac{W^{\prime}\left(0^{+}\right)+O(\varepsilon)}{2} \iint_{\left(Z^{\varepsilon}\right)^{2}}\left|\bar{u}(\xi)-\bar{u}^{\varepsilon}(z)\right| d \xi d z \\
& +\frac{1}{2}\left(-\omega^{\varepsilon}+o_{\varepsilon}(1)\right)\left\|v^{\varepsilon}\right\|_{L^{2}}^{2} \tag{31}
\end{align*}
$$

In order to prove the proposition, we shall show that the first term of (31) is strictly negative and dominates the second term (which is strictly positive). Then, $E\left(\rho^{\varepsilon}\right)-E(\bar{\rho})<$

0 if $\varepsilon>0$ is small enough. However, the two terms of (31) are of the same order in ε, we shall thus need to estimate precisely the second term.

Step 3: We estimate $\left\|v^{\varepsilon}\right\|_{L^{2}}^{2}$.
Since \bar{u} is a steady-state, for any $z \in Z^{\varepsilon}$,

$$
\begin{aligned}
0= & \int_{\{\xi ; \bar{u}(\xi) \neq \bar{u}(z)\}} W^{\prime}(\bar{u}(\xi)-\bar{u}(z)) d \xi-V^{\prime}(\bar{u}(z)) \\
= & {\left[\int_{\left(Z^{\varepsilon}\right)^{c}} W^{\prime}(\bar{u}(\xi)-\bar{u}(z)) d \xi-V^{\prime}(\bar{u}(z))\right] } \\
& +\int_{\left\{\xi \in Z^{\varepsilon} ; \bar{u}(\xi) \neq \bar{u}(z)\right\}} W^{\prime}(\bar{u}(\xi)-\bar{u}(z)) d \xi
\end{aligned}
$$

We estimate the first term through Taylor expansions of $x \mapsto W^{\prime}(\bar{u}(\xi)-x), x \mapsto V^{\prime}(x)$ around \bar{x}^{ε} (the rest term is estimated as in (30)), and the second term using $W^{\prime}(x)=$ $W^{\prime}\left(0^{+}\right) \operatorname{sign}(x)+\tilde{W}^{\prime}(x)=W^{\prime}\left(0^{+}\right) \operatorname{sign}(x)+\tilde{W}^{\prime \prime}(\theta) x$ and $\operatorname{sign}(0)=0$ to get:

$$
\begin{aligned}
0= & {\left[\int_{\left(Z^{\varepsilon}\right)^{c}} W^{\prime}\left(\bar{u}(\xi)-\bar{x}^{\varepsilon}\right) d \xi-V^{\prime}\left(\bar{x}^{\varepsilon}\right)\right] } \\
& +\left[\int_{\left(Z^{\varepsilon}\right)^{c}} W^{\prime \prime}\left(\bar{u}(\xi)-\bar{x}^{\varepsilon}\right) d \xi+V^{\prime \prime}\left(\bar{x}^{\varepsilon}\right)\right]\left(\bar{x}^{\varepsilon}-\bar{u}(z)\right)+o_{\varepsilon}(1)\left(\bar{x}^{\varepsilon}-\bar{u}(z)\right) \\
& +W^{\prime}\left(0^{+}\right) \int_{Z^{\varepsilon}} \operatorname{sign}(\bar{u}(\xi)-\bar{u}(z)) d \xi+\int_{Z^{\varepsilon}} W^{\prime \prime}(\theta)(\bar{u}(\xi)-\bar{u}(z)) d \xi \\
= & 0+\omega^{\varepsilon} v^{\varepsilon}(z)+W^{\prime}\left(0^{+}\right) \int_{Z^{\varepsilon}} \operatorname{sign}(\bar{u}(\xi)-\bar{u}(z)) d \xi \\
& +O(1) \int_{Z^{\varepsilon}}|\bar{u}(\xi)-\bar{u}(z)| d \xi+o_{\varepsilon}(1) v^{\varepsilon}(z),
\end{aligned}
$$

thanks to the definition of \bar{x}^{ε}. Then,

$$
\begin{align*}
\left\|v^{\varepsilon}\right\|_{L^{2}}^{2}= & \int_{Z^{\varepsilon}} v^{\varepsilon}(z)^{2} d z \\
= & \int_{Z^{\varepsilon}}\left[\frac{W^{\prime}\left(0^{+}\right)}{-\omega^{\varepsilon}} \int_{z_{0}}^{z_{1}^{\varepsilon}} \operatorname{sign}(\bar{u}(\xi)-\bar{u}(z)) d \xi\right] v^{\varepsilon}(z) d z \\
& +\frac{1}{-\omega^{\varepsilon}} O(1)\left\|v^{\varepsilon}\right\|_{\infty} \iint_{\left(Z^{\varepsilon}\right)^{2}}|\bar{u}(\xi)-\bar{u}(z)| d \xi d z+\frac{o_{\varepsilon}(1)}{\omega^{\varepsilon}}\left\|v^{\varepsilon}\right\|_{L^{2}}^{2} . \tag{32}
\end{align*}
$$

Let $z \in[0,1]$, and $\zeta:=\inf \left\{\xi \in\left[z_{0}, z_{1}^{\varepsilon}\right] ; \bar{u}(\xi)=\bar{u}(z)\right\}, \zeta^{\prime}:=\sup \left\{\xi \in\left[z_{0}, z_{1}^{\varepsilon}\right] ; \bar{u}(\xi)=\right.$ $\bar{u}(z)\}$. Then,

$$
\begin{aligned}
\int_{z_{0}}^{z_{1}^{\varepsilon}} \operatorname{sign}(\bar{u}(\xi)-\bar{u}(z)) d \xi & =\int_{\left[z_{0}, z_{1}\right] \backslash\left(\zeta, \zeta^{\prime}\right)} \operatorname{sign}(\xi-z) d \xi+\int_{\zeta}^{\zeta^{\prime}} 0 d \xi \\
& =\int_{z_{0}}^{z_{1}^{\varepsilon}} \operatorname{sign}(\xi-z) d \xi-\int_{\zeta}^{\zeta^{\prime}} \operatorname{sign}(\xi-z) d \xi \\
& =\left[\left(z_{1}^{\varepsilon}-z\right)-\left(z-z_{0}\right)\right]-\left[\left(\zeta^{\prime}-z\right)-(z-\zeta)\right] \\
& =-2\left[z-\frac{z_{0}+z_{1}^{\varepsilon}}{2}\right]+2\left[z-\frac{\zeta+\zeta^{\prime}}{2}\right]
\end{aligned}
$$

Then, since \bar{u} is constant on $\left(\zeta, \zeta^{\prime}\right)$, so is $z \mapsto v^{\varepsilon}(z)=\bar{x}^{\varepsilon}-\bar{u}(z)=v^{\varepsilon}\left(\frac{\zeta+\zeta^{\prime}}{2}\right)$, and

$$
\begin{align*}
& \int_{\zeta}^{\zeta^{\prime}}\left[\int_{z_{0}}^{z_{1}^{\varepsilon}} \operatorname{sign}(\bar{u}(\xi)-\bar{u}(z)) d \xi\right] v^{\varepsilon}(z) d z \\
& =-2 \int_{\zeta}^{\zeta^{\prime}}\left[z-\frac{z_{0}+z_{1}^{\varepsilon}}{2}\right] v^{\varepsilon}(z) d z+2 v^{\varepsilon}\left(\frac{\zeta+\zeta^{\prime}}{2}\right) \int_{\zeta}^{\zeta^{\prime}}\left[z-\frac{\zeta+\zeta^{\prime}}{2}\right] d z \\
& \quad=-2 \int_{\zeta}^{\zeta^{\zeta^{\prime}}}\left[z-\frac{z_{0}+z_{1}^{\varepsilon}}{2}\right] v^{\varepsilon}(z) d z \tag{33}
\end{align*}
$$

We consider

$$
\Omega:=\left\{\left(\zeta, \zeta^{\prime}\right) \subset Z^{\varepsilon} ; \bar{u} \text { is constant on }\left(\zeta, \zeta^{\prime}\right)\right.
$$

$\left(\zeta, \zeta^{\prime}\right)$ being the maximal interval such that this is true $\}$.
Since each element of Ω contains a rational number, Ω is at most countable, and then, thanks to (33),

$$
\begin{align*}
& \int_{Z^{\varepsilon}}\left[\int_{z_{0}}^{z_{1}^{\varepsilon}} \operatorname{sign}(\bar{u}(\xi)-\bar{u}(z)) d \xi\right] v^{\varepsilon}(z) d z \\
& =\int_{Z^{\varepsilon} \backslash\left(U_{\left(\zeta, \zeta^{\prime}\right) \in \Omega}\left(\zeta, \zeta^{\prime}\right)\right)}\left[\int_{z_{0}}^{z_{1}^{\varepsilon}} \operatorname{sign}(\bar{u}(\xi)-\bar{u}(z)) d \xi\right] v^{\varepsilon}(z) d z \\
& \quad+\sum_{\left(\zeta, \zeta^{\prime}\right) \in \Omega} \int_{\zeta}^{\zeta^{\prime}}\left[\int_{z_{0}}^{z_{1}^{\varepsilon}} \operatorname{sign}(\bar{u}(\xi)-\bar{u}(z)) d \xi\right] v^{\varepsilon}(z) d z \\
& =\int_{Z^{\varepsilon} \backslash\left(\cup_{\left(\zeta, \zeta^{\prime}\right) \in \Omega}\left(\zeta, \zeta^{\prime}\right)\right)}\left[\int_{z_{0}}^{z_{1}^{\varepsilon}} \operatorname{sign}(\xi-z) d \xi\right] v^{\varepsilon}(z) d z \\
& \quad+\sum_{\left(\zeta, \zeta^{\prime}\right) \in \Omega}-2 \int_{\zeta}^{\zeta^{\prime}}\left[z-\frac{z_{0}+z_{1}^{\varepsilon}}{2}\right] v^{\varepsilon}(z) d z \\
& =-2 \int_{Z^{\varepsilon}}\left[z-\frac{z_{0}+z_{1}^{\varepsilon}}{2}\right] v^{\varepsilon}(z) d z . \tag{34}
\end{align*}
$$

Thanks to (34), (32) becomes:

$$
\begin{align*}
\left(1-\frac{o_{\varepsilon}(1)}{\omega^{\varepsilon}}\right)\left\|v^{\varepsilon}\right\|_{L^{2}}^{2}= & -2 \frac{W^{\prime}\left(0^{+}\right)}{-\omega^{\varepsilon}} \int_{Z^{\varepsilon}}\left(z-\frac{z_{0}+z_{1}^{\varepsilon}}{2}\right) v^{\varepsilon}(z) d z \\
& +\frac{1}{-\omega^{\varepsilon}} O(\varepsilon) \iint_{\left(Z^{\varepsilon}\right)^{2}}|\bar{u}(\xi)-\bar{u}(z)| d \xi d z \tag{35}
\end{align*}
$$

We notice that:

$$
\begin{aligned}
\iint_{\left(Z^{\varepsilon}\right)^{2}}|\bar{u}(\xi)-\bar{u}(z)| d \xi d z & =2 \iint_{\left(Z^{\varepsilon}\right)^{2}, \xi \geq z}[\bar{u}(\xi)-\bar{u}(z)] d \xi d z \\
& =2 \int_{Z^{\varepsilon}}\left[\left(z-z_{0}\right) \bar{u}(z)-\left(z_{1}^{\varepsilon}-z\right) \bar{u}(z)\right] d z \\
& =4 \int_{Z^{\varepsilon}}\left(z-\frac{z_{0}+z_{1}^{\varepsilon}}{2}\right) \bar{u}(z) d z
\end{aligned}
$$

and since $\int_{Z^{\varepsilon}}\left(z-\frac{z_{0}+z_{1}^{£}}{2}\right) d z=0$, we have:

$$
\begin{align*}
\iint_{\left(Z^{\varepsilon}\right)^{2}}|\bar{u}(\xi)-\bar{u}(z)| d \xi d z & =4 \int_{Z^{\varepsilon}}\left(z-\frac{z_{0}+z_{1}^{\varepsilon}}{2}\right)\left(\bar{u}(z)-\bar{x}^{\varepsilon}\right) d z \\
& =-4 \int_{Z^{\varepsilon}}\left(z-\frac{z_{0}+z_{1}^{\varepsilon}}{2}\right) v^{\varepsilon}(z) d z \tag{36}
\end{align*}
$$

Finally, thanks to (36), (35) becomes:

$$
\begin{equation*}
\left\|v^{\varepsilon}\right\|_{L^{2}}^{2}=\frac{W^{\prime}\left(0^{+}\right)+O(\varepsilon)}{-2 \omega^{\varepsilon}+o_{\varepsilon}(1)} \iint_{\left(Z^{\varepsilon}\right)^{2}}|\bar{u}(\xi)-\bar{u}(z)| d \xi d z \tag{37}
\end{equation*}
$$

Step 4:We estimate ω^{ε}.
Since $x_{0}, x_{0}+\varepsilon \in \operatorname{supp} \bar{\rho}=\overline{\bar{u}([0,1])}$ and \bar{u} is a steady-state of (25),

$$
\begin{aligned}
0= & \left(\int_{\left\{\xi \in[0,1] ; \bar{u}(\xi) \neq x_{0}+\varepsilon\right\}} W^{\prime}\left(\bar{u}(\xi)-\left(x_{0}+\varepsilon\right)\right) d \xi-V^{\prime}\left(x_{0}+\varepsilon\right)\right) \\
& -\left(\int_{\left\{\xi \in[0,1] ; \bar{u}(\xi) \neq x_{0}\right\}} W^{\prime}\left(\bar{u}(\xi)-x_{0}\right) d \xi-V^{\prime}\left(x_{0}\right)\right) \\
= & \left(\int_{0}^{1}\left(W^{\prime}\left(0^{+}\right) \operatorname{sign}\left(\bar{u}(\xi)-\left(x_{0}+\varepsilon\right)\right)+\tilde{W}^{\prime}\left(\bar{u}(\xi)-\left(x_{0}+\varepsilon\right)\right)\right) d \xi-V^{\prime}\left(x_{0}+\varepsilon\right)\right) \\
& -\left(\int_{0}^{1}\left(W^{\prime}\left(0^{+}\right) \operatorname{sign}\left(\bar{u}(\xi)-x_{0}\right)+\tilde{W}^{\prime}\left(\bar{u}(\xi)-x_{0}\right)\right) d \xi-V^{\prime}\left(x_{0}\right)\right) \\
= & \left(W^{\prime}\left(0^{+}\right)\left(\bar{\rho}\left(\left(x_{0}+\varepsilon,+\infty\right)\right)-\bar{\rho}\left(\left(-\infty, x_{0}+\varepsilon\right)\right)\right)\right. \\
& \left.+\int_{0}^{1} \tilde{W}^{\prime}\left(\bar{u}(\xi)-\left(x_{0}+\varepsilon\right)\right) d \xi-V^{\prime}\left(x_{0}+\varepsilon\right)\right) \\
& -\left(W^{\prime}\left(0^{+}\right)\left(\bar{\rho}\left(\left(x_{0},+\infty\right)\right)-\bar{\rho}\left(\left(-\infty, x_{0}\right)\right)\right)+\int_{0}^{1} \tilde{W}^{\prime}\left(\bar{u}(\xi)-x_{0}\right) d \xi-V^{\prime}\left(x_{0}\right)\right) \\
= & -W^{\prime}\left(0^{+}\right)\left[\bar{\rho}\left(\left\{x_{0}, x_{0}+\varepsilon\right\}\right)+2 \bar{\rho}\left(\left(x_{0}, x_{0}+\varepsilon\right)\right)\right] \\
& -\left[\int_{0}^{1} \tilde{W}^{\prime \prime}\left(\bar{u}(\xi)-\bar{x}^{\varepsilon}\right) d \xi+V^{\prime \prime}\left(\bar{x}^{\varepsilon}\right)\right] \varepsilon+o(\varepsilon),
\end{aligned}
$$

where we applied a Taylor expansion to the regular terms $x \mapsto \tilde{W}^{\prime}(\bar{u}(\xi)-x)$ and $x \mapsto V^{\prime}(x)$ at point $x=\bar{x}^{\varepsilon}$ (the rest term is estimated as in (30)). We notice that

$$
\begin{aligned}
\int_{0}^{1} \tilde{W}^{\prime \prime}\left(\bar{u}(\xi)-\bar{x}^{\varepsilon}\right) d \xi+V^{\prime \prime}\left(\bar{x}^{\varepsilon}\right) & =\omega^{\varepsilon}+\int_{Z^{\varepsilon}} \tilde{W}^{\prime \prime}\left(\bar{u}(\xi)-\bar{x}^{\varepsilon}\right) d \xi \\
& =\omega^{\varepsilon}+O\left(\left|Z^{\varepsilon}\right|\right)
\end{aligned}
$$

and then,

$$
\begin{equation*}
-\varepsilon\left(\omega^{\varepsilon}+O\left(\left|Z^{\varepsilon}\right|\right)\right)=\left[\bar{\rho}\left(\left\{x_{0}, x_{0}+\varepsilon\right\}\right)+2 \bar{\rho}\left(\left(x_{0}, x_{0}+\varepsilon\right)\right)\right]+o(\varepsilon) . \tag{38}
\end{equation*}
$$

Since $\left|\omega^{\varepsilon}\right| \leq\left\|W^{\prime \prime}\right\|_{L^{\infty}(\operatorname{supp} \bar{\rho}-\operatorname{supp} \bar{\rho})}+\left\|V^{\prime \prime}\right\|_{L^{\infty}(\operatorname{supp} \bar{\rho})}$, we have in particular that $\left|Z^{\varepsilon}\right|$ is of order ε :

$$
\begin{equation*}
\left|Z^{\varepsilon}\right|=\bar{\rho}\left(\left[x_{0}, x_{0}+\varepsilon\right]\right)=O(\varepsilon) \tag{39}
\end{equation*}
$$

and then, using again (38), we get that for ε small enough,

$$
\begin{aligned}
-\omega^{\varepsilon} & =\frac{W^{\prime}\left(0^{+}\right)}{\varepsilon}\left[\bar{\rho}\left(\left\{x_{0}, x_{0}+\varepsilon\right\}\right)+2 \bar{\rho}\left(\left(x_{0}, x_{0}+\varepsilon\right)\right)\right]+o_{\varepsilon}(1) \\
& \geq W^{\prime}\left(0^{+}\right) \frac{1}{\varepsilon} \bar{\rho}\left(\left[x_{0}, x_{0}+\varepsilon\right]\right)+o_{\varepsilon}(1)
\end{aligned}
$$

We assumed (see (26)) that $\frac{1}{\varepsilon} \int_{\left[x_{0}, x_{0}+\varepsilon\right]} \bar{\rho}(x) d x>C>0$ for ε small enough. Then, for $\varepsilon>0$ small enough,

$$
\begin{equation*}
-\omega^{\varepsilon} \geq C s t>0 \tag{40}
\end{equation*}
$$

Step 5:We conclude.
Thanks to (37), (31) becomes:

$$
\begin{aligned}
E\left(\rho^{\varepsilon}\right)-E(\bar{\rho})= & -\frac{W^{\prime}\left(0^{+}\right)+O(\varepsilon)}{2} \iint_{\left(Z^{\varepsilon}\right)^{2}}\left|\bar{u}(\xi)-\bar{u}^{\varepsilon}(z)\right| d \xi d z \\
& +\frac{1}{2}\left(-\omega^{\varepsilon}+o_{\varepsilon}(1)\right) \frac{W^{\prime}\left(0^{+}\right)+O(\varepsilon)}{-2 \omega^{\varepsilon}+o_{\varepsilon}(1)} \iint_{\left(Z^{\varepsilon}\right)^{2}}|\bar{u}(\xi)-\bar{u}(z)| d \xi d z \\
= & -\left[\frac{W^{\prime}\left(0^{+}\right)}{4}+o_{\varepsilon}(1)\right] \iint_{\left(Z^{\varepsilon}\right)^{2}}|\bar{u}(\xi)-\bar{u}(z)| d \xi d z,
\end{aligned}
$$

thanks to (40). Finally, we assumed that x_{0} is an accumulation point of supp $\rho^{0} \cap\left[x_{0}, \infty\right)$, ε can thus be chosen small enough for $o_{\varepsilon}(1) \leq \frac{W^{\prime}\left(0^{+}\right)}{8}$ to hold, and then,

$$
\begin{equation*}
E\left(\rho^{\varepsilon}\right)-E(\bar{\rho}) \leq-\frac{W^{\prime}\left(0^{+}\right)}{8} \iint_{\left(Z^{\varepsilon}\right)^{2}}|\bar{u}(\xi)-\bar{u}(z)| d \xi d z \tag{41}
\end{equation*}
$$

Since x_{0} is an accumulation point of supp $\bar{\rho} \cap\left[x_{0}, x_{0}+\varepsilon\right]=\bar{u}\left(Z^{\varepsilon}\right), \bar{u}$ cannot be constant on Z^{ε}, and then:

$$
\begin{equation*}
E\left(\rho^{\varepsilon}\right)-E(\bar{\rho})<0 \tag{42}
\end{equation*}
$$

3.2 potentials having a repulsive singularity at $x=0$.

In this section, we shall consider potentials having a repulsive singularity at $x=0$:

Assumption 6

$$
V \in C^{2}(\mathbb{R}), \quad W \in C^{0}(\mathbb{R})
$$

and there exists $W^{\prime}\left(0^{+}\right)<0$ such that

$$
\left(x \mapsto \tilde{W}(x):=W(x)-W^{\prime}\left(0^{+}\right)|x|\right) \in C^{2}(\mathbb{R}) .
$$

For such potentials, we don't know any existence theory, we thus prove in Prop. 6 that if Assumptions 1, 2, 3 and 6 are satisfied, and if $\rho^{0} \in W^{2, \infty}(\mathbb{R})$, then there exists a unique solution $\rho \in L^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}\right) \cap \operatorname{Lip}_{\text {loc }}\left(\mathbb{R}_{+}, W^{2, \infty}(\mathbb{R})\right)$.

Proposition 6. Let ρ^{0}, V, W satisfy Assumptions 1, 2, 3 and 6. Assume moreover that $\rho^{0} \in W^{2, \infty}(\mathbb{R})$. Then there exists a unique solution

$$
\rho \in L^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}\right) \cap \operatorname{Lip}_{l o c}\left(\mathbb{R}_{+}, W^{2, \infty}(\mathbb{R})\right)
$$

to (1).
If $\rho^{0} \in W^{N, \infty}(\mathbb{R})$ and $V \in W^{N+2, \infty}(\mathbb{R})($ for $N \in \mathbb{N})$, then $\rho \in \operatorname{Lip}_{\text {loc }}\left(\mathbb{R}_{+}, W^{N, \infty}(\mathbb{R})\right.$)
Remark 5. The uniform bound $\rho \in L^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$ ensures that the solution does not converge to any singular measure. The behavior of the solution in this case is then very different from the two other cases (Assumptions 4 or 5) studied in this paper, where the solution generically converges to a sum of Dirac masses. For a short investigation on the transition from the situation of regular kernels to the situation where W has a singularity at $x=0$ and is locally repulsive, see [13].

Proof of Prop. 6

Step 1: We show some a priori estimates on ρ, using maximum principle arguments:
We consider first $x \in \mathbb{R}$ such that $\rho(t, x)=\|\rho(t, \cdot)\|_{\infty}$. Then $\partial_{x} \rho(t, x)=0$, and

$$
\begin{aligned}
\partial_{t} \rho(t, x)= & \partial_{x} \rho(t, x)\left(W^{\prime} * \rho\right)(t, x)+\rho(t, x)\left(\left(\tilde{W}^{\prime \prime} * \rho\right)(t, x)+V^{\prime \prime}(x)\right) \\
& -2 W^{\prime}\left(0^{+}\right) \rho(t, x)^{2} \\
= & \left(\left(\tilde{W}^{\prime \prime} * \rho\right)(t, x)+V^{\prime \prime}(x)-2 W^{\prime}\left(0^{+}\right) \rho(t, x)\right) \rho(t, x) \\
\leq & \left(\left\|\tilde{W}^{\prime \prime}\right\|_{L^{\infty}}+\left\|V^{\prime \prime}\right\|_{\infty}-2 W^{\prime}\left(0^{+}\right)\|\rho(t, \cdot)\|_{\infty}\right)\|\rho(t, \cdot)\|_{\infty} .
\end{aligned}
$$

Then,

$$
\begin{equation*}
\|\rho(t, \cdot)\|_{\infty} \leq \max \left(\left\|\rho^{0}\right\|_{\infty}, \frac{1}{2\left|W^{\prime}\left(0^{+}\right)\right|}\left(\left\|\tilde{W}^{\prime \prime}\right\|_{L^{\infty}}+\left\|V^{\prime \prime}\right\|_{\infty}\right)\right) . \tag{43}
\end{equation*}
$$

Let now $N \in \mathbb{N}$ and $x \in \mathbb{R}$ be such that $\left|\partial_{x}^{N} \rho(t, x)\right|=\left\|\partial_{x}^{N} \rho(t, \cdot)\right\|_{\infty}$. W.l.o.g., $\partial_{x}^{N} \rho(t, x) \geq$ 0 , then,

$$
\begin{aligned}
\partial_{t} \partial_{x}^{N} \rho(t, x)= & \partial_{x}^{N+1}\left(\rho\left(W^{\prime} * \rho+V^{\prime}\right)\right)(t, x) \\
= & \sum_{n=0}^{N+1}\binom{N}{n} \partial_{x}^{n} \rho(t, x) \partial_{x}^{N+1-n}\left(W^{\prime} * \rho+V^{\prime}\right)(t, x) \\
= & \sum_{n=1}^{N}\binom{N}{n} \partial_{x}^{n} \rho(t, x)\left(\tilde{W}^{\prime \prime} * \partial_{x}^{N-n} \rho-2 W^{\prime}\left(0^{+}\right) \partial_{x}^{N-n} \rho+\partial_{x}^{N+2-n} V\right)(t, x) \\
& +\partial_{x}\left(\partial_{x}^{N} \rho\right)(t, x)\left(W^{\prime} * \rho+V^{\prime}\right)(t, x) \\
& +\rho(t, x)\left[-2 W^{\prime}\left(0^{+}\right) \partial_{x}^{N} \rho(t, x)+\tilde{W}^{\prime \prime} * \partial_{x}^{N} \rho+\partial_{x}^{N+2} V\right] \\
\leq & \sum_{n=1}^{N}\binom{N}{n}\left[\left(\left\|\tilde{W}^{\prime \prime}\right\|_{L^{1}([-2 C, 2 C])}+2 W^{\prime}\left(0^{+}\right)\right)\left\|\partial_{x}^{n} \rho(t, \cdot)\right\|_{\infty}\left\|\partial_{x}^{N-n} \rho(t, \cdot)\right\|_{\infty}\right. \\
& \left.+\|\rho(t, \cdot)\|_{W^{N, \infty}}\|V\|_{\left.W^{N+2, \infty}([-C, C])\right]}\right] \\
& \left.+0+\|\rho(t, \cdot)\|_{\infty}\left[\left\|\tilde{W}^{\prime \prime}\right\|_{L^{1}([-2 C, 2 C])}\right)\|\rho(t, \cdot)\|_{W^{N, \infty}}+\|V\|_{W^{N+2, \infty}([-C, C])}\right] \\
\leq & C\left(1+\|\rho(t, \cdot)\|_{W^{N-1, \infty}}\right)\|\rho(t, \cdot)\|_{W^{N, \infty}},
\end{aligned}
$$

where we used the assumption on x to get $\partial_{x}\left(\partial_{x}^{N} \rho\right)(t, x)=0$, the assumption $\partial_{x}^{N} \rho(t, x) \geq$ 0 to get $\rho(t, x)\left[-2 W^{\prime}\left(0^{+}\right) \partial_{x}^{N} \rho(t, x)\right] \leq 0$, and the estimate of Prop. 1 to get that $\operatorname{supp} \rho(t, \cdot) \subset[-C, C]$ (uniformly in time).

Since this inequality holds for any $N \geq 1$, and $\|\rho(t, \cdot)\|_{L^{\infty}}<C$ st by (43), an induction argument shows that if $\rho^{0} \in W^{N, \infty}$, there exists $C=C\left(N,\left\|\rho^{0}\right\|_{W^{N, \infty}}\right)$ such that

$$
\begin{equation*}
\|\rho(t, \cdot)\|_{W^{N, \infty}} \leq\left\|\rho^{0}\right\|_{W^{N, \infty}} e^{C t} \tag{44}
\end{equation*}
$$

Step 2: We build the solution using the above a priori estimates:
In order to prove the existence of a solution $\rho \in L^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}\right) \cap \operatorname{Lip}_{\text {loc }}\left(\mathbb{R}_{+}, W^{2, \infty}(\mathbb{R})\right)$ to (1), we use the inductive scheme: $\rho_{0}(t, x):=\rho^{0}(x)$, and

$$
\left\{\begin{array}{l}
\rho_{n+1}(0, \cdot)=\rho^{0}, \\
\partial_{t} \rho_{n+1}(t, x)=\partial_{x}\left(\rho_{n+1} W^{\prime} * \rho_{n}+V^{\prime}\right)
\end{array}\right.
$$

Thanks to estimates similar to the a priori estimates done in the first part of this proof, one gets the following (uniform in n) estimates:

$$
\left\|\rho_{n+1}(t, \cdot)\right\|_{\infty} \leq\left\|\rho^{0}\right\|_{\infty} e^{C t}
$$

and ther exist $C, T>0$ such that $\forall t \leq T$,

$$
\left\|\partial_{x} \rho_{n+1}(t, \cdot)\right\|_{\infty} \leq C\left\|\partial_{x} \rho^{0}\right\|_{\infty}, \quad\left\|\partial_{t} \rho_{n+1}(t, \cdot)\right\|_{\infty} \leq C\left(\left\|\partial_{x} \rho^{0}\right\|_{\infty}+\left\|\rho^{0}\right\|_{\infty}\right) .
$$

Those estimates show that $\left(\rho_{n}\right)$ converges in $L^{\infty}([0, T] \times \mathbb{R})$ up to an extraction. A further study of $\left(\rho_{n+1}-\rho_{n}\right)$ shows that the whole sequence converges to the unique strong solution ρ of (1).

Finally, estimate (44) shows the propagation of regularity anounced in Prop. 6.

References

[1] Benedetto D, Caglioti E, Pulvirenti M, A kinetic equation for granular media. RAIRO Modél. Math. Anal. Numér. 31(5), 615-641 (1997).
[2] Bertozzi A, Carrillo JA, Thomas L, Blowup in multidimensional aggregation equations with mildly singular interaction kernels. Nonlinearity 22(3), 683-710 (2009).
[3] Bertozzi A, Laurent T, Finite-time blow-up of solutions of an aggregation equation in R^{n}. Comm. Math. Phys. 274(3), 717-735 (2007).
[4] Blanchet A, Dolbeault J, Perthame B, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differential Equations 44, 1-32 (2006).
[5] Boi S, Capasso V, Morale D, Modeling the aggregative behavior of ants of the species Polyergus rufescens. Nonlinear Anal. Real World Appl. 1(1), 163-176 (2000).
[6] Burger M, Capasso V, Morale D, On an aggregation model with long and short range interactions. Nonlinear Anal.Real World Appl. 8, 939-958 (2007).
[7] Burger M, Di Francesco M, Large time behavior of nonlocal aggregation models with non-linear diffusion. Netw. Heterog. Media 3, 749-785 (2008).
[8] Carrillo JA, Di Francesco M, Figalli A, Laurent T, Slepc̆ev D, Global-in-time weak measure solutions, finite-time aggregation and confinement for nolocal interaction equations, preprint Departement of Mathematics-University of Barcelona 17, (2009), submitted.
[9] Carrillo JA, McCann RJ, Villani C, Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Rat. Mech. Anal. 179, 217-263 (2006).
[10] Carrillo JA, Rosado J, Uniqueness of bounded solutions to aggregation equations by optimal transport methods. preprint Departement of Mathematics-University of Barcelona 7, (2009).
[11] Chuang YL, Huang YR, D'Orsogna MR, Bertozzi A, Multi-vehicle flocking: scalability of cooperative control algorithms using pairwise potentials. IEEE International Conference on Robotics and Automation, 2292-2299 (2007).
[12] Civelekoglu G, Edelstein-Keshet L, Modelling the dynamics of F-actin in the cell. Bull. math. biol. 56(4), 587-616, (1994).
[13] Fellner K, Raoul G, Stationary states of non-local interaction equations: stability and singular limits. in progress.
[14] Geigant E, Ladizhansky K, Mogilner A, An integrodifferential model for orientational distributions of F-actin in cells. SIAM J. Appl. Math. 59(3), 787-809 (1999).
[15] Golse F, The mean-field limit for the dynamics of large particle systems. Journées "Equations aux Dérivées partielles" Exp. No.IX, Univ. Nantes, Nantes, 2003.
[16] Kang K, Perthame B, Stevens A, Velázquez JJL, An integro-differential equation model for alignment and orientational aggregation. J. Differential Equations 246(4), 1387-1421 (2009).
[17] Keller EF, Segel LA, Initiation of slide mold aggregation viewed as an instability. J. Theor. Biol. 26, 399-415 (1970).
[18] Laurent T, Local and Global Existence for an Aggregation Equation. Comm. in Partial Differential Equations 32(12), 1941-1964 (2007).
[19] Mogilner A, Edelstein-Keshet L, A non-local model for a swarm. J. Math. Biol. 38(6), 534-570 (1999).
[20] Morale D,Capasso V, Oelschlager K, An interacting particle system modelling aggregation behavior: from individuals to populations. J. Math. Biol. 50, 49-66 (2005).
[21] Patlak CS, Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311-338 (1953).
[22] Primi I, Stevens A, Velazquez JJL. Mass-Selection in alignment models with nondeterministic effects. Comm. Partial Differential Equations 34(5), (2009).
[23] Raoul G, Orbital stability of some steady-states for an aggregation equation. in progress.
[24] Theil F, A proof of crystallization in two dimensions. Comm. Math. Phys. 262(1), 209-236 (2006).
[25] Topaz CM, Bertozzi A, Lewis M, A nonlocal continuum model for biological aggregation. Bull. Math. Biol. 68(7), 1601-1623 (2006).
[26] Villani C, A survey of mathematical topics in the collisional kinetic theory of gases. In Handbook of Fluid Mechanics, S.Friedlander and D.Serre (Eds.) (2002).

