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Abstract: In this paper, we are interested in the long-time behavior of solutions to a
non-local interaction equation. We show that up to an extraction, the solution converges
to a steady-state. Then, we study the structure of stable steady-states.

1 Introduction

We are interested in the asymptotic behaviour of a density ρ(t, x) of particles or individuals
at position x ∈ R

d (d ≥ 1) and at time t ≥ 0, which evolves according to the nonlocal
aggregation equation:

∂tρ = ∇x · (ρ∇x[W ∗ ρ + V ]), for (t, x) ∈ R+ × R
d . (1)

This equation can be seen as a many particles limit of discret processes where particles
(or individuals) can interact at a large distance, through an interaction potential W

(see [20, 15]). Such equations appear in various biological phenomenons like swarming
(see [5, 11]), distribution of actin-filament networks (see [12, 14]), as well as in physical
problems, for example in the field of granular media (see [1, 26]).

Many of the above models couple the long-range interaction between particles with
a diffusive term. Nevertheless, in this paper we shall not consider a diffusion term, and
focus our study on the effect of a long-range interaction.

Let us now describe typical interaction potentials W which appear in the models
quoted above:

• In [16, 22], interaction potentials are regular, repulsive at short range and attractive
when particles are far apart, typically W (x) = −x2 + x4. In this case, the solution
typically concentrates and tends to a finite number of Dirac masses, when time goes
to infinity. This type of potentials have been studied in [9, 7], but we don’t know
any general study of the case of regular interaction potentials so far.
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• In Chemotaxis models (see [21, 17]), interaction potentials are singular at x = 0 and
attractive, typically, in dimension 2, W (x) := − 1

2π
log |x|. In this case, the solution

usually (if there is no diffusion) blows-up in finite time. Potentials singular at x = 0
and attractive have been widely studied both with a diffusion term (see [4, 6]), or
without diffusion (see [8, 18, 10, 3, 2]), for various types of attractive singularities.

• In swarming models (see [11, 19, 25]), interaction potentials are usually singular at
x = 0 and repulsive, typical examples are the repulsive Morse Potential W (x) =
−e−|x|, or the attractive-repulsive Morse potentials W (x) = −Ca e−|x|/la +Cr e−|x|/lr

and W (x) = −Ca e−|x|2/la + Cr e−|x|2/lr . Related interpolation potentials in physics
are, for instance, the Lennard-Jones potential [24]. We don’t know any qualitative
study of such models.

We will show in this article that the asymptotic behaviour of the solution of (1) highly
depends on the type of singukarity of W at point x = 0.

In the present article, we shall focus on the one-dimensional case. We aim at under-
standing the dynamical behavior presented by a non-local interaction operator with even
potential:

Assumption 1:

∀x ∈ R,W (x) = W (−x). (2)

In this study, we shall focus on compactly supported densities, we shall thus only
consider situations where a confinement exists, either from the external potential, or from
the interaction potential itself. We shall assume that:

Assumption 2: One of the two following conditions is satisfied:
There exists C > 0 such that

‖W ′‖L∞([−2C,2C]) < min (V ′(C), −V ′(−C)) , (3)

or
V = 0, ∃C1, C2 > 0, ∀x ≥ C1 : W ′(x) ≥ C2 x, W ′(−x) ≤ −C2 x. (4)

Assumption 3:

ρ0 ∈ M1(R), supp ρ0 ⊂ [−C,C]. (5)

where C < ∞. If V 6= 0, C must satisfy (3).

Assumption 2 together with Assumption 3 ensure that the support of ρ(t, ·) is (uni-
formly w.r.t. time) bounded (see Prop. 1).
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Note that (1) formally conserves the total mass
∫

ρ(t, x) dx, which w.l.o.g. we shall
assume to be normalized

∫

R
ρ(x) dx = 1. The quantity ρ(t, ·) is then interpreted as a

probability density. In particular in the one-dimensional case, this enables a change of
variables in which one introduces the pseudo-inverse of the distribution function

∫ x

−∞
dρ,

i.e.

u(t, z) = inf

{

x ∈ R :

∫

(−∞,x]

ρ(t, y) dy > z

}

z ∈ [0, 1], (6)

which transforms the evolution equations (1) for measure solutions ρ(t, ·) into an integral
equation for the non-decreasing pseudo-inverse u(t, z) satisfying (see, e.g. [7])

∂tu(t, z) =

∫

W ′ (u(t, ξ) − u(t, z)) dξ − V ′(u(t, z)), ∀z ∈ [0, 1]. (7)

Since eq. (7) is much more convenient than eq. (1) for stability analysis, we shall often
use it in this paper. In particular, atomic parts of measure solutions ρ(x) correspond
to constant parts of the pseudo-inverse u(z). Notice also the useful change of variable
∫

g(x)ρ(x) dx =
∫ 1

0
g(u(ξ)) dξ, which holds for any g ∈ L1(supp ρ).

In the absence of a confining potential V (and if W is symmetric), the center of mass
∫

R
x ρ(t, x) dx is conserved by eq. (1), or equivalently,

∫ 1

0
u is preserved by (7):

d

dt

∫

R

xρ(t, x) dx = 0,
d

dt

∫ 1

0

u(t, z) dz = 0. (8)

Note that eq. (1) can be seen as a gradient-flow equation for the following energy (see
[8]):

E(t) :=
1

2

∫ ∫

ρ(t, x)ρ(t, y)W (x − y) dx dy +

∫

R

ρ(t, x)V (x) dx. (9)

In section 2, we shall consider regular interaction potentials W . We first prove the
technical result Prop. 1, which shows that Assumptions 2 and 3 are sufficient to ensure
that the support of ρ(t, ·) remains uniformly bounded.

Then, Prop. 2 shows that ρ(t, ·) converges (in a sense to be precised then) to a set of
steady-states, as time goes to infinity. This result emphasizes the importance of steady-
states, when one wishes to understand the long-time behavior of solutions to (1).

In subsection 2.3, we show that stable steady-states of (2) are generically sums of
Dirac masses. More precisely, we show in Prop. 3 that for analytic V, W , the steady-
states of (1) are necessarly finite sums of Dirac masses. If V, W are only C2, continuous
steady-states may exist, but they cannot be linearly stable.

In Section 3, we consider interaction potentials having a singularity at x = 0.
In Subsection 3.1, we consider the steady-states of (1) for an interaction potential W

having an attractive singularity at x = 0. Since (1) may develop blow-ups in L∞ in finite
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time (see [3, 2]), we consider (following [8]), the extension (24) of (1) to measure-valued
solutions. In Prop. 3.1, we show that a steady-state ρ̄ of (24) such that supp ρ̄ has an
accumulation point (and a bit more, see (26)) is nonlinearly unstable.

In Subsection 3.2, we consider the steady-states of (1) for an interaction potential W

having a repulsive singularity at x = 0. In Prop. 6, we provide an existence proof for
(1) with a regular initial condition (until now, no existence result had been written down
for such interaction potentials). In particular, Prop. 6 provides a uniform bound on the
solution in L∞(R). The situation is therefore completely different from the two other
cases: no blow-up can occur.

2 Regular interaction potentials

In this first section, we make the following regularity assumptions on V and W :
Assumption 4:

V ∈ C2(R), W ∈ C2(R), (10)

W ∈ W 2,∞(R). (11)

We shall use in the following the Measure Space

P∞(R) := {ρ ∈ M1(R); supp ρ is bounded},

together with the Wasserstein distance

W∞(ρ1, ρ2) := ‖u1 − u2‖∞, (12)

where u1, u2 are the pseudo-inverses of ρ1, ρ2.
Under Assumption 1 to 4, it has been proven in [7] that a unique solution ρ ∈

Liploc([0,∞),P∞(R)) to (1) exists.

2.1 Support of ρ(t, ·)

In this subsection, we show that Assumptions 1 to 4 are sufficient to ensure that the
support of ρ is uniformly bounded w.r.t. time:

Proposition 1. Let ρ0, V, W satisfy Assumption 1 to 4. Let ρ ∈ Liploc([0,∞),P∞(R))
be the unique solution of (1) given by [7]. Then,

∃C > 0, ∀t ≥ 0, supp ρ(t, ·) ⊂ [−C,C]. (13)
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Proof of Prop. 1

We consider separately the case when (3) is satisfied, and the case when (4) is satisfied.
We denote u(t, ·) the pseudo-inverse of ρ(t, ·).

Step 1: If V , W satisfy (3).

Let t = inf {τ ; max(|u(τ, 0)|, |u(τ, 1)|) ≥ C}. if u(t, 0) = −C, then,

∂tu(t, 0) =

∫

W ′ (u(t, ξ) − u(t, 0)) dξ − V ′(u(t, 0))

≥ −‖W ′‖L∞([−2C,2C]) − V ′(u(t, 0))

≥ 0,

and similarly, if u(t, 1) = C, then ∂tu(t, 1) ≤ 0. Consequently, t = ∞, and at all times,
−C ≤ u(0, ·) ≤ u(1, ·) ≤ C, that is the support of ρ(t, ·) is uniformly bounded.

Step 2: If V , W satisfy (4).

Assume w.l.o.g. that the center of mass of ρ0 (which is preserved by the equation, see
(8)) is:

∫

R

xρ0(x) dx =

∫ 1

0

u0(z) dz = 0.

We shall show that if ‖u(t, ·)‖∞ ≥ max
(

2C1,
3

C2
‖W ′‖L∞(−C1,C1)

)

, then t 7→ ‖u(t, ·)‖∞ is

non increasing.

Assume w.l.o.g. that |u(t, 0)| ≥ |u(t, 1)|. We define Λ := {ξ ∈ [0, 1]; u(t, ξ) ≥ u(t, 0) +
C1}. Then,

• We assumed that |u(0)| ≥ |u(1)|, so that

u(t, z) ≤ |u(t, 0)|

on [0, 1], and in particular on Λ.

• On Λc,
u(t, z) ≤ u(t, 0) + C1 = C1 − |u(t, 0)|.

Since the center of mass of ρ is 0,

0 =

∫

Λ

u +

∫

Λc

u

≤ |u(0)| |Λ| − (|u(0)| − C1)(1 − |Λ|)

≤ (2|u(0)| − C1)|Λ| − (|u(0)| − C1).
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Then, |Λ| ≥

(

1 + 1

1−
C1

|u(0)|

)−1

, and since |u(0)| ≥ 2C1,

|Λ| ≥
1

3
. (14)

We use (4) to estimate ∂tu(t, 0):

∂tu(t, 0) =

∫

W ′ (u(t, ξ) − u(t, 0)) dξ

≥ −‖W ′‖L∞(−C1,C1) + C2

∫

Λ

[u(t, ξ) − u(t, 0)] dξ

≥ −‖W ′‖L∞(−C1,C1) + C2 |Λ|

∫

Λ

[u(t, ξ) − u(t, 0)]
dξ

|Λ|

≥ −‖W ′‖L∞(−C1,C1) + C2 |Λ|

∫ 1

0

[u(t, ξ) − u(t, 0)] dξ,

since for (ξ, ξ′) ∈ Λ × Λc, u(t, ξ) − u(t, 0) ≥ u(t, ξ′) − u(t, 0). Since
∫ 1

0
u(t, ξ) dξ = 0, we

get:

∂tu(t, 0) ≥ −‖W ′‖L∞(−C1,C1) − C2 |Λ|u(t, 0)

≥ −‖W ′‖L∞(−C1,C1) +
1

3
C2|u(t, 0)|

≥ 0,

thanks to the assumption that ‖u‖∞ ≥ max
(

2C1,
3

C2
‖W ′‖L∞(−C1,C1)

)

. Then, ‖u‖∞ is non

increasing, which implies as in the previous case, that the support of ρ(t, ·) is uniformly
bounded.

�

2.2 Asymptotic behavior of the solution

In this subsection, we show that we cannot expect the solution to converge to anything
else than a set of steady-states. In particular, no periodic limit cycles exist.

Proposition 2. Let ρ0, V, W satisfy Assumptions 1 to 4. Let ρ ∈ Liploc([0,∞),P∞(R))
be the unique solution of (1) given by [7]. Then,

1.
∫

ρ(t, x)

(
∫

W ′(x − y)ρ(t, y) dy + V ′(x)

)2

dx → 0 as t → ∞.
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2. For any sequence tk → ∞, there exists a subsequence, still denoted (tk), such that:

W1 (ρ(tk, ·), ρ̄) → 0 as k → ∞, (15)

where W1 denotes the 1−Wasserstein distance, and ρ̄ is a steady-state of (1).

Remark 1. The limit ρ̄ of ρ(tk, ·) in (15) is not necessarily unique : it may depend both
on the sequence (tk) and the extracted sequence.

Proof of Prop. 2

Step 1: Proof of 1.

We first show that the energy (9) is non-increasing in time, using integrations by parts:

dE

dt
(t) =

∫

R

∫

R

∂x

(

ρ(t, x)

(
∫

W ′(x − z)ρ(t, z) dz + V ′(x)

)

(t, x)

)

ρ(t, y)W (x − y) dx dy

+

∫

R

∂x

(

ρ(t, x)

(
∫

W ′(x − y)ρ(t, y) dy + V ′(x)

))

V (x) dx

= −

∫

ρ(t, x)

(
∫

W ′(x − y)ρ(t, y) dy + V ′(x)

)2

dx

≤ 0. (16)

Next, we have the following estimate on the regularity of the energy dissipation:

d2E

dt2
= −

∫

∂x

(

ρ(t, x)

(
∫

W ′(x − y)ρ(t, y) dy + V ′(x)

))

(
∫

W ′(x − y)ρ(t, y) dy + V ′(x)

)2

dx

− 2

∫

ρ(t, x)

(
∫

W ′(x − y)ρ(t, y) dy + V ′(x)

)
∫

W ′(x − y)

∂y

(

ρ(t, y)

(
∫

W ′(y − z)ρ(t, z) dz + V ′(y)

))

dy dx

=2

∫

ρ(t, x)

(
∫

W ′(x − y)ρ(t, y) dy + V ′(x)

)2

∂x

(
∫

W ′(x − y)ρ(t, y) dy + V ′(x)

)

dx

+ 2

∫

ρ(t, x)

(
∫

W ′(x − y)ρ(t, y) dy + V ′(x)

)
∫

∂y(W
′(x − y))

(

ρ(t, y)

(
∫

W ′(y − z)ρ(t, z) dz + V ′(y)

))

dy dx.
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Since V, W ∈ C2(R), we can estimate d2E
dt2

as follows:

∣

∣

∣

∣

d2E

dt2

∣

∣

∣

∣

≤ 2
(

‖V ‖W 2,∞(−C,C) + ‖W‖W 2,∞(−2C,2C)

) (

‖W‖W 2,∞(−2C,2C) + ‖V ‖W 2,∞(−C,C)

)2

≤ C, (17)

where C < +∞ is a constant.
Finally, notice that the energy is bounded from below:

E ≥ −

(

1

2
‖W‖L∞(−2C,2C) + ‖V ‖L∞(−C,C)

)

. (18)

To prove that dE
dt

(t) → 0, we use an interpolation between E(t) → Ē and d2

dt2
E(t)

bounded :
Let ε > 0. Since the energy E is non increasing (16) and bounded from below (18),

E has a limit Ē when t → ∞. Let t > 0 and τ ∈ (0, t
2
]. Then,

∣

∣

∣

∣

dE

dt
(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

τ

∫ t

t−τ

[

dE

dt
(s) +

∫ t

s

d2E

dt2
(σ) dσ

]

ds

∣

∣

∣

∣

=

∣

∣

∣

∣

1

τ
[E(t) − E(t − τ)] +

1

τ

∫ t

t−τ

∫ t

s

d2E

dt2
(σ) dσ ds

∣

∣

∣

∣

≤
2

τ
‖E − Ē‖L∞([ t

2
,∞)) + τ

∥

∥

∥

∥

d2E

dt2

∥

∥

∥

∥

L∞([0,∞))

.

For t > 0 large enough, τ :=
‖E−Ē‖

1
2
L∞([ t

2 ,∞))

‚

‚

‚

d2E

dt2

‚

‚

‚

1
2

L∞([0,∞))

< t
2
, and then,

∣

∣

∣

∣

dE

dt
(t)

∣

∣

∣

∣

≤ 3‖E − Ē‖
1
2

L∞([ t
2
,∞))

∥

∥

∥

∥

d2E

dt2

∥

∥

∥

∥

1
2

L∞([0,∞))

,

which implies dE
dt

(t) → 0 as t → ∞.

Step 2: Proof of 2.

The pseudo-inverse u(t, ·) of ρ(t, ·) is an increasing function, and is uniformly bounded
thanks to Prop. 1. The sequence u(tk, ·) is then a uniformly bounded sequence of
BV ([0, 1]). There exists then a subsequence, still denoted u(tk, ·), that converges in L1 to
a limit denoted by ū:

‖u(tk, ·) − ū‖L1 → 0.
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Our aim is to prove that ū is a steady-state of (7). In order to prove that, we shall use
the estimate obtained above, dE

dt
(tk) → 0. Let us write this estimate in the pseudo-inverse

setting:

dE

dt
(tk) = −

∫

ρ(tk, x)

(
∫

W ′(x − y)ρ(tk, y) dy + V ′(x)

)2

dx

= −

∫ 1

0

(
∫

W ′(u(tk, z) − u(tk, ξ)) dξ + V ′(u(tk, z))

)2

dz.

We define F̄ := −
∫ 1

0

(∫

W ′(ū(z) − ū(ξ)) dξ + V ′(ū(z))
)2

dz. Then,

F̄ −
dE

dt
=

∫ 1

0

(
∫

W ′(u(z) − u(ξ)) dξ + V ′(u(z))

)2

−

(
∫

W ′(ū(z) − ū(ξ)) dξ + V ′(ū(z))

)2

dz

=

∫ 1

0

(

∫

W ′(u(z) − u(ξ)) dξ + V ′(u(z))

+

∫

W ′(ū(z) − ū(ξ)) dξ + V ′(ū(z))

)

·

(

∫

W ′(u(z) − u(ξ)) dξ −

∫

W ′(ū(z) − ū(ξ)) dξ

+V ′(u(z)) − V ′(ū(z))

)

dz

≤ C

∥

∥

∥

∥

∫

W ′(u(z) − u(ξ)) dξ −

∫

W ′(ū(z) − ū(ξ)) dξ

∥

∥

∥

∥

L1

+C‖u − ū‖L1

≤ C‖W ′‖L∞(−2C,2C) ‖u − ū‖L1 + C‖u − ū‖L1 .

Finally,

F̄ ≤
dE

dt
(tk) + C‖u(tk, ·) − ū‖L1

→ 0 as k → ∞.

Then, F̄ = 0, that is:

supp ρ̄ ⊂

{

x ∈ R;

∫

W ′(x − y)ρ̄(y) dy + V ′(x) = 0

}

,

and ρ̄ is a steady-state of (1).

�
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2.3 Study of the steady states.

In the previous subsection, we showed that for any regular potential W satisfying As-
sumption 4, the sequence ρ(tk, ·) converges, up to an extraction, to a steady solution of
(1). In this subsection, we shall try to characterize the steady-states of (1).

The following proposition characterizes the steady-states for analytical interaction
potentials W :

Proposition 3. Assume W and V are analytical. Then, every steady state ρ̄ ∈ M1(R)
of (1) with bounded support is a finite sum of Dirac masses:

ρ̄ =
N
∑

i=1

ρ̄iδūi
,

with ρ̄1, . . . , ρ̄N > 0, ū1, . . . , ūN ∈ R.

Proof of Prop. 3

Let us consider a steady solution ρ̄ of (1), and the associated steady solution ū of (7).
For z ∈ [0, 1],

0 =

∫

W ′(ū(z) − ū(ξ)) dξ − V ′(ū(z))

=

∫ 1

0

W ′(ū(z) − ū(ξ)) dξ − V ′(ū(z))

= −(W ′ ∗ ρ̄ + V ′)(ū(z)).

Since u([0, 1]) = supp(ρ̄), for any x ∈ supp(ρ̄),

0 = (W ′ ∗ ρ̄)(x) + V ′(x).

Since W and V are analytic, so is W ′ ∗ ρ̄ + V ′, and if supp(ρ̄) has an accumulation point,
then

∀x ∈ R, (W ′ ∗ ρ̄)(x) + V ′(x) = 0,

which is not possible since V, W satisfy (3) or (4). Then, supp(ρ̄) cannot have any
accumulation point, and is thus a finite set of points.

�

For less regular potentials, for instance when W is only C2, the same result cannot be
expected to hold anymore, as the following example shows.
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Example 1. Consider the interaction potential W (x) := (dist(x, [−1, 1]))3, where dist(x, y) :=
|x − y|, and V = 0. W is C2 (one could even consider a smoothed (C∞) version of the
potential), but (1) admits the L1(R) steady state:

ρ̄ = I[− 1
2
, 1
2
].

Nevertheless, the following proposition shows that steady states which are linearly
stable (in a sense made clear in the following Proposition) have to be sums of Dirac
masses:

Proposition 4. Let V, W satisfy Assumptions 1 and 4. Let ρ̄ ∈ M1(R) be a compactly
supported steady state of (1), and ū be its pseudo-inverse. If ρ̄ is such that supp(ρ̄) has
an accumulation point x0, then the pseudo-inverse equation (7) linearized around ū in L1

has no spectral gap.

Remark 2. Since the perturbations uε of ū used in the proof of Prop. 4 satisfy
∫ 1

0
uε =

∫ 1

0
ū, Prop. 4 remains true if we only consider perturbations preserving the center of mass

∫

xρ̄(x) dx of ρ̄ (this is important since (1) is invariant w.r.t. translations along x).

Remark 3. For a stability analysis of steady-states ρ̄ that are sums of Dirac masses, see
[13, 23]. In [13], we exhibit necessary and sufficient condition for local stability of such
steady-states with respect to perturbations ρ of ρ̄ such that W∞(ρ̄, ρ) is small (where W∞

denotes the ∞−Wasserstein distance). In [23] we show the orbital stability of ρ̄(R) in
M1 for the usual topology of M1(R).

Proof of Prop. 4

We begin by linearizing (7) around ū, with u = ū + δv, δ > 0:

∂tu(t, z) =

∫ 1

0

W ′(u(t, ξ) − u(t, z)) dξ − V ′(u(t, z))

=

∫ 1

0

W ′(ū(t, ξ) − ū(t, z)) dξ − V ′(ū(t, z))

+δ

(
∫ 1

0

W ′′(ū(ξ) − ū(z))(v(t, ξ) − v(t, z)) dξ − V ′′(ū(z))v(t, z)

)

+ o(δ)

= δ

(
∫ 1

0

W ′′(ū(ξ) − ū(z))v(t, ξ) dξ −

∫ 1

0

W ′′(ū(ξ) − ū(z)) dξv(t, z)

−V ′′(ū(z))v(t, z)

)

+ o(δ),

so that the linearization of (7) around ū yields the linear operator L : L1([0, 1]) →
L1([0, 1]):

L(v)(z) =

∫ 1

0

W ′′(ū(ξ)− ū(z))v(ξ) dξ −

[
∫ 1

0

W ′′(ū(ξ) − ū(z)) dξ + V ′′(ū(z))

]

v(z). (19)
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We now shall show that if supp ρ̄ has an accumulation point x0, then we can build a
sequence (vε) of perturbations of u such that:

‖L(vε)‖L1

‖vε‖L1

→ 0,

which shows that the linear operator L does not have any spectral gap. Since we are
dealing with pseudo-inverses, we must however restrict to perturbations v such that for
some α > 0, u = ū + αv is non decreasing.

We assume without any loss of generality that x0 is an accumulation point of supp(ρ̄)∩
[x0,∞). Then, for any ε > 0,

∫

(x0,x0+ε)

dρ̄ > 0. (20)

For a given ε > 0, we define

z0 := inf {z ∈ (0, 1); ū(z) > x0} ,

zε
1 := sup {z ∈ (0, 1); ū(z) < x0 + ε} ,

Zε := [z0, z
ε
1].

We define the following perturbation uε of ū:

uε(z) :=

∣

∣

∣

∣

ū(z) on (Zε)c,
1

|Zε|

∫

Zε ū(y) dy on Zε,

and we write vε := uε − ū. The function uε is then the pseudo-inverse of the measure:

ρε = ρ̄|[x0,x0+ε]c +

(
∫

[x0,x0+ε]

ρ̄(x) dx

)

δx̃,

where x̃ = 1
|Zε|

∫

Zε ū(y) dy =
∫

[x0,x0+ε]
xρ̄(x) dx

R

[x0,x0+ε] ρ̄(x) dx
.

• We estimate
∫ 1

0
W ′′(ū(ξ) − ū(z))vε(ξ) dξ:

∫ 1

0

W ′′(ū(ξ) − ū(z))vε(ξ) dξ =

∫ 1

0

W ′′(ū(ξ) − x0)v
ε(ξ) dξ +

∫ 1

0

oε(1)vε(ξ) dξ

= oε(1)‖vε‖L1 . (21)

• We estimate
[

∫ 1

0
W ′′(ū(ξ) − ū(z)) dξ + V ′′(ū(z))

]

vε(z):

Since ū is a steady state of (7),
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∀x ∈ supp ρ̄, (W ′ ∗ ρ̄)(x) + V ′(x) = 0.

Thanks to Assumption 4, W ′ ∗ ρ̄ + V ′ ∈ C1(R) is differentiable at x = x0. Since x0

is an accumulation point of supp ρ̄, there exists a sequence (xk)k ∈ (supp ρ̄)N such
that xk → x0. Then,

(W ′′ ∗ ρ̄)(x0) + V ′′(x0) = lim
k→∞

((W ′ ∗ ρ̄)(x0) + V ′(x0)) −
(

(W ′ ∗ ρ̄)(xk) + V ′(xk)
)

x0 − xk

= lim
k→∞

0

= 0.

Since W ′′ ∗ ρ + V ′′ is continuous, and thanks to the definition of z0, zε
1, for any

z ∈ supp(v) ⊂ [z0, z
ε
1],

[(W ′′ ∗x ρ̄)(ū(z)) + V ′′(ū(z))] vε(z) =
(

0 + oū(z)−x0(1)
)

vε(z) = oε(1)vε(z). (22)

Finally, using (22) and (21) in (19), we get:

‖L(vε)‖L1 = oε(1)‖vε‖L1 ,

which proves the proposition.

�

3 singular interaction potentials

In this section, we shall consider interaction potentials having a singularity at x = 0:

• Interaction potentials having an attractive singularity at x = 0, satisfying Assump-
tion 5 (see below),

• Interaction potentials having a repulsive singularity at x = 0, satisfying Assumption
6 (see below).

The proof of Prop. 1 extends to singular potentials satisfying either Assumption 5 or 6
instead of Assumption 4, we shall therefore only consider compactly supported solutions.
We shall show that those two cases have a very different dynamics : If Assumption 5 is
satisfied, every steady-state apart from sums of Dirac masses are nonlinearly unstable,
whereas if Assumption 6 is satisfied, the solution (of the time-dependant equation) is
uniformly bounded in L∞(R).
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3.1 interaction potentials having an attractive singularity at x =
0.

We shall consider in this section potentials having an attractive singularity at x = 0:
Assumption 5

V ∈ C2(R), W ∈ C0(R),

and there exist W ′(0+) > 0 such that

x 7→ W̃ (x) := W (x) − W ′(0+)|x| ∈ C2(R). (23)

It is well known that in this case, classical solutions of (1) may blow up in finite time
(see [3, 2]). Following [8], we extend (1) to measure-valued solutions with the following
equation:

∂tρ(t, x) = ∂x

[

ρ(t, x)

(
∫

y 6=x

W ′(x − y)ρ(t, y) dy + V ′(x)

)]

, (24)

where we write (with a slight abuse of notation) ρ(t, y) dy instead of dρ(t, ·)(y). If As-
sumptions 1 to 3 and 5 are satisfied, then it has been proven in [8] that a unique solution
ρ ∈ ACloc([0,∞),P2(R)) to (24) exist. Note that the energy (9) is also a Lyapounov
functional for (24).

One can check that the pseudo-inverse u(t, z) of the solution ρ(t, x) to (24) satisfies:

∂tu(t, z) =

∫

{ξ∈[0,1]; u(t,ξ) 6=u(t,z)}

W ′(u(t, ξ) − u(t, z)) dξ − V ′(u(t, z)). (25)

For regular potentials, we showed that if a (compactly supported) steady-state ρ̄ ∈
M1(R) of (1) is such that supp ρ̄ has an accumulation point, then ρ̄ cannot be linearly
stable (in a sense defined in Prop. 4). In the case of interaction potentials having an
attractive singularity at x = 0, we shall show that if a (compactly supported) steady-
state ρ̄ ∈ M1(R) of (24) is such that supp ρ̄ has an accumulation point (and a bit more,
see (26)), then ρ̄ is actually nonlinearly unstable in the sense of the Proposition below:

Proposition 5. Let V, W satisfy Assumptions 1 and 5. Let ρ̄ be a compactly supported
steady-state of (24). If supp ρ̄ has an accumulation point x0 such that:

∃C > 0, ∃η > 0, ∀γ ∈ (0, η),
1

γ

∫ x0+γ

x0

ρ̄(y) dy ≥ C (26)

(or the same estimate with −η < ε < 0), then it is locally unstable: For any ε > 0, there
exists ρε ∈ M1(R), such that W1(ρ

ε, ρ̄) ≤ ε and

E(ρε) < E(ρ̄), (27)

where E is the energy defined by (9).
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Remark 4. As in the case of regular potentials, there may exist L1 steady-states of (24):
For example, if V (x) := −x2

2
, W (x) := |x|,

ρ̄ :=
1

2
I[−1,1] (28)

is a steady-state of (24). Prop. 5 shows that such steady-states are unstable.

Eq. (25) is not linearisable around steady-states (in L1) in general. As a consequence,
in order to define the nonlinear instability of steady-states like (28), we use the energy E

(which is a Lyapounov functional of (1)), see (27).

Proof of Prop. 5

Step 1 : We define a sequence of measures (ρε) approaching ρ̄.

We assume w.l.o.g. that x0 is an accumulation point of supp ρ̄ ∩ [x0,∞) such that
(26) is satisfied. We define for ε > 0 such that x0 + ε ∈ supp ρ̄:

z0 := inf {z ∈ (0, 1); ū(z) ≥ x0} ,

zε
1 := sup {z ∈ (0, 1); ū(z) ≤ x0 + ε} ,

Zε := [z0, z
ε
1].

Since x0, x0 + ε ∈ supp ρ̄ and ρ̄ is a steady-state of (24),
∫

{y/∈[x0,x0+ε]}

W ′(x0 − y)ρ̄(y) dy + V ′(x0) = −

∫

y∈(x0,x0+ε]

W ′(x0 − y)ρ̄(y) dy,

∫

{y/∈[x0,x0+ε]}

W ′(x0 + ε − y)ρ̄(y) dy + V ′(x0 + ε) = −

∫

y∈[x0,x0+ε)

W ′(x0 + ε − y)ρ̄(y) dy.

If ε > 0 is small enough, then, sign(W ′(x)) = sign(x) for x ∈ [−ε, ε]. Then,
∫

{y/∈[x0,x0+ε]}

W ′(x0−y)ρ̄(y) dy+V ′(x0) > 0 >

∫

{y/∈[x0,x0+ε]}

W ′(x0+ε−y)ρ̄(y) dy+V ′(x0+ε).

On [x0, x0 + ε],

F (x) =

∫

{y/∈[x0,x0+ε]}

W ′(x − y)ρ̄(y) dy + V ′(x)

= W ′(0+)

∫

(−∞,x0)

ρ̄(y) dy − W ′(0+)

∫

(x0,+∞)

ρ̄(y) dy

+

∫

{y/∈[x0,x0+ε]}

W̃ ′(x − y)ρ̄(y) dy + V ′(x),
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where W̃ is defined in (23), and F is then continuous on [x0, x0 + ε]. There exists then
x̄ε ∈ [x0, x0 + ε] such that

∫

{y/∈[x0,x0+ε]}

W ′(x̄ε − y)ρ̄(y) dy + V ′(x̄ε) = 0. (29)

We define the following perturbation uε of ū:

uε(z) :=

∣

∣

∣

∣

ū(z) on (Zε)c,

x̄ε on Zε,

and we write vε := uε − ū. uε is then the pseudo-inverse of the measure:

ρε = ρ̄|[x0,x0+ε]c +

(
∫

[x0,x0+ε]

ρ̄(x) dx

)

δx̄ε .

Notice that W1(ρ
ε, ρ̄) ≤ ε.

Step 2: We estimate E(ρε) − E(ρ̄).

We use the symmetry of W and the fact that uε = ū on (Zε)c to compute:

E(ρε) − E(ρ̄) =
1

2

∫ ∫

(Zε)2
W (uε(ξ) − uε(z)) dξ dz −

1

2

∫ ∫

(Zε)2
W (ū(ξ) − ū(z)) dξ dz

+

∫

Zε

∫

(Zε)c

W (uε(z) − uε(ξ)) dξ dz −

∫

Zε

∫

(Zε)c

W (ū(z) − ū(ξ)) dξ dz

+

∫

Zε

V (uε(z)) dz −

∫

Zε

V (ū(z)) dz.

Since uε is constant on Zε, the first term can be computed. We estimate the second
term using the expansion W (x) = W (0) + W ′(0)|x| + W̃ ′(0)x + O(x2) (thanks to As-
sumption 5), where we notice that W̃ ′(0) = 0 thanks to Assumption 1. We use Taylor
expansions on the fourth and sixth terms to get:
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E(ρε) − E(ρ̄) = W (0)
(

|Zε|2 − |Zε|2
)

−
W ′(0+) + O(ε)

2

∫ ∫

(Zε)2
|ū(ξ) − ū(z)| dξ dz

+

∫

Zε

{[
∫

(Zε)c

W (uε(z) − uε(ξ)) dξ

]

+ V (uε(z))

}

dz

−

∫

Zε

{[
∫

(Zε)c

W (x̄ε − ū(ξ)) dξ

]

+ V (x̄ε)

}

dz

+

∫

Zε

{[
∫

(Zε)c

W ′(x̄ε − ū(ξ)) dξ

]

+ V ′(x̄ε)

}

(x̄ε − ū(z)) dz

−
1

2

∫

Zε

{[
∫

(Zε)c

W ′′(θ1(ξ, z) − ū(ξ))) dξ

]

+ V ′′(θ2(z))

}

(x̄ε − ū(z))2 dz,

where θ1(ξ, z), θ2(z) ∈ [(ū(z), x̄ε)]. Since uε(z) = x̄ε on Zε, the third and fourth line
cancel. The fifth line is equal to 0 thanks to the definition of x̄ε (see (29)). Then,

E(ρε) − E(ρ̄) = −
W ′(0+) + O(ε)

2

∫ ∫

(Zε)2
|ū(ξ) − ūε(z)| dξ dz

−
1

2

∫

Zε

{[
∫

(Zε)c

W ′′(θ1(ξ, z) − ū(ξ)) dξ

]

+ V ′′(θ2(z))

}

(x̄ε − ū(z))2 dz.

Since ρ̄ is compactly supported, W ′′, V ′′ are continuous, and θ1(ξ, z), θ2(z) ∈ [(ū(z), x̄ε)],
we have uniform estimates:

sup
{ξ∈(Zε)c, z∈Zε}

|W ′′(θ1(ξ, z) − ū(ξ)) − W ′′(x̄ε − ū(ξ))| = oε(1),

sup
{z∈Zε}

|V ′′(θ2(z)) − V ′′(x̄ε)| = oε(1).
(30)

Then, if we define ωε :=
∫

(Zε)c W ′′(ū(ξ) − x̄ε) dξ + V ′′(x̄ε), we get:

E(ρε) − E(ρ̄) = −
W ′(0+) + O(ε)

2

∫ ∫

(Zε)2
|ū(ξ) − ūε(z)| dξ dz

+
1

2
(−ωε + oε(1)) ‖vε‖2

L2 . (31)

In order to prove the proposition, we shall show that the first term of (31) is strictly
negative and dominates the second term (which is strictly positive). Then, E(ρε)−E(ρ̄) <

17



0 if ε > 0 is small enough. However, the two terms of (31) are of the same order in ε, we
shall thus need to estimate precisely the second term.

Step 3: We estimate ‖vε‖2
L2 .

Since ū is a steady-state, for any z ∈ Zε,

0 =

∫

{ξ; ū(ξ) 6=ū(z)}

W ′(ū(ξ) − ū(z)) dξ − V ′(ū(z))

=

[
∫

(Zε)c

W ′(ū(ξ) − ū(z)) dξ − V ′(ū(z))

]

+

∫

{ξ∈Zε; ū(ξ) 6=ū(z)}

W ′(ū(ξ) − ū(z)) dξ.

We estimate the first term through Taylor expansions of x 7→ W ′(ū(ξ) − x), x 7→ V ′(x)
around x̄ε (the rest term is estimated as in (30)), and the second term using W ′(x) =
W ′(0+)sign(x) + W̃ ′(x) = W ′(0+)sign(x) + W̃ ′′(θ)x and sign(0) = 0 to get:

0 =

[
∫

(Zε)c

W ′(ū(ξ) − x̄ε) dξ − V ′(x̄ε)

]

+

[
∫

(Zε)c

W ′′(ū(ξ) − x̄ε) dξ + V ′′(x̄ε)

]

(x̄ε − ū(z)) + oε(1)(x̄ε − ū(z))

+W ′(0+)

∫

Zε

sign(ū(ξ) − ū(z)) dξ +

∫

Zε

W ′′(θ)(ū(ξ) − ū(z)) dξ

= 0 + ωε vε(z) + W ′(0+)

∫

Zε

sign(ū(ξ) − ū(z)) dξ

+O(1)

∫

Zε

|ū(ξ) − ū(z)| dξ + oε(1)vε(z),

thanks to the definition of x̄ε. Then,

‖vε‖2
L2 =

∫

Zε

vε(z)2 dz

=

∫

Zε

[

W ′(0+)

−ωε

∫ zε
1

z0

sign(ū(ξ) − ū(z)) dξ

]

vε(z) dz

+
1

−ωε
O(1)‖vε‖∞

∫ ∫

(Zε)2
|ū(ξ) − ū(z)| dξ dz +

oε(1)

ωε
‖vε‖2

L2 . (32)

Let z ∈ [0, 1], and ζ := inf{ξ ∈ [z0, z
ε
1]; ū(ξ) = ū(z)}, ζ ′ := sup{ξ ∈ [z0, z

ε
1]; ū(ξ) =

ū(z)}. Then,
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∫ zε
1

z0

sign(ū(ξ) − ū(z)) dξ =

∫

[z0,zε
1]\(ζ,ζ′)

sign(ξ − z) dξ +

∫ ζ′

ζ

0 dξ

=

∫ zε
1

z0

sign(ξ − z) dξ −

∫ ζ′

ζ

sign(ξ − z) dξ

= [(zε
1 − z) − (z − z0)] − [(ζ ′ − z) − (z − ζ)]

= −2

[

z −
z0 + zε

1

2

]

+ 2

[

z −
ζ + ζ ′

2

]

.

Then, since ū is constant on (ζ, ζ ′), so is z 7→ vε(z) = x̄ε − ū(z) = vε
(

ζ+ζ′

2

)

, and

∫ ζ′

ζ

[
∫ zε

1

z0

sign(ū(ξ) − ū(z)) dξ

]

vε(z) dz

= −2

∫ ζ′

ζ

[

z −
z0 + zε

1

2

]

vε(z) dz + 2vε

(

ζ + ζ ′

2

)
∫ ζ′

ζ

[

z −
ζ + ζ ′

2

]

dz

= −2

∫ ζ′

ζ

[

z −
z0 + zε

1

2

]

vε(z) dz. (33)

We consider

Ω :=
{

(ζ, ζ ′) ⊂ Zε; ū is constant on (ζ, ζ ′),

(ζ, ζ ′) being the maximal interval such that this is true
}

.

Since each element of Ω contains a rational number, Ω is at most countable, and then,
thanks to (33),
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∫

Zε

[
∫ zε

1

z0

sign(ū(ξ) − ū(z)) dξ

]

vε(z) dz

=

∫

Zε\(∪(ζ,ζ′)∈Ω(ζ,ζ′))

[
∫ zε

1

z0

sign(ū(ξ) − ū(z)) dξ

]

vε(z) dz

+
∑

(ζ,ζ′)∈Ω

∫ ζ′

ζ

[
∫ zε

1

z0

sign(ū(ξ) − ū(z)) dξ

]

vε(z) dz

=

∫

Zε\(∪(ζ,ζ′)∈Ω(ζ,ζ′))

[
∫ zε

1

z0

sign(ξ − z) dξ

]

vε(z) dz

+
∑

(ζ,ζ′)∈Ω

−2

∫ ζ′

ζ

[

z −
z0 + zε

1

2

]

vε(z) dz

= −2

∫

Zε

[

z −
z0 + zε

1

2

]

vε(z) dz. (34)

Thanks to (34), (32) becomes:

(

1 −
oε(1)

ωε

)

‖vε‖2
L2 = −2

W ′(0+)

−ωε

∫

Zε

(

z −
z0 + zε

1

2

)

vε(z) dz

+
1

−ωε
O(ε)

∫ ∫

(Zε)2
|ū(ξ) − ū(z)| dξ dz. (35)

We notice that:

∫ ∫

(Zε)2
|ū(ξ) − ū(z)| dξ dz = 2

∫ ∫

(Zε)2, ξ≥z

[ū(ξ) − ū(z)] dξ dz

= 2

∫

Zε

[(z − z0)ū(z) − (zε
1 − z)ū(z)] dz

= 4

∫

Zε

(

z −
z0 + zε

1

2

)

ū(z) dz,

and since
∫

Zε(z −
z0+zε

1

2
) dz = 0, we have:

∫ ∫

(Zε)2
|ū(ξ) − ū(z)| dξ dz = 4

∫

Zε

(

z −
z0 + zε

1

2

)

(ū(z) − x̄ε) dz

= −4

∫

Zε

(

z −
z0 + zε

1

2

)

vε(z) dz. (36)
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Finally, thanks to (36), (35) becomes:

‖vε‖2
L2 =

W ′(0+) + O(ε)

−2ωε + oε(1)

∫ ∫

(Zε)2
|ū(ξ) − ū(z)| dξ dz. (37)

Step 4:We estimate ωε.

Since x0, x0 + ε ∈ supp ρ̄ = ū([0, 1]) and ū is a steady-state of (25),

0 =

(
∫

{ξ∈[0,1]; ū(ξ) 6=x0+ε}

W ′(ū(ξ) − (x0 + ε)) dξ − V ′(x0 + ε)

)

−

(
∫

{ξ∈[0,1]; ū(ξ) 6=x0}

W ′(ū(ξ) − x0) dξ − V ′(x0)

)

=

(
∫ 1

0

(

W ′(0+)sign(ū(ξ) − (x0 + ε)) + W̃ ′(ū(ξ) − (x0 + ε))
)

dξ − V ′(x0 + ε)

)

−

(
∫ 1

0

(

W ′(0+)sign(ū(ξ) − x0) + W̃ ′(ū(ξ) − x0)
)

dξ − V ′(x0)

)

=

(

W ′(0+)
(

ρ̄
(

(x0 + ε, +∞)
)

− ρ̄
(

(−∞, x0 + ε)
)

)

+

∫ 1

0

W̃ ′(ū(ξ) − (x0 + ε)) dξ − V ′(x0 + ε)

)

−

(

W ′(0+)
(

ρ̄
(

(x0, +∞)
)

− ρ̄
(

(−∞, x0)
)

)

+

∫ 1

0

W̃ ′(ū(ξ) − x0) dξ − V ′(x0)

)

= −W ′(0+)
[

ρ̄({x0, x0 + ε}) + 2ρ̄
(

(x0, x0 + ε)
)]

−

[
∫ 1

0

W̃ ′′(ū(ξ) − x̄ε) dξ + V ′′(x̄ε)

]

ε + o(ε),

where we applied a Taylor expansion to the regular terms x 7→ W̃ ′(ū(ξ)−x) and x 7→ V ′(x)
at point x = x̄ε (the rest term is estimated as in (30)). We notice that

∫ 1

0

W̃ ′′(ū(ξ) − x̄ε) dξ + V ′′(x̄ε) = ωε +

∫

Zε

W̃ ′′(ū(ξ) − x̄ε) dξ

= ωε + O(|Zε|),

and then,

−ε(ωε + O(|Zε|)) =
[

ρ̄({x0, x0 + ε}) + 2ρ̄
(

(x0, x0 + ε)
)]

+ o(ε). (38)
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Since |ωε| ≤ ‖W ′′‖L∞(supp ρ̄−supp ρ̄) + ‖V ′′‖L∞(supp ρ̄), we have in particular that |Zε| is
of order ε:

|Zε| = ρ̄([x0, x0 + ε]) = O(ε), (39)

and then, using again (38), we get that for ε small enough,

−ωε =
W ′(0+)

ε

[

ρ̄({x0, x0 + ε}) + 2ρ̄
(

(x0, x0 + ε)
)]

+ oε(1)

≥ W ′(0+)
1

ε
ρ̄
(

[x0, x0 + ε]
)

+ oε(1).

We assumed (see (26)) that 1
ε

∫

[x0,x0+ε]
ρ̄(x) dx > C > 0 for ε small enough. Then, for

ε > 0 small enough,
−ωε ≥ Cst > 0. (40)

Step 5:We conclude.

Thanks to (37), (31) becomes:

E(ρε) − E(ρ̄) = −
W ′(0+) + O(ε)

2

∫ ∫

(Zε)2
|ū(ξ) − ūε(z)| dξ dz

+
1

2
(−ωε + oε(1))

W ′(0+) + O(ε)

−2ωε + oε(1)

∫ ∫

(Zε)2
|ū(ξ) − ū(z)| dξ dz

= −

[

W ′(0+)

4
+ oε(1)

]
∫ ∫

(Zε)2
|ū(ξ) − ū(z)| dξ dz,

thanks to (40). Finally, we assumed that x0 is an accumulation point of supp ρ0∩ [x0,∞),

ε can thus be chosen small enough for oε(1) ≤ W ′(0+)
8

to hold, and then,

E(ρε) − E(ρ̄) ≤ −
W ′(0+)

8

∫ ∫

(Zε)2
|ū(ξ) − ū(z)| dξ dz. (41)

Since x0 is an accumulation point of supp ρ̄∩ [x0, x0+ε] = ū(Zε), ū cannot be constant
on Zε, and then:

E(ρε) − E(ρ̄) < 0. (42)

�

22



3.2 potentials having a repulsive singularity at x = 0.

In this section, we shall consider potentials having a repulsive singularity at x = 0:
Assumption 6

V ∈ C2(R), W ∈ C0(R),

and there exists W ′(0+) < 0 such that

(x 7→ W̃ (x) := W (x) − W ′(0+)|x|) ∈ C2(R).

For such potentials, we don’t know any existence theory, we thus prove in Prop. 6
that if Assumptions 1, 2, 3 and 6 are satisfied, and if ρ0 ∈ W 2,∞(R), then there exists a
unique solution ρ ∈ L∞(R+ × R) ∩ Liploc(R+,W 2,∞(R)).

Proposition 6. Let ρ0, V, W satisfy Assumptions 1, 2, 3 and 6. Assume moreover that
ρ0 ∈ W 2,∞(R). Then there exists a unique solution

ρ ∈ L∞(R+ × R) ∩ Liploc(R+,W 2,∞(R))

to (1).
If ρ0 ∈ WN,∞(R) and V ∈ WN+2,∞(R) (for N ∈ N), then ρ ∈ Liploc(R+,WN,∞(R))

Remark 5. The uniform bound ρ ∈ L∞(R+ × R) ensures that the solution does not
converge to any singular measure. The behavior of the solution in this case is then very
different from the two other cases (Assumptions 4 or 5) studied in this paper, where the
solution generically converges to a sum of Dirac masses. For a short investigation on the
transition from the situation of regular kernels to the situation where W has a singularity
at x = 0 and is locally repulsive, see [13].

Proof of Prop. 6

Step 1: We show some a priori estimates on ρ, using maximum principle arguments:

We consider first x ∈ R such that ρ(t, x) = ‖ρ(t, ·)‖∞. Then ∂xρ(t, x) = 0, and

∂tρ(t, x) = ∂xρ(t, x)(W ′ ∗ ρ)(t, x) + ρ(t, x)
(

(W̃ ′′ ∗ ρ)(t, x) + V ′′(x)
)

−2W ′(0+)ρ(t, x)2

=
(

(W̃ ′′ ∗ ρ)(t, x) + V ′′(x) − 2W ′(0+)ρ(t, x)
)

ρ(t, x)

≤
(

‖W̃ ′′‖L∞ + ‖V ′′‖∞ − 2W ′(0+)‖ρ(t, ·)‖∞

)

‖ρ(t, ·)‖∞.

Then,

‖ρ(t, ·)‖∞ ≤ max

(

‖ρ0‖∞,
1

2|W ′(0+)|

(

‖W̃ ′′‖L∞ + ‖V ′′‖∞

)

)

. (43)
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Let now N ∈ N and x ∈ R be such that |∂N
x ρ(t, x)| = ‖∂N

x ρ(t, ·)‖∞. W.l.o.g.,∂N
x ρ(t, x) ≥

0, then,

∂t∂
N
x ρ(t, x) = ∂N+1

x (ρ(W ′ ∗ ρ + V ′)) (t, x)

=
N+1
∑

n=0

(

N

n

)

∂n
xρ(t, x)∂N+1−n

x (W ′ ∗ ρ + V ′)(t, x)

=
N
∑

n=1

(

N

n

)

∂n
xρ(t, x)(W̃ ′′ ∗ ∂N−n

x ρ − 2W ′(0+)∂N−n
x ρ + ∂N+2−n

x V )(t, x)

+∂x(∂
N
x ρ)(t, x)(W ′ ∗ ρ + V ′)(t, x)

+ρ(t, x)
[

− 2W ′(0+)∂N
x ρ(t, x) + W̃ ′′ ∗ ∂N

x ρ + ∂N+2
x V

]

≤
N
∑

n=1

(

N

n

)

[(

‖W̃ ′′‖L1([−2C,2C]) + 2W ′(0+)
)

‖∂n
xρ(t, ·)‖∞‖∂N−n

x ρ(t, ·)‖∞

+‖ρ(t, ·)‖W N,∞‖V ‖W N+2,∞([−C,C])

]

+0 + ‖ρ(t, ·)‖∞

[

‖W̃ ′′‖L1([−2C,2C])‖ρ(t, ·)‖W N,∞ + ‖V ‖W N+2,∞([−C,C])

]

≤ C (1 + ‖ρ(t, ·)‖W N−1,∞) ‖ρ(t, ·)‖W N,∞ ,

where we used the assumption on x to get ∂x(∂
N
x ρ)(t, x) = 0, the assumption ∂N

x ρ(t, x) ≥

0 to get ρ(t, x)
[

− 2W ′(0+)∂N
x ρ(t, x)

]

≤ 0, and the estimate of Prop. 1 to get that

supp ρ(t, ·) ⊂ [−C,C] (uniformly in time).
Since this inequality holds for any N ≥ 1, and ‖ρ(t, ·)‖L∞ < Cst by (43), an induction

argument shows that if ρ0 ∈ WN,∞, there exists C = C(N, ‖ρ0‖W N,∞) such that

‖ρ(t, ·)‖W N,∞ ≤ ‖ρ0‖W N,∞eCt. (44)

Step 2: We build the solution using the above a priori estimates:

In order to prove the existence of a solution ρ ∈ L∞(R+ × R) ∩ Liploc(R+,W 2,∞(R))
to (1), we use the inductive scheme: ρ0(t, x) := ρ0(x), and

{

ρn+1(0, ·) = ρ0,

∂tρn+1(t, x) = ∂x (ρn+1W
′ ∗ ρn + V ′) .

Thanks to estimates similar to the a priori estimates done in the first part of this
proof, one gets the following (uniform in n) estimates:

‖ρn+1(t, ·)‖∞ ≤ ‖ρ0‖∞eC t,
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and ther exist C, T > 0 such that ∀t ≤ T ,

‖∂xρn+1(t, ·)‖∞ ≤ C‖∂xρ
0‖∞, ‖∂tρn+1(t, ·)‖∞ ≤ C

(

‖∂xρ
0‖∞ + ‖ρ0‖∞

)

.

Those estimates show that (ρn) converges in L∞([0, T ]×R) up to an extraction. A further
study of (ρn+1−ρn) shows that the whole sequence converges to the unique strong solution
ρ of (1).

Finally, estimate (44) shows the propagation of regularity anounced in Prop. 6.

�
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