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Abstract

In this paper we estimate the error of upwind first order finite volume
schemes applied to scalar conservation laws. As a first step we consider stan-
dard upwind and flux finite volume scheme discretization of a linear equation
with space variable coefficients in conservation form. We prove that, in spite of
their lack of consistency, both schemes lead to a first order error estimate. As a
final step, we prove similar estimate for the nonlinear case. Our proofs rely on
the notion of geometric corrector, introduced in our previous paper [2] in the
context of constant coefficient linear advection equations.
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1. Introduction

As discussed in monograph of Eymard et al [12], Godlewski and Raviart [16],
Kröner [18] and Leveque [20], Finite Volume Methods are well-adapted to the
discretization of conservation laws for which solutions undergoes discontinuities.
Moreover the theoretical study of convergence of these methods for nonlinear
transport equations has been addressed in a large amount of papers, most of
them based on the Kruzkov functional method (see for instance [19], [7], [8],
[30], [5], [33], [32], [1], [26], [25], [10], [11]).

However, even for the scalar linear advection equation, the theoretical proof
of an optimal a priori error estimates is still a challenging task. One of the main
difficulties lies in the fact that the non uniformity of the mesh brings up an
apparent loss of consistency in the finite differences sense. This loss of consis-
tency is an artifact of the standard convergence proof ; Lax-Richtmyer theorem
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is not suitable. Actually, consistency is not necessary, the scheme maintains
the accuracy and the global error behaves better than the local error would
indicate. This property of enhancement of the truncation error is called supra-
convergence and this phenomenon, discovered by Tikhonov and Samarskij [31],
was widely analyzed in various cases by Manteuffel and his co-authors in [22],
[23], [17], [24].

In a series of previous papers (Bouche et al [2], [3]) where we considered
finite volume methods applied to the linear advection equation with a constant
velocity, we introduced what we called the geometric corrector which is a se-
quence associated with every finite volume mesh. We proved that the error
estimate for the scheme behaves like the norm of this corrector when the mesh
size goes to zero and actually established that this norm is indeed bounded by
the mesh size in several cases including the one where an arbitrary coarse mesh
of triangles is uniformly refined.

Computing numerically this corrector (see Pascal [27]) allows us to state that
this result might be extended to more general cases like the one with independent
refined meshes. However in particular cases, we observe that the estimation of
the norm of the geometric corrector (as well as the order of convergence) depends
on the relative position of the advection vector with respect to the boundary.
For instance, in case of a convection direction parallel to one side of the domain,
the l∞ norm is only O(

√
h) while the l1 norm is O(h) where h measures the

mesh size. This behavior, similar to the loss of accuracy proved in Peterson [28],
is widely analyzed in Bouche et al [4].

In the present paper, we extend the notion of geometric corrector to the non
constant velocity case in one dimensional space. In section 3 and 4, we develop
this concept, after having introduced the notations, and apply it to two types of
explicit finite volume method: the linear standard upwind finite volume method
and the flux finite volume method. We are able to prove that the lp norm of
the error behaves like the mesh size.

In section 5, we study the flux finite volume method for a nonlinear conser-
vation law. With a simple adaptation of the geometric corrector to this case,
we can prove that, as long as the solution remains smooth, the scheme is first
order accurate. For technical reasons, in the case of the l1 norm, the local quasi-
uniformity condition on the mesh has to be replaced by a less general global
quasi-uniformity condition.

2. The continuous problem and notations

2.1. The continuous problem

Let [α, β] be an interval of R. Let a be a non zero function defined on [α, β]
and assumed to be at least in C1([α, β]). Given a function ϕ defined on [α, β] and
two functions ψα and ψβ defined on [0, T ], we consider the initial and boundary
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value problem for the linear convection equation in conservation form:



















∂u(x, t)

∂t
+
∂(a(x)u(x, t))

∂x
= 0 , (x, t) ∈]α, β[×]0, T [ ,

u(x, 0) = ϕ(x) , x ∈]α, β[ ,
a(α)+ · (u(α, t) − ψα(t)) = 0 , t ∈]0, T [ ,
a(β)− · (u(β, t) − ψβ(t)) = 0 , t ∈]0, T [ ,

(1)

where z+ = |z|+z

2 (respectively z− = |z|−z

2 ) is the positive (respectively nega-
tive) part of z = z+ − z−. We assume that the data ϕ, ψα and ψβ are smooth
functions which satisfy the so called compatibility conditions (CCs) at t = 0 so
that (1) has a unique smooth solution. These CCs are classical and can be found
e.g. in Chazarin and Piriou [6]. For example the first CC, which corresponds
to C0 smoothness of the solution, reads

a+(α) · (ϕ(0) − ψα(0)) = 0 , a−(β) · (ϕ(0) − ψβ(0)) = 0 .

Let us introduce the flux function

f(x, t) = a(x)u(x, t)

and let us observe that it also satisfies a convection equation which, unlike the
previous one, is not written in a conservative form and reads



















∂f(x, t)

∂t
+ a(x)

∂f(x, t)

∂x
= 0 , (x, t) ∈]α, β[×]0, T ] ,

f(x, 0) = a(x)ϕ(x) , x ∈]α, β[ ,
f(α, t) = a(α)ψα(t) , if a(α) > 0
f(β, t) = a(β)ψβ(t) , if a(β) < 0 .

(2)

2.2. Notations

xx jx j+1/2

x j∆α β

x xxJ1 j−1/2 J+1/2
x1/2

Figure 1: Discretization of the domain [α, β]

Let T = {Kj : j = 1, . . . , J} be a partition of the domain ]α, β[ in volumes
Kj =]xj− 1

2
, xj+ 1

2
[ as presented in Figure 1. The centroid of Kj is given by

xj = (xj− 1
2

+ xj+ 1
2
)/2 and its measure by |Kj| = ∆xj = xj+ 1

2
− xj− 1

2
. Since

we are interested in convergence results, we consider families of partitions T h

indexed by the real number h = max{∆xj ,Kj ∈ T h}, the size of the mesh. We
assume that there exists h0 > 0 and a positive constant κ such that for every
h < h0 we have the following local quasi-uniformity relation

1

κ
∆xj−1 ≤ ∆xj ≤ κ∆xj−1 , ∀j = 1, . . . , J . (3)
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We shall consider sequences ξ = (ξj)
J
j=1 in R

J and we shall estimate their
norm induced by ℓp, readily ||ξ||∞ = max1≤j≤J |ξj |, and for p > 1, ||ξ||pp =
∑J

j=1 |Kj ||ξj |p. The value and the sign of the function a at the centroid xj and
at the interface xj+ 1

2
are denoted by

aj = a(xj) , aj+ 1
2

= a(xj+ 1
2
) , σj = sign(aj) , σj+ 1

2
= sign(aj+ 1

2
) .

Finally concerning the time discretization, we consider an increasing sequence
t0 = 0 < t1 < . . . < tn < . . . ≤ T and set ∆tn = tn+1 − tn.

3. A linear standard upwind finite volume method

The underlying philosophy of the finite volume scheme is to approximate on
each control volume Kj in T h the mean value of the exact solution

un
j ≈ 1

∆xj

∫ x
j+ 1

2

x
j− 1

2

u(x, tn) dx , (4)

by taking into account the direction where the information comes from. For
explicit upwind scheme, the sequence un = (un

j )J
j=1 satisfies for j = 1 to J

un+1
j − un

j

∆tn
+

Φj+ 1
2
(un) − Φj− 1

2
(un)

∆xj

= 0 (5)

where the numerical flux Φj+ 1
2
(un) approximates f(xj+ 1

2
, tn). A first standard

way consists in evaluating the function a at the point xj+ 1
2
, so that the numerical

flux reads as follows for j = 0 to J

Φj+ 1
2
(un) =

aj+ 1
2
(un

j + un
j+1)

2
− σj+ 1

2

aj+ 1
2
(un

j+1 − un
j )

2

= a+
j+ 1

2

un
j − a−

j+ 1
2

un
j+1

(6)

where by convention un
0 = ψα(tn) and un

J+1 = ψβ(tn). Our goal is now to
establish the following result.

Theorem 1. The explicit linear standard upwind finite volume scheme (5)-(6)
applied to the system (1) is first order accurate.

3.1. Stability

The classical way to check if the goal is achieved is to evaluate the truncation
error which consists in replacing un

j in the system (5) by the the value u(xj , tn)
of the exact solution at the centroid of the control volumes. Let us compute for
j = 1 to J

ǫnj =
u(xj , tn+1) − u(xj , tn)

∆tn
+

1

∆xj

(

Φj+ 1
2
(Un) − Φj− 1

2
(Un)

)

(7)

4



where Un = (u(xj , tn))J
j=1. Then one gets that the global error sequence de-

noted by en = (en
j )J

j=1 with en
j = un

j − u(xj , tn) satisfies for j = 1 to J

en+1
j = (Lnen)j − ∆tnǫ

n
j , (8)

where the operator Ln acts on sequences ξ = (ξj)
J
j=1 and is defined by

(Lnξ)j = ξj −
∆tn
∆xj

(

−a−
j+ 1

2

ξj+1 + (a+
j+ 1

2

+ a−
j− 1

2

)ξj − a+
j− 1

2

ξj−1

)

. (9)

In classical finite differences theory, one transfers information on the smallness
of the truncation error ǫnj to the error en

j via a stability property of the scheme.
It amounts here to show that the norm of Ln is not greater than 1 + c∆tn (a
difference with constant a), once a C.F.L. number has been introduced as a
limitation on the time step ∆tn. More precisely, we have the classical result

Proposition 1. Under the C.F.L. condition

(a+
j+ 1

2

+ a−
j− 1

2

)
∆tn
∆xj

≤ 1 for j = 1, . . . , J (10)

the operator Ln satisfies for every p ∈ [1,+∞] :

||Lnξ||p ≤ (1 + ∆tn||a′||∞)||ξ||p . (11)

Proof. First let us prove the inequality for p = ∞. For 2 ≤ j ≤ J − 1,

(Lnξ)j =

(

1 − ∆tn
∆xj

(a+
j+ 1

2

+ a−
j− 1

2

)

)

ξj +
∆tn
∆xj

a−
j+ 1

2

ξj+1 +
∆tn
∆xj

a+
j− 1

2

ξj−1 ,

where under the C.F.L. condition, all the terms of the r.h.s are positive. We
can estimate

|(Lnξ)j | ≤
(

1 +
∆tn
∆xj

(aj− 1
2
− aj+ 1

2
)

)

||ξ||∞

≤ (1 − ∆tna
′(θj)) ||ξ||∞ for some θj ∈]xj− 1

2
, xj+ 1

2
[ .

For j = 1 (the case j = J is identical), since in a similar way

|(Lnξ)1| ≤
(

1 +
∆tn
∆x1

(a 1
2
− a 3

2
)

)

||ξ||∞ − ∆tn
∆x1

a+
1
2

||ξ||∞

≤ (1 − ∆tna
′(θ1)) ||ξ||∞ for some θ1 ∈]x 1

2
, x 3

2
[

we can infer the estimate (11) for p = ∞.
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For p = 1, under the C.F.L. condition, the estimation comes from

J
∑

j=1

∆xj |(Lnξ)j | ≤
J
∑

j=1

∆xj |ξj | − ∆tn





J
∑

j=1

(a+
j+ 1

2

+ a−
j− 1

2

)|ξj |

−
J−1
∑

j=1

a−
j+ 1

2

|ξj+1| −
J
∑

j=2

a+
j− 1

2

|ξj−1|





≤
J
∑

j=1

∆xj |ξj | − ∆tn

(

a−1
2

|ξ1| + a+
J+ 1

2

|ξJ |
)

≤
J
∑

j=1

∆xj |ξj | .

This result, combined with (8), has the following straightforward corollary:

Corollary 1. Under the C.F.L. condition (10) and for every p ∈ [1,+∞] we
have the estimate:

||en||p ≤ exp(||a′||∞ tn)

(

||e0||p +

n−1
∑

i=0

∆ti||ǫi||p
)

. (12)

3.2. On the truncation error

For the volume j, let us write the local error as ǫnj = Gn
j + In

j where Gn
j

represents the centered part of the scheme

Gn
j =

u(xj , tn+1) − u(xj , tn)

∆tn
+
f(xj+ 1

2
, tn) − f(xj− 1

2
, tn)

∆xj

=
∂u(xj , tn)

∂t
+ O(∆t) +

∂f(xj , tn)

∂x
+ O(h) = O(∆t) + O(h)

and where In
j represents the difference between the upwind part and the centered

part of the scheme (Un is the sequence u(xj , tn))

In
j =

Φj+ 1
2
(Un) − Φj− 1

2
(Un) + f(xj− 1

2
, tn) − f(xj+ 1

2
, tn)

∆xj

. (13)

An intensive use of Taylor’s expansion leads to In
j = O(1) so that ǫnj does not

converge to zero as h goes to zero: in the finite differences sense the scheme is
not consistent.

Our goal is now to construct a sequence γn = (γn
j )J

j=1 in order to correct,
in the mathematical analysis, the global error sequence en and then to prove
that under smoothness assumptions the scheme is however first order accurate.
Indeed we have the following result

Proposition 2. Assume that there exists a sequence γn = (γn
j )J

j=1 such

‖γn‖p = O(h) (14)
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and such that the corrected error sequence defined by en = (en
j )J

j=1 and

en
j = en

j + γn
j (15)

satisfies
en+1 = (Lnen) + ∆tnǫ

n with ‖ǫn‖p = O(h) (16)

then under the C.F.L. condition and if the initial error ‖e0‖p = O(h), the
explicit finite volume scheme is a first order convergent scheme i.e.

‖en‖p = O(h) ∀tn ≤ T . (17)

Proof. This is a simple consequence of the stability. The inequality

||en||p ≤ exp(||a′||∞ tn)

(

||e0||p +

n−1
∑

i=0

∆ti||ǫi||p
)

implies that the corrected error ‖en‖p is O(h). The triangular inequality and
assumption on γn finish the proof.

3.3. Introduction of a point where the error is evaluated

We now build a such sequence γn. During the proof we shall assume that
the zeros of the function a are isolated. This simplification leaves aside some
technicalities. We shall assume that h is small enough, so that the function
a is equal to zero at most once every three consecutive volumes. To limit the
number of cases, we also assume that zeros of the function a are not located at
the interface point xj+ 1

2
. From the definition (15) of en and from the link (8)

between en and ǫn, the corrected errors readily satisfy

en
j+1 = (Lnen)j + γn+1

j − (Lγn)j − ∆tnǫ
n
j . (18)

It can be put on the form (16) if we write

ǫnj =
γn+1

j − γn
j

∆tn
−Gn

j +
Zn

j

∆xj

. (19)

Therefore if one looks for γn in the form

γn
j = u(xj , tn) − wn

j , (20)

then one easily gets for j = 1 to J

Zn
j = a+

j+ 1
2

(

u(xj+ 1
2
, tn) − wn

j

)

− a−
j+ 1

2

(

u(xj+ 1
2
, tn) − wn

j+1

)

+ a−
j− 1

2

(

u(xj− 1
2
, tn) − wn

j

)

− a+
j− 1

2

(

u(xj− 1
2
, tn) − wn

j−1

) (21)

with the convention wn
0 = u(x 1

2
, tn) and wn

J+1 = u(xJ+ 1
2
, tn). We now discuss

how to choose wn
j in order to get Zn

j = O((∆xj)
2). If the function a does

not change sign and remains for instance positive on [α, β], then with wn
j =
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u(xj+ 1
2
, tn) for all j, one easily gets Zn

j = 0. Now, if a remains negative, then

with wn
j = u(xj− 1

2
, tn), one gets again Zn

j = 0. From these observations, to
take into account a change of sign of function a, let us introduce the point

zj =
1 − σj

2
xj− 1

2
+

1 + σj

2
xj+ 1

2
= xj + σj

∆xj

2
∈ [xj− 1

2
, xj+ 1

2
] (22)

and let us take wn
j = u(zj, tn) so that

γn
j = u(xj , tn) − u(zj , tn) . (23)

Let us verify in order to conclude the proof, that for a such choice, Zn
j be-

haves like ∆x2
j . Applying several Taylor’s expansions and using the local quasi-

uniformity of the mesh (3) lead, for j = 1 to J and with the convention
∆x0 = ∆xJ+1 = 0, to

Zn
j =

(

(

a+
j+ 1

2

1 − σj

2
− a−

j− 1
2

1 + σj

2

)

∆xj + a−
j+ 1

2

1 + σj+1

2
∆xj+1

−a+
j− 1

2

1 − σj−1

2
∆xj−1

)

∂u(xj , tn)

∂x
+ O((∆xj)

2) .

(24)

We first study the coefficient A ≡ a+
j+ 1

2

1−σj

2 −a−
j− 1

2

1+σj

2 in factor of ∆xj . Several

cases are to be considered:

• if σj = 1 and a−
j− 1

2

= 0 then A = 0,

• if σj = 1 and a−
j− 1

2

= −aj− 1
2
> 0 then a change of sign in ζ ∈]xj− 1

2
, xj [

and from a Taylor expansion, it follows that A ≡ aj− 1
2

= O(∆xj),

• if σj = −1 and a+
j+ 1

2

= 0 then A = 0,

• if σj = −1 and a+
j+ 1

2

= aj+ 1
2
> 0 then a changes of sign in ζ ∈]xj , xj+ 1

2
[

and from a Taylor expansion, it follows that A ≡ −aj+ 1
2

= O(∆xj),

• if σj = 0 then A ≡ a+
j+ 1

2

− a−
j− 1

2

= O(∆xj) since a(xj) = 0.

For the study of the coefficient B ≡ a−
j+ 1

2

1+σj+1

2 in factor of ∆xj+1 (a similar

argument applies to the coefficient in factor of ∆xj−1), let us observe that

• if σj+1 = −1 then B = 0

• if σj+1 = 1 and a−
j+ 1

2

= 0 then B = 0

• if σj+1 = 1 and a−
j+ 1

2

= −aj+ 1
2
> 0 then B = O(∆xj+1) since a changes

of sign

• if σj+1 = 0 and a−
j+ 1

2

= 0 then B = 0
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• if σj+1 = 0 and a−
j+ 1

2

= −aj+ 1
2
> 0 then B = O(∆xj+1) since a(xj+1) = 0.

Then for γn
j = u(xj , tn) − u(zj, tn) with zj given by (22), we proved that

Zn
j = O((∆xj)

2). This implies Theorem 1 since clearly
γ

n+1

j
−γn

j

∆tn
= O(∆xj).

3.4. Interpretation in term of geometric corrector

The above result can be understood by using the notion of geometric cor-
rector. Indeed, a Taylor expansion applied to (23) leads to

γn
j = −σj

∆xj

2

∂u(xj , tn)

∂x
+ O((∆xj)

2) , (25)

then one might consider a geometric corrector in the sense of Bouche et al [2]
given by

Γj = σj

∆xj

2
, (26)

and which satisfies to O((∆xj)
2) the following system of equations:

a+
j+ 1

2

(
∆xj

2
−Γj)−a−j− 1

2

(
∆xj

2
+Γj)+a

−
j+ 1

2

(
∆xj+1

2
+Γj+1)−a+

j− 1
2

(
∆xj−1

2
−Γj−1) = 0

(27)
where by convention

∆x0 = Γ0 = ∆xJ+1 = ΓJ+1 = 0 .

Indeed one gets with Cj equal to the left hand side of (27)

Zn
j = Cj

∂u(xj , tn)

∂x
+ O(∆xj)O(||Γ||) + O((∆xj)

2) . (28)

4. A flux finite volume method

We now consider a flux scheme (see [13]) where the sequence un = (un
j )J

j=1

is solution to the following system:

un+1
j − un

j

∆tn
+

Ψj+ 1
2
(un) − Ψj− 1

2
(un)

∆xj

= 0 for j = 1, . . . , J . (29)

If, by convention, we write un
0 = ψα(tn) and un

J+1 = ψβ(tn), the numerical flux
is given, in an equivalent way, by

Ψj+ 1
2
(un) =

aju
n
j + aj+1u

n
j+1

2
− σj+ 1

2

aj+1u
n
j+1 − aju

n
j

2

=
σj+ 1

2
+ 1

2
aju

n
j −

σj+ 1
2
− 1

2
aj+1u

n
j+1

(30)
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A simple rearrangement of the terms leads to the following expression

un+1
j − un

j

∆tn
+

1

∆xj

(

1 − σj+ 1
2

2
(ϕn

j+1 − ϕn
j ) +

1 + σj− 1
2

2
(ϕn

j − ϕn
j−1)

)

= 0 (31)

where ϕn
j = aju

n
j for j = 1 to J and ϕn

0 = a 1
2
ψα(tn) and ϕn

J+1 = aJ+ 1
2
ψβ(tn).

Let us observe that by multiplying (31) by aj, the scheme can be written in
term of the fluxes and can be interpreted as a finite volume discretization of the
convection equation (2) on the flux i.e. the sequence ϕn = (ϕn

j )J
j=1 satisfies

ϕn+1
j − ϕn

j

∆tn
+

aj

∆xj

(

Ψj+ 1
2
(ϕn) − Ψj− 1

2
(ϕn)

)

= 0 for j = 1, . . . , J (32)

where now the numerical flux for j = 0 to J is given by

Ψj+ 1
2
(ϕn) =

ϕn
j + ϕn

j+1

2
− σj+ 1

2

ϕn
j+1 − ϕn

j

2

=
σj+ 1

2
+ 1

2
ϕn

j −
σj+ 1

2
− 1

2
ϕn

j+1 .

(33)

Our goal in the forthcoming subsections is to establish the following result.

Theorem 2. The explicit flux finite volume scheme (29)-(30) applied to the
system (1) is first order accurate in the sense defined in Proposition 4 below.

4.1. Stability

Let us evaluate the truncation error by substituting the exact solution in
(32), namely by replacing ϕn

j by the exact flux function f(xj , tn) = aju(xj , tn)

for j = 1 to J . We denote Fn = (f(xj , tn))J
j=1 and we compute

ǫnj =
f(xj , tn+1) − f(xj , tn)

∆tn
+

aj

∆xj

(

Ψj+ 1
2
(Fn) − Ψj− 1

2
(Fn)

)

(34)

where by convention f(x0, tn) = a 1
2
ψα(tn) and f(xJ+1, tn) = aJ+ 1

2
ψβ(tn). Then

from (32) and (34), the global error on the flux denoted by en
j = ϕn

j − f(xj , tn)
satisfies the following formula

en+1
j = (Ln

F e
n)j − ∆tnǫ

n
j , for j = 1, . . . , J (35)

where en = (en
j )J

j=1 and where Ln
F acts on sequences ξ = (ξj)

J
j=1 such

(Ln
F ξ)j = ξj −

∆tn
∆xj

aj

(

σj+ 1
2

+ σj− 1
2

2
ξn
j −

σj+ 1
2
− 1

2
ξn
j+1 −

σj− 1
2

+ 1

2
ξn
j−1

)

.

Here again, one transfers information on the smallness of the truncation error
ǫnj to the error en

j via a stability property of the scheme. It amounts here to
show the following result:
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Proposition 3. Under the C.F.L. condition

aj

σj+ 1
2

+ σj− 1
2

2

∆tn
∆xj

≤ 1 for j = 1, . . . , J (36)

the operator Ln
F satisfies for every p ∈ [1,+∞] :

||Ln
F ξ||p ≤ (1 + (κ+ 1)∆tn||a′||∞)||ξ||p . (37)

where κ is the constant in (3).

Proof. Without loss of generality, h is taken small enough in order to get the
same assumptions as in Section 3.3. Hence σj+ 1

2
+σj− 1

2
can only be equal to 2,

−2 or 0. Now if σj+ 1
2

+ σj− 1
2

= 2 then aj ≥ 0 because a cancels at most once
in a cell and if σj+ 1

2
+ σj− 1

2
= −2 then aj ≤ 0. We then infer that

0 ≤ aj

σj+ 1
2

+ σj− 1
2

2
.

We shall first prove the inequality for p = ∞. For 2 ≤ j ≤ J − 1, one gets

|(Ln
F ξ)j | ≤

(

1 − ∆tn
∆xj

aj

σj+ 1
2

+ σj− 1
2

2

)

||ξ||∞+
∆tn
∆xj

|aj |
2 − σj+ 1

2
+ σj− 1

2

2
||ξ||∞ .

Several cases are to be considered:

• If σj+ 1
2
+σj− 1

2
= 2 then −σj+ 1

2
+σj− 1

2
= 0, aj ≥ 0 and |(Ln

F ξ)j | ≤ ||ξ||∞.

• If σj+ 1
2
+σj− 1

2
= −2 then −σj+ 1

2
+σj− 1

2
= 0, aj ≤ 0 and |(Ln

F ξ)j | ≤ ||ξ||∞.

• If σj+ 1
2

= −σj− 1
2

= −1 then |(Ln
F ξ)j | ≤ ||ξ||∞.

• If σj+ 1
2

= −σj− 1
2

= 1 then |(Ln
F ξ)j | ≤

(

1 + ∆tn

∆xj
2|aj |

)

||ξ||∞ and from

ζ ∈]xj− 1
2
, xj+ 1

2
[ zero of a, one gets |(Ln

F ξ)j | ≤ (1 + ∆tn||a′||∞)||ξ||∞.
For j = 1 (the treatment of j = J is identical), one gets

|(Ln
F ξ)1| ≤

(

1 − ∆tn
∆x1

a1

σ 3
2

+ σ 1
2

2

)

||ξ||∞ +
∆tn
∆x1

|a1|
1 − σ 3

2

2
||ξ||∞ (38)

and a similar discussion leads to |(Ln
F ξ)1| ≤

(

1 + ∆tn
||a′||∞

2

)

||ξ||∞.

Now, we consider p = 1. Under the C.F.L. condition, a simple rearrangement
gives with a0 = aJ+1 = 0 by convention

J
∑

j=1

∆xj(Ln
F ξ)j ≤

J
∑

j=1

∆xj |ξj | + ∆tn





J
∑

j=1

(|aj−1| + aj)
1 − σj− 1

2

2
|ξj |

+

J
∑

j=1

(|aj+1| − aj)
1 + σj+ 1

2

2
|ξj |





In the extra term with ∆tn in factor, let us consider the first sum, the second
one is treated in a similar way. For j = 2 to J and for σj− 1

2
= −1

11



• if aj−1 ≤ 0 then the contribution of the volume j is equal to (aj−aj−1)|ξj |
and is bounded by ||a′||∞ κ+1

2 ∆xj |ξj | thanks to a Taylor formula,

• if aj−1 ≥ 0 then the contribution is (aj+aj−1)|ξj | and is by ||a′||∞ κ+1
2 ∆xj |ξj |

thanks to a Taylor formula applied in ζ ∈]xj−1, xj− 1
2
[ zero of a.

For j = 1 and σ 1
2

= −1, if a1 ≤ 0 then the contribution is negative and if a1 ≥ 0

then it is bounded by ||a′||∞ ∆1

2 |ξ1| since there is ζ ∈]x 1
2
, x1[ where a(ζ) = 0.

This infers the estimation (37) for p = 1 and finishes the proof.

This result, combined with (35), has the following straightforward corollary.

Corollary 2. Under the C.F.L. condition (36) and for every p ∈ [1,+∞] we
have the estimate:

||en||p ≤ exp((κ+ 1)||a′||∞ tn)

(

||e0||p +
n−1
∑

i=0

∆ti||ǫi||p
)

. (39)

4.2. On the truncation error

For the volume j, let us write the local error as ǫnj = Gn
j + ajI

n
j where Gn

j

represents the centered part of the scheme

Gn
j =

f(xj , tn+1) − f(xj , tn)

∆tn
+ aj

f(xj+ 1
2
, tn) − f(xj− 1

2
, tn)

∆xj

=
∂f(xj , tn)

∂t
+ O(∆t) + a(xj)

∂f(xj , tn)

∂x
+ O(h) = O(∆t) + O(h)

and where In
j represents the difference between the upwind and the centered

part

In
j =

Ψ̃j+ 1
2
(Fn) − Ψ̃j− 1

2
(Fn) + f(xj− 1

2
, tn) − f(xj+ 1

2
, tn)

∆xj

.

Here again In
j = O(1). So like in the previous scheme, our goal is to construct

a sequence γn = (γn
j )J

j=1 in order to correct, in the mathematical analysis, the
global errors and then to prove that this finite volume variant is first order
accurate. Indeed we have the following Proposition. The proof is similar to
that of Proposition 2 except that the norm concerns the error on the fluxes.

Proposition 4. Assume that there exists a sequence γn = (γn
j )J

j=1 such

‖γn‖p = O(h) (40)

and such that the corrected error sequence defined by en = (en
j )J

j=1 and

en
j = en

j + γn
j (41)

satisfies
en+1 = (Ln

F e
n) + ∆tnǫ

n with ‖ǫn‖p = O(h) (42)

12



then under the C.F.L. condition and if the initial error ‖e0‖p = O(h), the
explicit finite volume scheme is a first order convergent scheme in the following
sense

‖(aju
n
j − aju(xj , tn))J

j=1‖p = O(h) ∀tn ≤ T . (43)

4.3. Introduction of a point where the error is estimated

The corrected errors readily satisfy

en
j+1 = (LF e

n)j + ∆tn

(

γn+1
j − γn

j

∆tn
−Gn

j + aj

Zn
j

∆xj

)

(44)

We again look for γn in the following form

γn
j = f(xj , tn) − wn

j . (45)

Then one easily gets for j = 1 to J

Zn
j =

σj+ 1
2

+ 1

2

(

f(xj+ 1
2
, tn) − wn

j

)

−
σj+ 1

2
− 1

2

(

f(xj+ 1
2
, tn) − wn

j+1

)

+
σj− 1

2
− 1

2

(

f(xj− 1
2
, tn) − wn

j

)

−
σj− 1

2
+ 1

2

(

f(xj− 1
2
, tn) − wn

j−1

)

with the convention wn
0 = f(x 1

2
, tn) and wn

J+1 = f(xJ+ 1
2
, tn). We now discuss

the choice of wn
j in order to have ajZ

n
j = O((∆xj)

2). If the function a remains
positive, then with wn

j = f(xj+ 1
2
, tn), one easily gets Zn

j = 0. Now if a is

negative, then with wn
j = f(xj− 1

2
, tn), one gets again Zn

j = 0. From these

observations, let us write with zj defined by (22)

wn
j = f(zj , tn) . (46)

Several Taylor’s expansions and the local quasi-uniformity of the mesh yield to

ajZ
n
j = aj (A∆xj +B∆xj+1 + C∆xj−1)

∂f(xj , tn)

∂x
+ O((∆xj)

2) (47)

with

A =
σj+ 1

2
+ 1

2

1 − σj

2
−
σj− 1

2
− 1

2

1 + σj

2

B =
σj+ 1

2
− 1

2

1 + σj+1

2
C = −

σj− 1
2

+ 1

2

1 − σj−1

2

For ajA, several cases are to be considered

• if σj = 0 then ajA = 0.

• if σj = 1 and σj− 1
2

= 1 then ajA = 0

• if σj = 1 and σj− 1
2

= −1 then A = 1 but a changes of sign in ]xj− 1
2
, xj [

and then ajA = O(∆xj)
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• if σj = −1 and σj+ 1
2

= −1 then ajA = 0

• if σj = −1 and σj+ 1
2

= 1 then a changes of sign in ]xj , xj+ 1
2
[ and then

ajA = O(∆xj) .

Concerning B, (a similar argument applies to C)

• if σj+1 = −1 then ajB = 0

• if σj+1 = 1 and σj+ 1
2

= 1 then ajB = 0

• if σj+1 = 1 and σj+ 1
2

= −1 then ajB = O(h) since a changes of sign

• if σj+1 = 0 and σj+ 1
2

= −1 then ajB = 0

• if σj+1 = 0 and σj+ 1
2

= 1 then ajB = O(h) since a(xj+1) = 0 .

This proves that Zn
j = O((∆xj)

2) and achieves the proof of Theorem 2.

4.4. Interpretation in term of geometric corrector

Let us observe that a Taylor expansion applied to the corrector defined
in (45) leads to

γn
j = −σj

∆xj

2

∂f(xj , tn)

∂x
+ O(h2) . (48)

Therefore, one may consider a geometric corrector given by

Γj = σj

∆xj

2
. (49)

and which satisfies to O((∆xj)
2) the system of equations

aj

(

σj+ 1
2

+ 1

2
(
∆xj

2
− Γj) −

σj− 1
2
− 1

2
(
∆xj

2
+ Γj)

+
σj+ 1

2
− 1

2
(
∆xj+1

2
+ Γj+1) −

σj− 1
2

+ 1

2
(
∆xj−1

2
− Γj−1)

)

= 0

(50)

where by convention

∆x0 = Γ0 = ∆xJ+1 = ΓJ+1 = 0 .

Indeed one gets with ajDj equal to the left hand side of (50)

ajZ
n
j = ajDj

∂f(xj , tn)

∂x
+ O(∆xj)O(||Γ||) + O((∆xj)

2) (51)
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5. A discussion about the linear case

As a first step from linear to nonlinear one dimensional equation, we have
addressed the case of a linear advection with variable coefficients in conservative
form (1). In contrast with the constant coefficient case, there are (at least) two
different ways to consider such a question. The first one (studied in Section 3),
the usual one in the classical bibliography, consists in finding the numerical flux
at the interface, x = xj+ 1

2
, by using the Riemann solver for the linear equation

∂u(x, t)

∂t
+ aj+ 1

2

∂u(x, t)

∂x
= 0

and this leads to the standard linear upwind finite volume method. The second
one (studied in Section 4), which is more in the spirit of the nonlinear case,
consists in solving the same linear equation but this time for the flux f(x, t) =
a(x)u(x, t):

∂f(x, t)

∂t
+ aj+ 1

2

∂f(x, t)

∂x
= 0 .

These two schemes give the same kind of results except in the case of sonic
points, namely points x where a(x) vanishes. In particular the error estimate
on the conservative variable un

j holds true for the second scheme in an adapted
norm, given by formula (43).
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Figure 2: Approximated solution with J = 80 at t = 0.5 obtained with the standard finite
volume scheme (left) and the flux scheme (right).

From a numerical point of view, we consider a problem with a sonic point
by taking the non constant vector a(x) = x. And we examine the following
solution of (1) on [α, β] = [−1, 1]

u(x, t) = e−10x2e−2t−t .

Let us remark that since a(−1) < 0 and a(1) > 0, we don’t need any boundary
functions like ψα or ψβ . The solution presents a sonic point at x = 0 and on
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Figure 3: The l1 norm error (left) and the l∞ norm error (right) versus h for the approximated
solution computed with the standard finite volume scheme
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Figure 4: The adapted l1 norm error (left) and the adapted l∞ norm error (right) versus h

for the approximated solution computed with the flux finite volume scheme

Figure 2 we observe that for a given J and time t the standard finite volume
solution on a non uniform grid is similar to the exact solution. On the other
hand, the flux finite volume scheme solution is far from the exact solution close
to the sonic point and the usual error estimate given by (17) does not hold good.
Nevertheless, as one can see in Figure 4, the error estimate in the adapted norm
defined in (43) for the flux scheme does likewise the usual error estimate for the
standard scheme presented in Figure 3: it behaves like a first order scheme.
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6. The nonlinear case

In this part, we prove error estimates for the Murman-Roe finite volume
scheme applied to the nonlinear scalar conservation law of the form

∂u(x, t)

∂t
+
∂f(u(x, t))

∂x
= 0 , (x, t) ∈]α, β[×]0, T [ , (52)

u(x, 0) = u0(x) , x ∈]α, β[ , (53)

u(α, t) = ψα(t) , if f ′(u(α, t)) > 0 , (54)

u(β, t) = ψβ(t) , if f ′(u(β, t)) < 0 . (55)

The data u0, ψα and ψβ are smooth functions satisfying compatibility condi-
tions. It is classical ([21]), using the method of characteristics, that this system
of equations admits a unique smooth solution on a time interval [0, T [. The
maximal time, T , is finite when two characteristics cross themselves, otherwise,
T = +∞. We shall use the following property of solutions to (52):

Proposition 5. For smooth solutions to (52), the sign of f ′(u(x, t)) is inde-
pendent of t.

Proof. The characteristic curve starting from x0 at time t0 is the solution to the

differential equation
dx

dt
(t) = f ′(x(t), t) satisfying x(t0) = x0. If f ′(u(x0, t0))

vanishes for a given (x0, t0) then this curve which goes through (x0, t0) is the
vertical straight line x(t) = x0. Hence the result.

6.1. On the finite volume method
We consider the finite volume method of the form

un+1
j − un

j

∆tn
+

Φn
j+ 1

2

(un) − Φn
j− 1

2

(un)

∆xj

= 0 for j = 1, . . . , J . (56)

The numerical flux Φn
j+ 1

2

(un) is an approximation to the average flux along the

interface x = xj+ 1
2

and takes into account the direction where the information
comes from. We will use the following formula for j = 0 to J

Φn
j+ 1

2

(un) =
f(un

j+1) + f(un
j )

2
− σn

j+ 1
2

f(un
j+1) − f(un

j )

2
(57)

where by convention un
0 = ψα(tn) and un

J+1 = ψβ(tn). In the diffusion term,

σn
j+ 1

2

= sign(sn
j+ 1

2

)

is the sign of the difference quotient defined by

sn
j+ 1

2

=







f(un
j+1) − f(un

j )

un
j+1 − un

j

if un
j+1 6= un

j

f ′(un
j ) if un

j+1 = un
j

(58)

Let us remark that solutions computed with this scheme fail to satisfy the
entropy condition in case of transonic rarefaction wave. Since we are interested
in the convergence analysis, we do not try to add any entropy fix (see for instance
De Vuyst et al [9]).
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6.2. On the nature of this flux scheme

Murman-Roe scheme (56)-(58) is a natural extension to the nonlinear case
of the flux scheme (29)-(30) in the linear case. Of course such a scheme can
not be straightforwardly extended to systems of equations since (58) involves
the division by un

j+1 − un
j . This deep subject has led in the early 1980’s to

the famous Roe’s scheme [29] in the context of Euler’s equation for perfect gas.
This scheme has been extended to arbitrary hyperbolic system of conservation
laws by Ghidaglia et al [14], [15]. One of the main features of these schemes is
that the numerical flux (57) at an interface appears to be a linear combination
of the left and right flux in the two neighboring cells. This property, named as
”flux scheme” in [13], implies in particular that the scheme behaves very well
with respect to genuine shocks (Rankine-Hugoniot type shocks).

6.3. Stability

Under the C.F.L. condition that reads
(

σn
j+ 1

2

− 1

2
sn

j+ 1
2

+
σn

j− 1
2

+ 1

2
sn

j− 1
2

)

∆tn
∆xj

≤ 1 (59)

and that ensures that the shocks with slope sj− 1
2

and sj+ 1
2

does not intersect,

the scheme defined by (56)-(58) is a T.V.D. and monotone scheme. It is a well
known result (see Kröner [18], Barth and Ohlberger [1]) that the approximating
solution is uniformly bounded by

min

{

inf
[α,β]

u0(x), inf
[0,T ]

ψα(t), inf
[0,T ]

ψβ(t)

}

≤ un+1
j

≤ max

{

sup
[α,β]

u0(x), sup
[0,T ]

ψα(t), sup
[0,T ]

ψβ(t)

}

(60)

and if ∆tn and h converge to zero such that the ratio ∆tn

h
remains bounded, then

the approximating solution uh(x, t) = un
i for t ∈]tn, tn+1] and x ∈]xi− 1

2
, xi+ 1

2
]

converges almost every where on ]α, β[×]0, T [ to the solution u of (52)-(53).

6.4. On the truncation error

A simple rearrangement using (58) leads to

un+1
j = un

j − ∆tn
∆xj

(

1 − σn
j+ 1

2

2
sj+ 1

2
(un

j+1 − un
j )

+
1 + σn

j− 1
2

2
sj− 1

2
(un

j − un
j−1)

)

.

(61)

In order to evaluate the global error, we introduce a point that takes into account
the direction where the information comes from

zj =
1 − δj

2
xj− 1

2
+

1 + δj
2

xj+ 1
2

= xj + δj
∆xj

2
∈ [xj− 1

2
, xj+ 1

2
] . (62)
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Here δj does not depend on time according to Proposition 5 and is equal to

δj = sign(f ′(u(xj , ·)) = sign(f ′(u0(xj)) .

As usual, we define the error in the finite differences sense by the difference
between the cell-centered finite volume solution un

j and the exact solution at xj

en
j = un

j − u(xj , tn) j = 0, · · · , J, ∀tn ≤ T (63)

and in order to establish an estimate, we introduce the following corrected error

en
j = un

j − u(zj, tn) = en
j + γn

j with γn
j = u(xj , tn) − u(zj, tn) . (64)

A Taylor expansion leads to

γn
j = −δj

∆xj

2

∂u(xj , tn)

∂x
+ O((∆xj)

2) . (65)

Then it is sufficient to estimate the corrected error and it allows to extend the
notion of geometric corrector in the sense defined in [2] and now given by

Γj = δj
∆xj

2
.

In order to simplify the proof and since we are interested in the convergence
property of the scheme, we assume that h is sufficiently small such that f ′(u(., t))
changes of sign at most once every three consecutive cells and such that if
f ′(u(., t)) does not change of sign on cell j − 1, j and j + 1 then

σj+ 1
2

= σj− 1
2

= δj = δj−1 = δj+1 . (66)

We now define the local truncation error ǫnj for j = 1 to J by

en+1
j = en

j − ∆tn
∆xj

(

1 − σn
j+ 1

2

2
sn

j+ 1
2

(en
j+1 − en

j )

+
1 + σn

j− 1
2

2
sn

j− 1
2

(en
j − en

j−1)

)

− ∆tnǫ
n
j

(67)

where by convention zJ+1 = β, eJ+1 = 0, z0 = α and e0 = 0. First we shall
state the following estimate on the local error:

Lemma 3.

|ǫnj | ≤ c(∆tn + ∆xj + |en
j−1| + |en

j | + |en
j+1|) . (68)

Proof. Indeed thanks to the definition of the scheme, we obtain from (67)

ǫnj =
u(zj , tn+1) − u(zj, tn)

∆tn
+

1 − σn
j+ 1

2

2
sn

j+ 1
2

u(zj+1, tn) − u(zj, tn)

∆xj

+
1 + σn

j− 1
2

2
sn

j− 1
2

u(zj , tn) − u(zj−1, tn)

∆xj

(69)
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Some rearrangements and several Taylor expansion lead to

ǫnj =
1 − σn

j+ 1
2

2
(sn

j+ 1
2

− f ′(u(zj, tn)))
u(zj+1, tn) − u(zj, tn)

∆xj

+
1 + σn

j− 1
2

2
(sn

j− 1
2

− f ′(u(zj , tn)))
u(zj , tn) − u(zj−1, tn)

∆xj

+
∂f(u(zj, tn))

∂x

(

(1 − σn
j+ 1

2

)(zj+1 − zj) + (1 + σn
j− 1

2

)(zj − zj−1)

2∆xj

− 1

)

+
∂u(zj, tn)

∂t
+
∂f(u(zj, tn))

∂x
+ O(∆tn) + O(∆xj) .

(70)

By using the local quasi-uniformity of meshes and noticing that

zj+1 − zj =
1 + δj+1

2
∆xj+1 +

1 − δj
2

∆xj (71)

one gets zj+1 − zj = O(∆xj). So in the first and second term, we have
∣

∣

∣

∣

u(zj+1, tn) − u(zj , tn)

∆xj

∣

∣

∣

∣

≤ c

∥

∥

∥

∥

∂u

∂x

∥

∥

∥

∥

∞

,

∣

∣

∣

∣

u(zj , tn) − u(zj−1, tn)

∆xj

∣

∣

∣

∣

≤ c

∥

∥

∥

∥

∂u

∂x

∥

∥

∥

∥

∞

and for some ūn
j ∈ (un

j+1, u
n
j )

sn
j+ 1

2

−f ′(u(zj , tn)) =







f ′(un
j ) − f ′(u(zj , tn)) + f ′′(ūn

j )(un
j+1 − un

j ) if un
j+1 6= un

j

f ′(un
j ) − f ′(u(zj , tn)) if un

j+1 = un
j

Therefore, we obtain the following estimates
∣

∣

∣sn
j+ 1

2

− f ′(u(zj , tn))
∣

∣

∣ ≤ c
(

|en
j | + |en

j+1| + ∆xj

)

∣

∣

∣sn
j− 1

2

− f ′(u(zj , tn))
∣

∣

∣ ≤ c
(

|en
j | + |en

j−1| + ∆xj

)

(72)

where the generic constant c depends on ‖f ′′‖∞ and
∥

∥

∂u
∂x

∥

∥

∞
.

Concerning the third term, two cases are to be considered. First, if f ′(u(x, tn))
does not change of sign in the cells j−1, j and j+1, we get from (66) and since
zj has been selected for this reasons

(1 − σn
j+ 1

2

)(zj+1 − zj) + (1 + σn
j− 1

2

)(zj − zj−1) − 2∆xj

2∆xj

= 0 .

Second, if f ′(u(x, tn)) changes of sign in one of the cells j − 1, j and j + 1, we
denote ζ the point where f ′(u(ζ, t)) = 0, a Taylor expansion between zj and ζ
implies that

∂f(u(zj, tn))

∂x
= O(∆xj)
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while the ratio in factor remains bounded independently on ∆xj from the local
quasi-uniformity assumption.

Gathering these estimates and using (52), we obtain the desired result (68).

6.5. Order of convergence

We are now able to prove the following theorem.

Theorem 4. We assume that the discretization of the initial data is such that

|u0
j − u0(xj)| ≤ ch , ∀j = 1, . . . , J . (73)

i) Under the local quasi-uniformity (3) of meshes and the C.F.L. condi-
tion (59), the error for the finite volume scheme satisfies the first order esti-
mate:

||(en
j )J

j=1||∞ ≤ C′
∞h, tn ≤ T . (74)

ii) Under the global quasi-uniformity of meshes i.e. if there is a constant κ
such that for all h < h0

1

κ
h ≤ ∆xj ≤ h , ∀j = 1, . . . , J . (75)

and the C.F.L. condition (59), the error for the finite volume scheme satisfies
the first order estimate: for all p ∈ [1,∞],

||(en
j )J

j=1||p ≤ C′
ph, tn ≤ T . (76)

Proof. Let us go back to (67) and use the C.F.L. condition to estimate

|en+1
j | ≤

(

1 − ∆tn
∆xj

(σn
j+ 1

2

− 1

2
sn

j+ 1
2

+
σn

j− 1
2

+ 1

2
sn

j− 1
2

)

)

|en
j |

+
∆tn
∆xj

σn
j+ 1

2

− 1

2
sn

j+ 1
2

|en
j+1| +

∆tn
∆xj

σn
j− 1

2

+ 1

2
sn

j− 1
2

|en
j−1| + ∆tn|ǫnj | .

Applying the estimate (68) on ǫnj and the fact that the ratio ∆tn/h remains
bounded, we get

|en+1
j | ≤ (1 + c∆tn)‖en‖∞ + c∆tn h (77)

and we easily conclude by induction since ‖e0‖∞ ≤ ch.
In view of (75), in order to show (76) it is sufficient to consider the case p = 1.

Multiplying (67) by ∆xj and summing, one gets after some simplifications

J
∑

j=1

∆xj |en+1
j | ≤

J
∑

j=1

∆xj |en
j | + ∆tn

J
∑

j=1

(

sn
j+ 1

2

− sn
j− 1

2

)

|en
j |

+∆tn
1 − σn

1
2

2
sn

1
2

|en
1 | − ∆tn

σn
J+ 1

2

+ 1

2
sn

J+ 1
2

|en
J | + ∆tn

J
∑

j=1

∆xj |ǫnj | .

(78)
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Lemma 3, the estimate (74) and the fact that ∆tn/h remains bounded imply

∆tn

J
∑

j=1

∆xj |ǫnj | ≤ c∆tnh . (79)

In order to estimate the second term of the r.h.s. in (78), we introduce the term
f ′(u(zj, tn)) and use (72) to get

∆tn

J
∑

j=1

(

sn
j+ 1

2

− sn
j− 1

2

)

|en
j | ≤ c∆tn

J
∑

j=1

(|en
j | + |en

j−1| + |en
j+1| + ∆xj)|en

j | . (80)

We conclude with the estimate (74). At this step, the global quasi-uniformity
is necessary to bound the difference |sn

j+ 1
2

− sn
j− 1

2

| by c∆xj and to write

∆tn

J
∑

j=1

(

sn
j+ 1

2

− sn
j− 1

2

)

|en
j | ≤ c∆tn

J
∑

j=1

∆xj |en
j | . (81)

The last two remaining terms in formula (78) are negative. Altogether, we
obtain

J
∑

j=1

∆xj |en+1
j | ≤ (1 + c∆tn)

J
∑

j=1

∆xj |en
j | + c∆tnh . (82)

This completes the proof.

7. Conclusion

This work is a first account in the generalization of our previous work dealing
with the search for an optimal error estimate for upwind finite volume method.
In the previous paper, we addressed the linear constant advection equation
in arbitrary space dimension. In the present study, we extend the notion of
geometric corrector to non constant (at least in space) coefficient and nonlinear
scalar problems. We provide a mathematical analysis of so-called one order
schemes and show that despite the lack of consistency, they are indeed of order
one. In a work in progress, we address the case of non linear hyperbolic systems
of conservation laws.
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