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THEORETICAL ANALYSIS OF THE UPWIND FINITE VOLUME

SCHEME ON THE COUNTER-EXAMPLE OF PETERSON
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Abstract. When applied to the linear advection problem in dimension two, the up-
wind finite volume method is a non consistent scheme in the finite differences sense
but a convergent scheme. According to our previous paper [1], a sufficient condition
in order to complete the mathematical analysis of the finite volume scheme consists
in obtaining an estimation of order p, less or equal to one, of a quantity that depends
only on the mesh and on the advection velocity and that we called geometric corrector.
In [2], we prove that, on the mesh given by Peterson [18] and for a subtle alignment
of the direction of transport parallel to the vertical boundary, the infinite norm of the
geometric corrector only behaves like h1/2 where h is a characteristic size of the mesh.

This paper focuses on the case of an oblique incidence i.e. a transport direction that
is not parallel to the boundary, still with the Peterson mesh. Using various mathe-
matical technics, we explicitly compute an upper bound of the geometric corrector and
we provide a probabilistic interpretation in terms of Markov processes. This bound is
proved to behave like h, so that the order of convergence is one. Then the reduction
of the order of convergence occurs only if the direction of advection is aligned with the
boundary.

Résumé. La méthode upwind des volumes finis appliquée à l’équation d’advection
linéaire en dimension 2, bien que non consistante au sens des différences finies, est
en général convergente. Une condition suffisante pour établir mathématiquement la
convergence est qu’une quantité appelée ”correcteur géométrique” ne dépendant que du
maillage et du vecteur de convection, introduite dans [1], soit d’ordre p avec 0 < p ≤ 1
lorsque la taille h des mailles tend vers 0. Dans [2], on montre que, sur un maillage
particulier proposé par Peterson [18], et pour une direction d’advection parallèle au

bord vertical, la convergence n’est qu’en h1/2 pour la norme infinie.
On s’intéresse ici aux directions d’advection non parallèles au bord (incidence oblique),

toujours sur le maillage de Peterson. On calcule explicitement par différentes techniques
un majorant du correcteur géométrique et on donne une interprétation probabiliste en
terme de processus de Markov. Ce majorant est d’ordre h, ce qui permet de conclure
que le schéma est d’ordre un dans ce cas. La réduction de l’ordre de convergence ne se
produit donc que si la direction d’advection est parallèle au bord vertical.
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Introduction

We consider on the domain Ω ⊂ R
2, the following advection problem with a constant velocity

a ∈ R
2

∂u

∂t
+ ∇ · (au) = 0 . (1)

where u is defined from R
2 ×R to R. This problem is completed with initial and boundary data

that satisfy the so called compatibility conditions.
The space discretization is based on an unstructured mesh composed of volumes Kj where j

is the index of the volume and Vj the surface of the volume. The upwind finite volume method
takes into account the direction where the information comes from and consists in approximating
on each control volume the mean value of u denoted by :

vn
j =

1

Vj

∫

Kj

u(x, n∆t) dx.

If the time discretization is for instance the Euler forward scheme, then the unknowns un
j which

approximate vn
j satisfy

L(uj) = un+1
j − un

j +
∆t

Vj

∑

k∈N−(j)

a ·Njk(un
k − un

j ) = 0 (2)

where

• N−(j) denotes the set of indices of adjacent volumes to Kj such that a is outward from
Kj on the common interface,

• Njk is the normal to the interface that points out from Kj to Kk, with a norm equal to
the length of the interface |Kj ∩ Kk|.

It turns out that this scheme is not consistent in the sense of finite differences : the truncation
error L(vj), which is obtained by substituting un

j by the exact value vn
j , does not converge to

zero as h goes to zero. Then Lax theorem is helpless, see for instance [6], [7]. However numerous
theoretical results obtained with solutions more or less regular (we refer to [9], [12], [16], [15], [22],
[21], [3]), prove the convergence of the scheme. This property of enhancement of the truncation
error is called supra-convergence and was widely analyzed in various cases but different from the
finite volume one, in [14], [20], [23], [24].

In [1], the concept of geometric corrector is introduced in order to analyze the scheme from
a mathematical point of view. This corrector depends only on the mesh and on the advection
velocity. If Kj is not on the boundary of the domain, then the corrector Γj associated to the
volume Kj is a point in R

2 which satisfies the following system (see [1] for the general case)

∑

k∈N+(j)

a ·NjkΓj +
∑

k∈N−(j)

a ·NjkΓk =
∑

k∈N+(j)

a ·Njk(gjk − gj)+
∑

k∈N−(j)

a ·Njk(gjk − gk) (3)

where

• gj denotes a point inside the volume like for instance the center or gravity of the volume
Kj ,

• gjk denotes the center of gravity of the edge Kj ∩ Kk,
• N+(j) is the set of indices of adjacent volumes to kj such that a is inward on the common

interface.

For 0 < p ≤ 1, we prove in [1] that, when the solution is regular enough, a hp behavior of
the norm of the corrector is a sufficient condition for the scheme to be of order p. As a result,
estimating the corrector is an efficient way to study the convergence of the scheme.
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It was proved in [1] that, in dimension 2, on non structured meshes of triangles, uniformly
refined, the standard upwind scheme, although not consistent, is in fact of order one, at least for
regular enough solutions. The proof of this result for meshes that are independently refined is
still an open problem.
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Figure 1. Meshes proposed by Peterson on the square [0, 1] × [0, 1]
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Figure 2. Numbering of triangles on the left side and bottom triangles

Indeed, slower convergence appears for vertical advection velocity on a particular mesh origi-
nally proposed by Peterson [18]. The domain [0, 1] × [0, 1] and meshes he considered are plotted
on Figure 1. One can observe that there is no vertical lines (except the boundaries). Moreover,
the refinement is uniform except near vertical boundaries. The index of the triangle j previously
introduced is replaced in the present case, by a pair of integers (m, n) and a sign. The triangles
far from the vertical boundaries are rectangle isosceles triangles of length h = 1

ℓ and are denoted
by T +

m,n for upward ones and by T−
m,n for downward ones. Indices m and n are of opposite par-

ity. Triangles adjacent to the left boundary are rectangle isosceles triangle of length h√
2

and are

denoted by T +
0,n and T−

0,n (with n odd) as it is indicated on Figure 2. Triangles adjacent to the

right boundary are rectangle isosceles triangle of length h√
2

and are denoted by T +
2ℓ,n and T−

2ℓ,n

(with n odd). The geometric correctors that corresponds to these triangles are respectively Γ+
m,n
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and Γ−
m,n.

The aim of this article is to obtain, by different mathematical technics, estimates on the
geometric corrector as a function of mesh size h for oblique incidence, i.e. for a non vertical
advection direction, in order to prove the following theorem

Theorem 1. For oblique incidence, we have the estimation

‖Γ‖∞ ≡ sup
m,n

‖Γm,n‖ ≤ ch

Equations satisfied by the corrector are given in section 1. Since left and right boundary
conditions do not interfere, the study is reduced to a semi-infinite domain, obtained by extending
to the right the original one. The following sections establish an upper bound of the norm of the
corrector successively by counting geometric paths, then by using a recursive argument and finally
by Fourier analysis. The upper bound is a partial sum of a convergent series whose sum studied in
section 5 depends on h. In section 6, we shall return to the vertical advection direction case. The
use of generating functions allows us to prove in a different way the result proved in [2] : in that
case, the series is divergent and the corrector behaves as h1/2 for the uniform norm. Finally in
section 7 which deals with the original square, we propose a probabilistic interpretation, similar
in spirit to that in the paper by Delarue et Lagoutière [5], and we use a method based on matrices
to get the upper bound.

1. Equations satisfied by the corrector Γm,n

We denote by Γ+
m,n the corrector associated to triangle T +

m,n, by Γ−
m,n the corrector associated

to T−
m,n, and define θ as the angle between the advection velocity and the vertical direction (cf

figure 1). The advection velocity incomes on the left boundary, and we suppose that 0 < θ < π
4 .

We note

α =
π

4
− θ.

The corrector is computed, choosing as reference point, the middle of the height of the triangle
T±

m,n for m 6= 0, 2ℓ and the middle of the vertical side of the triangle for m = 0 and m = 2ℓ as
shown on Figure 2. This choice is more convenient than the center of gravity of the triangle.

We design by (~ı,~) the usual orthonormal basis of the plane. The equations satisfied by the
correctors for triangles without any side on the left or right boundary, Γ+

m,n and Γ−
m,n for m 6= 0

and m 6= 2ℓ, can be written, following (3)











































cos θ(Γ+
m,n − Γ−

m,n) = −h

4

(

cos θ~ +

√
2

2
(cos(θ − π

4
) − cos(θ +

π

4
))~ı

)

cos θΓ−
m,n −

√
2

2
cos(θ − π

4
)Γ+

m−1,n−1 −
√

2

2
cos(θ +

π

4
)Γ+

m+1,n−1 =

h

4

(

cos θ~ +

√
2

2
(cos(θ − π

4
) − cos(θ +

π

4
))~ı

)

.

By adding these equalities, we obtain

Γ+
m,n − cosα

cosα + sin α
Γ+

m−1,n−1 −
sin α

cosα + sin α
Γ+

m+1,n−1 = 0

and setting p = cos α
cos α+sin α and q = sin α

cos α+sin α , we get the recursion relation
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Γ+
m,n = pΓ+

m−1,n−1 + qΓ+
m+1,n−1 . (4)

We now consider the triangles with their vertical side lying on the left boundary, i.e. m = 0.
The equations satisfied by the corrector can be written, following (3)



















√
2

2
cosαΓ+

0,2k+1 −
1

2
cos θΓ−

0,2k+1 =

√
2

2
cosα

h

4
~ı − 1

2
cos θ(

h

4
~ı +

h

4
~)

1

2
cos θΓ−

0,2k+1 −
√

2

2
sinαΓ+

1,2k =

√
2

2
sinα

h

4
~i +

1

2
cos θ(

h

4
~ı +

h

4
~) .

By adding these equalities, we obtain

√
2

2
cosαΓ+

0,2k+1 −
√

2

2
sin αΓ+

1,2k =

√
2

2
cosα

h

4
~ı +

√
2

2
sinα

h

4
~i

namely, setting ~A = 1
4 (1 + tanα)~ı, vector independent on k and r = q

p ,

Γ+
0,2k+1 − rΓ+

1,2k = ~Ah . (5)

For m = 2ℓ, namely for the triangles with a side on the left boundary, we obtain

Γ+
2l,2k+1 − Γ+

2l−1,2k = ~Bh (6)

where
−→
B is a vector independent on k and r defined by

~B =
1

4
(tan θ − 3

2
− 1

2
tan α)~ı +

1

8
(tanα − 1)~.

Gathering the results above, equations (4), (5), (6) satisfied by the correctors associated with
upward directed triangles write











































Γ+
m,n = pΓ+

m−1,n−1 + qΓ+
m+1,n−1 m + n odd , 0 < m < 2ℓ , 0 < n

Γ+
0,2k+1 − rΓ+

1,2k = ~Ah 0 ≤ k < ℓ

Γ+
2ℓ,2k+1 − Γ+

2ℓ−1,2k = ~Bh 0 ≤ k < ℓ

Γ+
m,0 = 0 m odd , 0 < m < 2ℓ

(7)

Our assumption on advection velocity direction implies 0 < q < 1
2 < p < 1 with p + q = 1

and r = q
p < 1. The difference equations (7) satisfied by the corrector have zero right hand side,

except on the boundary. We shall show that the order of convergence of the scheme is determined
by accumulation of boundary contributions.

Remark 1 : Note that, for vertical advection velocity, namely θ = 0, we have α = π
4 ,

p = q = 1
2 , A = −B = ~ı

2 and the above system reduces to system (27) given in section 4.2 of [2]
namely :



































Γ+
m,n =

1

2
Γ+

m−1,n−1 +
1

2
Γ+

m+1,n−1

Γ+
0,2k+1 = Γ+

1,2k +
h

2
~ı ; Γ+

2ℓ,2k+1 = Γ+
2ℓ−1,2k − h

2
~ı

Γ+
m,0 = 0

(8)
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Remark 2 : For the case θ = π
4 , the recursion for the correctors boils down to

Γ+
m,n = Γ+

m−1,n−1

and noting that Γ+
0,2k+1 = h

4~ı, we obtain Γ+
m,n = h

4~ı for m ≤ n and 0 otherwise.

Remark 3 : The case of advection velocity incoming on the right boundary can be deduced
by symmetry.

Remark 4 : The first equation of system (7) is valid for m and n of opposite parities, i.e. for
upward triangles. In order to simplify the computations and the presentation, it is convenient to
introduce fictitious triangles T +

m,n and associated correctors Γ+
m,n for m and n with same parities.

The equation (4) can then be extended to m and n of arbitrary parity and we obtain











































Γ+
m,n = pΓ+

m−1,n−1 + qΓ+
m+1,n−1 0 < m < 2ℓ, 0 < n

Γ+
0,n − rΓ+

1,n−1 = ~Ah 0 < n

Γ+
2ℓ,n − Γ+

2ℓ−1,n−1 = ~Bh 0 < n

Γ+
m,0 = 0 0 < m < 2ℓ

(9)

The two lattices, m and n of opposite parities, and m and n of same parities, are independent
from each other, because equations (9) relate quantities, either of opposite parities, or of same
parities. Equations (9) extended to m and n of arbitrary parities therefore allow to determine
the correctors associated to ”real” triangles, i.e. with m and n of opposite parities.

Remark 5 : To deal with only one boundary, one may consider, as in [2] triangle [0, 1]× [0, 1],
lower left half of the square as shown on Figure 3.
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Figure 3. Mesh of Peterson on the lower left half triangle

In the following sections, we shall rather consider the semi-infinite mesh defined on the domain
[0, +∞] × [0, 1] : this mesh is obtained by extending Peterson original mesh towards infinity to
the right with (rectangular equilateral) triangles with basis h. We therefore have to solve the
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system






















Γ+
m,n = pΓ+

m−1,n−1 + qΓ+
m+1,n−1 0 < m, 0 < n

Γ+
0,n = rΓ+

1,n−1 + ~Ah 0 < n

Γ+
m,0 = 0 0 < m

(10)

and it is what we do in the following sections.

2. Computation by counting geometric paths

The geometric corrector Γ+
m,n is a linear combination of Γ+

m−1,n−1 with weight p and Γ+
m−1,n+1

with weight q. Let us represent this relation by 2 paths, one from point (m, n) to point (m −
1, n − 1) with weight (or probability) p, and one from (m, n) to (m − 1, n + 1) with weight (or
probability) q. By recursion, Γ+

m,n is therefore a linear combination of the Γ+
m+t,n−k with weights

associated to paths linking point (m, n) to (m+ t, n−k) with −k ≤ t ≤ k. The weight associated
to a path composed of g elementary paths (or displacements) to the left hand side and d paths
to the right hand side is pgqd.

If m ≥ n, all paths starting from (m, n) reach points on the line n = 0 with coordinates
(m + t, 0) with −n ≤ t ≤ n before reaching the left boundary. Thus, according to (10), Γ+

m,n is
equal to zero.

If m < n, some paths starting from (m, n) reach the left boundary. When a path reaches the
left boundary at point (0, n′), we have

Γ+
0,n′ = rΓ+

1,n′−1 + ~Ah.

Thus, a contribution to the corrector proportional to the weight associated to the path from
(m, n) to (0, n′) appears. The path is reflected with weight r. As a result, the corrector can be
computed as a sum of weights associated with paths issued from point (m, n) and reaching the
left boundary. Therefore, to compute the corrector, we simply have to enumerate paths issued
from point (m, n) and reaching this boundary.

For arbitrary reflection coefficient r, to the best of our knowledge, this problem has no simple
closed form solution.

However, for the specific case r = 2q, the problem at hand can be solved by using Désiré André
reflection principle [4], [19]. To be more specific, we associate bijectively to a path reflected on
the left boundary the path obtained by reflection (symmetry) with respect to this boundary. To
this hand, we introduce the correctors Γ+

m,n for m < 0, and then split the reflected path with
weight 2q in two paths with weight q symmetric with respect to the boundary (see Figure 4). As
a result, the relation

Γ+
0,n = rΓ+

1,n−1 + ~Ah

is replaced by

Γ+
0,n = qΓ+

−1,n−1 + qΓ+
1,n+1 + ~Ah .

Using this trick, we are able to count the paths from point (m, n) to a point (0, n−s) lying on the
left boundary and composed of s elementary displacements among whose 1

2 (s + m) are towards

the left hand side and 1
2 (s − m) towards the righthand side, with s varying from m (minimum

to reach the left boundary) and n − 1 (the point (0, 0) does not contribute). A path is thus
defined by the choice of the displacements to the right among the s displacements. The number
of possible choices is

(

s
1
2
(s−m)

)

and we finally get :

Γ+
m,n|r=2q = Ah

∑

s∈[m,n−1],s+m=0[2]

p
1
2
(s+m)q

1
2
(s−m)

(

s
1
2 (s − m)

)

.
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For the point (2j, 2n + 1), one obtains

Γ+
2j,2n+1|r=2q = ~Ah

n
∑

s=j

ps+jqs−j

(

2s

s − j

)

, 0 ≤ j ≤ n . (11)

Since the reflection coefficient r is less than 2q, Γ+
2j,2n+1|r=2q provides an upper bound for the

corrector Γ+
2j,2n+1.

m=2,n=5

Figure 4. Désiré André reflection principle : Examples of paths that contribute
to Γ+

2,5

3. Proof by recursion

In this section, we demonstrate the result (11) by recursion. Let us suppose that (11) is
satisfied up to order n. Then, for 0 < j ≤ n + 1 and for r = 2q

Γ+
2j,2n+3|r=2q = p2Γ+

2j−2,2n+1|r=2q + 2pqΓ+
2j,2n+1|r=2q + q2Γ+

2j+2,2n+1|r=2q

And therefore

Γ+
2j,2n+3|r=2q = ~Ah

n+1
∑

s=j

ps+jqs−j

(

2s − 2

s − j

)

+ 2 ~Ah

n+1
∑

s=j+1

ps+jqs−j

(

2s− 2

s − j − 1

)

+ ~Ah

n+1
∑

s=j+2

ps+jqs−j

(

2s − 2

s − j − 2

)

= ~Ah

(

p2j

(

2j − 2

0

)

+ p2j+1q

(

2j

1

)

+ 2p2j+1

(

2j

0

))

+ ~Ah

n+1
∑

s=j+2

ps+jqs−j

((

2s − 2

s − j

)

+ 2

(

2s − 2

s − j − 1

)

+

(

2s − 2

s − j − 2

))

= ~Ah
(

p2j + p2j+1q(2j + 2)
)

+ ~Ah

n+1
∑

s=j+2

ps+jqs−j

(

2s

s − j

)

= ~Ah
n+1
∑

s=j

ps+jqs−j

(

2s

s − j

)

.
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Because r = 2q, a similar computation shows that

Γ+
0,2n+3|r=2q = ~Ah

n+1
∑

s=0

ps+jqs−j

(

2s

s − j

)

.

As a result, (11) is satisfied up to order n + 1. Finally, for n = 0, Γ+
0,1 = ~Ah and the recursion

relation (11) is satisfied for n = 0, which concludes the proof.

4. Proof using Fourier analysis

An alternative demonstration of the result is given below. It is inspired from a method studied
in the book by Karlin [11] based on the construction of a basis of orthogonal polynomials (in
our case related to Tchebytchev polynomials). To this end, we consider Γ+

m,n as the Fourier
coefficients of a function fn. More precisely, we write

Γ+
m,n =

∫ π

−π

(

p

q

)
m
2

fn(x) cos(mx) dx . (12)

Recursion relations (10) satisfied by the correctors determine fn. Namely, we get, for any m > 0

∫ π

−π

(

p

q

)
m
2

fn+1(x) cos(mx) dx =

∫ π

−π

p

(

p

q

)
m−1

2

fn(x) cos((m − 1)x) dx

+

∫ π

−π

q

(

p

q

)
m+1

2

fn(x) cos((m + 1)x) dx

(13)

which can be written

∫ π

−π

(

p

q

)
m
2

(fn+1(x) − 2
√

pq cosx fn(x)) cos(mx) dx = 0 (14)

that implies

fn+1(x) = 2
√

pq cosx fn(x) + cn . (15)

But, for m = 0,
∫ π

−π

fn+1(x) dx − r

∫ π

−π

(

p

q

)
1
2

fn(x) cosxdx = ~Ah (16)

which can be written, by using relation (15)

∫ π

−π

(2
√

pq cosx fn(x) + cn) dx −
∫ π

−π

r

(

p

q

)
1
2

fn(x) cos xdx = ~Ah . (17)

If r = 2q, upper bound of r = q
p for the problem at hand, the equation (17) simply provides

cn =
~Ah

2π

which, with recursion relation (15) for fn and Γ+
m,0 = 0 (which implies f0 = 0), gives the

expression below

fn+1(x) =
~Ah

2π

n
∑

s=0

(
√

4pq cosx)s . (18)
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As a result, we get,

Γ+
m,n+1|r=2q =

~Ah

2π

∫ π

−π

(

p

q

)
m
2

n
∑

s=0

(
√

4pq cosx)s cos(mx) dx . (19)

Specifically,

Γ+
2j,2n+1|r=2q =

~Ah

2π

(

p

q

)j ∫ π

−π

2n
∑

s=0

(
√

4pq cosx)s cos(2jx) dx

=
~Ah

2π

(

p

q

)j 2n
∑

s=0

(4pq)
s
2

∫

C

2−(s+1)

(

z +
1

z

)s

(z2j + z−2j)
dz

iz

=
~Ah

2π

(

p

q

)j 2n
∑

s=0

(4pq)
s
2

∫

C

2−(s+1)
s
∑

k=0

(

s

k

)

z2k−s(z2j + z−2j)
dz

iz
.

The only nonzero terms stems from the k satisfying 2k = s ± 2j, which on the one hand
implies s even and on the other s ≥ 2j so that 0 ≤ k ≤ s . Changing variable, we obtain again
relation (11) :

Γ+
2j,2n+1|r=2q =

~Ah

2π

(

p

q

)j 2n
∑

s=2j

(4pq)
s
2

∫

C

2−s

(

s

(s − 2j)/2

)

dz

iz

= ~Ah

(

p

q

)j n
∑

s=j

(pq)s

(

2s

s − j

)

= ~Ah

n
∑

s=j

pj+sqs−j

(

2s

s − j

)

.

5. Sum of the series and upper bound of the corrector

By using formula 2.5.15 of [25] or the methods provided by [8], the series Sj(x) with term

xr
(

2r
r−j

)

turns out to be summable in closed form. For 0 < x < 1
4 , this sum is given by

Sj(x) ≡
+∞
∑

k=j

xk

(

2k

k − j

)

=
xj

√
1 − 4x

(

1 −
√

1 − 4x

2x

)2j

. (20)

We deduce from this result the following upper bound for the corrector.

‖Γ+
2j,2n+1‖ ≤ ‖Γ+

2j,2n+1|r=2q‖ < ‖ ~A‖h
(

p

q

)j

Sj(pq) .

As p + q = 1 and p > q, we get
√

1 − 4pq = p − q and therefore

‖Γ+
2j,2n+1‖ <

‖ ~A‖h
p − q

= ‖ ~A‖h cot θ . (21)

We conclude that the norm of the corrector is bounded by ch,with c = ‖ ~A‖ cot θ. This proves
Theorem 1.

In the next section, we turn back to the case of vertical advection.
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6. Vertical advection

For vertical advection velocity, it is possible to count the number of paths (8) with the original
(i.e. without taking an upper bound) reflection coefficient :

Γ+
2j,2n+1 =

h~ı

2

n
∑

s=j

2−2s

(

2s

s − j

)

. (22)

By this path counting technic, we obtain the result proven by recursion for a triangular domain
in [2].

Another possible method relies on the use of generating functions. We define Γ+
m,n = Γ+

−m,n

for m < 0 and split the paths reflected with weight 1 into two paths of weight 1
2 , symmetric with

respect to the left boundary. We have now to solve the equations below, namely


































Γ+
m,n =

1

2
Γ+

m−1,n−1 +
1

2
Γ+

m+1,n−1 m ∈ Z
⋆ n ≥ 1

Γ+
0,n =

1

2
Γ+
−1,n−1 +

1

2
Γ+

1,n+1 +
h

2
~ı n ≥ 1

Γ+
m,0 = 0 m ∈ Z

(23)

The generating function defined by

Γn(z) =
∑

m∈Z

Γ+
2m,nz2m

verifies Γ0(z) = 0, Γ1(z) = h
2~ı and the recursion relationship

Γ2n+1(z) =
1

4

(

z +
1

z

)2

Γ2n−1(z) +
h

2
~ı .

from which we obtain

Γ2n+1(z) =
h

2
~ı

n
∑

k=0

(

z +
1

z

)2k
1

22k
.

Noting that Γ+
2j,2n+1 is the coefficient of z2j in the above sum, and using the binomial identity,

we obtain once again formula (22). Indeed,

Γ2n+1(z) =
h

2
~ı

n
∑

k=0

2k
∑

s=0

(

2k

s

)

z2k−sz−s 1

22k

=
h

2
~ı

n
∑

k=0

k
∑

j=−k

(

2k

k − j

)

z2j 1

22k

=
h

2
~ı

n
∑

j=−n





n
∑

k=j

(

2k

k − j

)

1

22k



 z2j .

The series Sj(x) with term xr
(

2r
r−j

)

is divergent for x = 1
4 . For vertical advection velocity, in

contrast to oblique incidence case, the corrector behaves for L∞ norm as h1/2 (see [2]). Note
that, for this specific case, Peterson in [18] demonstrates that the convergence error of the scheme
is exactly h1/2. Then, the corrector provides a fair estimate of the error.
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7. Back to the initial domain : a matrix formulation

First, a probabilistic interpretation of the recursion relation (9) is proposed, relying on similar
problems studied in the realm of Markov process [10]. If we consider a Markov process with
discrete states indexed by m and discrete times indexed by n and if the square 2ℓ + 1 matrix

T =

















0 r 0 0 ... 0
p 0 q 0 ... 0
0 p 0 q ... 0
... ... ... ... ... ...
0 ... 0 p 0 q
0 0 0 0 r′ 0

















is the transition matrix of Markov process considered above, the transition probability from state
m to state m − 1 is p, whereas this probability from state m to state m + 1 is q, for m 6= 0 and
m 6= 2ℓ. The transition matrix T allows to compute the 2ℓ + 1 component vector of occupation
probabilities p(n + 1) at time n + 1 from the occupation probabilities p(n) at time n :

p(n + 1) = Tp(n) = T n+1p(0).

The quantity
∑2n

k=0(T
k)j,0 provides the sum of occupation probabilities of state 0 at times k ≤ 2n

for initial state j, i.e. at time 0, the occupied state is j. The first and last lines of T respectively
dictate the behavior at the left (resp. right) boundary and the coefficients r and r′ = 1 are the
reflection coefficients.

We now express under matrix form the relations (9). To this end, we introduce for n ≥ 0, the
ℓ + 1 component vector

Γn =
(

Γ+
0,n, . . . , Γ+

2j,n, . . . , Γ+
2ℓ,n

)t

,

and we get
Γ1 = Ch and Γ2n+1 = MΓ2n−1 + Ch , n ≥ 1

where M is the square ℓ + 1 matrix defined by (r′ = 1)

M =

















rp rq 0 0 ... 0
p2 2pq q2 0 ... 0
0 p2 2pq q2 ... 0
... ... ... ... ... ...
0 ... 0 p2 2pq q2

0 0 0 0 r′p r′q

















and C =

















~A
0
0
...
0
~B

















.

Matrix M is the restriction to odd indexes of T 2. We deduce from above that

Γ2n+1 =
n
∑

k=0

MkCh .

Therefore, the corrector is a linear combination of ~Ah and ~Bh , with coefficients that are sums
of coefficients of powers of M :

Γ+
2j,2n+1 = aj,n(M) ~Ah + bj,n(M) ~Bh, 0 ≤ j ≤ ℓ (24)

where

aj,n(M) =

n
∑

k=0

(Mk)j,0 and bj,n(M) =

n
∑

k=0

(Mk)j,ℓ (25)
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and (Mk)j,i denotes the term on line j and column i. The lines and column of Mk are indexed
from 0 to ℓ. One will notice that, for even indices, the estimate for the ℓ component vector

Γ2n =
(

Γ+
1,2n, . . . , Γ+

2j−1,2n, . . . , Γ+
2ℓ−1,2n

)t

.

can be obtained from the estimate for vector Γ2n−1.

To allow closed form computation of eigenvectors, one multiplies by 2p > 1 the first line of the

matrix M in order to replace the terms rp = q and rq = q2

p respectively by 2pq and 2q2, which

amounts to replace the reflection coefficient r = q
p by an upper bound 2q and one multiplies

by 2p > 1 the first line of the matrix M , which amounts to replace the reflection coefficient
r′ = 1 < 2p by an upper bound 2p. One then obtains the matrix N of order ℓ + 1

N =

















2pq 2q2 0 0 ... 0
p2 2pq q2 0 ... 0
0 p2 2pq q2 ... 0
... ... ... ... ... ...
0 ... 0 p2 2pq q2

0 0 0 0 2p2 2pq

















.

The way N is constructed from M implies that the coefficients aj,n(N) and bj,n(N) computed
for this matrix N are upper bounds of those computed with matrix M . The ℓ + 1 eigenvalues of
N are distinct and are given by

λk = 2pq(1 + cos(
kπ

ℓ
)) < 1 ;

the associated eigenvectors have components

Xjk =

(

p

q

)j

cos(
jkπ

ℓ
) , 0 ≤ j ≤ ℓ .

In order to compute the coefficients of powers of N , we diagonalize this matrix : N = XDX−1

where X is the matrix Xjk of eigenvectors and D the diagonal matrix of eigenvalues. The inverse
of X can be computed, using trigonometric identities given in [13],

ℓ−1
∑

j=1

cos(
njπ

ℓ
) cos(

mjπ

ℓ
) +

1

2
(1 + cos(nπ) cos(mπ)) =

ℓ

2
δnm , m 6= 0, ℓ ,

ℓ−1
∑

j=1

cos(
njπ

ℓ
) cos(

mjπ

ℓ
) +

1

2
(1 + cos(nπ) cos(mπ)) = ℓδnm , m = 0, ℓ .

(26)

Defining ymj = 1
ℓ ( q

p )j cos(mjπ
ℓ ) for 1 ≤ j ≤ ℓ − 1, ym0 = 1

2ℓ , ymℓ = 1
2ℓ(

q
p )ℓ cos(mπ), then

setting Ymj = 2ymj for m 6= 0, ℓ and Ymj = ymj for m = 0, ℓ, we get the inverse of X . As a
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result, we obtain

(Nk)j0 =
ℓ
∑

s=0

XjsYs0λ
k
s

=
1

ℓ
(2pq)k

(

p

q

)j
(

ℓ−1
∑

s=1

cos(
jsπ

ℓ
)
1

ℓ
λk

s +
1

2ℓ
λk

0 +
1

2ℓ
λk

ℓ

)

=
1

ℓ
(2pq)k

(

p

q

)j
(

ℓ−1
∑

s=1

cos(
jsπ

ℓ
)(1 + cos(

sπ

ℓ
))k + 2k−1

)

=
1

ℓ
(4pq)k

(

p

q

)j
(

ℓ
∑

s=0

f(s
π

ℓ
) − 1

2
(f(0) + f(π))

)

with f(x) = cos(jx) cos2k(x
2 ). The Euler Mac-Laurin summation formula allows to write this

sum as

ℓ
∑

s=0

f(s
π

ℓ
) − 1

2
(f(0) + f(π)) =

ℓ

π

∫ π

0

f(x) dx

+
ℓ

π

∞
∑

m=2

(−1)m Bm−1

(2m − 2)!
(f [2m−3](π) − f [2m−3](0))

As f and f(·+π) are even functions, all odd order derivatives of f are zero for 0 and π. Therefore,
the sum is equal to the integral I defined below, which is computed by residue

I =
ℓ

π

∫ π

0

f(x) dx =

{

k2−2k
(

2k
k−j

)

k ≥ j

0 k < j
.

Using this result, we obtain, for k ≥ j

(Nk)j0 = (4pq)k

(

p

q

)j
1

ℓ

ℓ

π
π2−2k

(

2k

k − j

)

= pk+jqk−j

(

2k

k − j

)

and we get

aj,n(N) =

n
∑

k=j

pk+jqk−j

(

2k

k − j

)

=

(

p

q

)j n
∑

k=j

(pq)k

(

2k

k − j

)

.

By the same method, we obtain

bj,n(N) =

(

p

q

)j−ℓ n
∑

k=ℓ−j

(pq)k

(

2k

k − (ℓ − j)

)

.

Thus, the corrector for the initial square domain turns out to be the sum of the correctors for
two semi-infinite meshes computed previously, one obtained by extending to infinity the initial
mesh to the right hand side, the other doing the same, but on the left hand side.

8. Conclusion

By different methods (geometric paths counting, recursion, Fourier analysis, generating func-
tion, matrix computation), we have established closed form expressions of an upper bound of
the geometric corrector for the initial (square) Peterson and related (semi-infinite, triangular)
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domains for oblique advection velocity. The most convenient expression appears to be a weighted
sum of binomial coefficients. This form has a simple probabilistic interpretation, in terms of geo-
metric paths counting. Moreover, the sum of the associated series is known in closed form. As
a result, an explicit upper bound for the geometric corrector proportional to h cot θ is obtained,
where θ is the angle of the advection velocity with the vertical.

The L∞ norm of the corrector is therefore of order h for oblique incidence. As a result, the
upwind scheme on initial (square) Peterson mesh and on related (triangular, semi-infinite) meshes
is therefore of order h for oblique incidence. The reduction of the order of convergence to h1/2 for
vertical direction of advection in L∞ norm is a subtle phenomena, which disappears as soon as
the advection velocity moves apart from vertical direction, or when norm L∞ is replaced by norm
L1. We have observed the same kind of phenomena in numerical experiments on more generic
meshes, see [17]. The main advantage of Peterson mesh is that the difference equations satisfied
by the corrector have constant coefficients, and nonzero right hand side only on the boundary,
which simplifies the derivation of an upper bound for the corrector. The precise behavior of the
corrector on arbitrary meshes remains an open question.
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[12] Kröner, D. Numerical schemes for conservation laws. Wiley-Teubner Series Advances in Numerical Math-

ematics. Chichester: Wiley., 1997.

[13] Lakshmikantham, V., and Trigiante, D. Theory of difference equations: numerical methods and applica-
tions, second ed., vol. 251 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker
Inc., New York, 2002.

[14] Manteuffel, T. A., and White, Jr., A. B. The numerical solution of second order boundary value problems
on nonuniform meshes. Math. Comput. 47 (1986), 511–535.

[15] Merlet, B. l∞ and l2 error estimate for a finite volume approximation of linear advection. SIAM J. Numer.
Anal. 46, 1 (2007/08), 124–150.

[16] Merlet, B., and Vovelle, J. Error estimate for the finite volume scheme applied to the advection equation.
Numer. Math. 106, 1 (2007), 129–155.

[17] Pascal, F. On supra-convergence of the finite volume method. ESAIM:proceedings 18 (2007), 38–47.
[18] Peterson, T. E. A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic

equation. SIAM J. Numer. Anal. 28, 1 (1991), 133–140.



16 TITLE WILL BE SET BY THE PUBLISHER

[19] Renault, M. Lost (and found) in translation: André’s actual method and its application to the generalized
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