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2 LURPA, ENS Cahan, Univ. Paris Sud 11,61 Avenue du Président Wilson,F-94230 CahanNovember 12, 2009AbstratThis paper develops a sale spae strategy for the meshing and segmentation of omplete rawdata points sets. The sale spae is based on the intrinsi heat equation (mean urvature motion,MCM). A simple iterative sheme implementing MCM diretly on the raw points is desribed, and amathematial proof of its onsisteny with MCM given. Points evolved by this MCM implementationan be trivially baktraked to their initial raw position. A onsequene is that the reversible MCMsheme permits to �rst orient, and then mesh reliably a raw textured surfae. The auray gain isdemonstrated on arhaeologial objets by omparisons with other meshing methods. The obtaineddisrete 3D sale spae also omplies with its traditional role: It permits to segment the original rawsurfae into ridges and valleys omputed at oarse sales, and to draw the meaningful in�exion lineson the raw meshed surfae.1 IntrodutionA growing number of appliations involve reating numerial models for existing objets aquired bytriangulation laser sanner. Those sanners are alled triangulation laser sanner beause of the triangleformed by the deteted point, the laser emitter and the amera. Sanners an either produe a direttriangulation of points sampled on the surfae, or the raw set of points with no onnetivity information.In this paper, only raw input data will be onsidered, namely a set of unorganized and non-orientedpoints given by their x, y, z oordinates. The fous is indeed to build a highly aurate meshing methodfor these raw data set, with two sopes: the visualization of the �nest surfae details, and a robustsegmentation in ridges, valleys, and sanning holes. Fig. 1 shows a high preision laser aquisitionsystem devised for our experiments on small artisti and arhaeologial models. The aquisition error isaround 20µ, allowing in priniple to reover all of the objet's texture and �nest details.The main tool that we shall use is a raw data set point smoothing operator onsistent with theintrinsi heat equation. The intrinsi heat equation, or mean urvature motion (MCM), is the moststandard way to smooth out a surfae. It will be given an implementation that permits to baktrak theevolved surfae to the initial raw data set point. At �rst sight, the proposed MCM implementation is aninstane of the moving least square surfae method, whih performs a loal surfae regression for eahpoint, and projets the point on the regression surfae. Yet, this proess will be made iterative. Indeed,mathematial and experimental arguments will show that the iterated degree one (planar) regressiononsistently implements the MCM. The proposed MCM implementation an therefore be summarized ina few words: it is the iterated projetion on the regression plane of a spherial neighborhood. Theorem3 will state that by these iterations, eah raw data set point moves forward at the speed of the surfaemean urvature in the diretion of the surfae normal. By the iterated projetion algorithm eah initialraw data point an be traked forward in the surfae smoothing proess. But is an also be triviallytraked bakward. As a onsequene, we shall prove that all deteted surfae features and struturesan be transported bak on the raw data set point. To the best of our knowledge, several appliations1



Figure 1: Our laser aquisition system at LURPA (ENS Cahan)of this easy reverse sale spae had not yet been notied. The main appliation is to obtain diretly atopologially faithful orientation and mesh for the whole raw data set point. A seond appliation is theaurate detetion of holes in the raw data, useful for further sanning attempts. A third appliation isan easy ridge-valley segmentation of the raw data point set. Comparative experiments will illustrate thata diret meshing gives poor results, while the bak transported mesh gives an aurate surfae rendering,whose verties are simply all initial raw points. Obviously, suh a omplete mesh is not eonomial, butpermits an aurate rendering of �ne art or arhaeologial piees.The use of the mean urvature motion, forward and bakward, is a diret 3D extension of the salespae paradigm in image proessing. Image sale spae is introdued in the founding Witkin paper[Wit83℄. It onsists of applying the heat equation ∂u
∂t

= ∆u to the image, whih entails a rapid imagesimpli�ation. The main image features (the edges) are deteted a oarse sale (large t) and then baktraked to their �ne sale position. A main di�ulty of this sale spae edge detetion is the fat thatnon straight edges and orners are displaed by the heat equation. Thus the bak traking of edges andorners is not easy, and has therefore provoked a huge literature. The bak propagation of a surfaesegmentation is omparatively easier beause, as we shall see, the MCM is implementable as a pointevolution from the raw data. It an therefore be followed forward and bakward.The remainder of this introdution is a review of the state of the art on raw data point set proessing,and of the various omputation methods of surfae urvatures and normals.1.1 Building a meshGiven an initial oriented point loud most proessing methods (be it for rendering, for geometry detetionor for any other purpose) begin with building a mesh. The methods are mostly based on de�ning asigned distane �eld [HDD+92℄, [KBH06℄, [Kaz05℄. The signed distane funtion an be estimated atany point by omputing the distane between the point and the regression plane of its k-nearest neighbors[HDD+92℄. Sine the neighbors are assumed previously oriented, the distane's sign is straightforward.All of these methods indeed need point orientation. However, a level set method whih does not need thesurfae orientation was reently introdued in [ACSTD07℄. Instead of looking for an impliit funtion
f satisfying ∇f = ~n, this method �nds the impliit funtion f whose gradient diretion is best alignedwith the normal �eld.Other suessful methods approximate the distane funtion using its deomposition on a loal basis:radial basis funtions [KBH06℄ or a Fourier basis [Kaz05℄. One the distane funtion is de�ned, extrat-ing the surfae orresponds to extrating the zero level set of the distane funtion. This an be done byusing the marhing ubes algorithm [LC87℄ whih gives the triangulation of the shape, or by samplingthe zero level set with partile systems [WH94℄, [CA97℄. These methods yield meshes that approximatewell the shape, but they always inlude an approximation entailing some surfae smoothing and the lossof �ne texture. Aquisition holes are also �lled in by those methods, the signed distane funtion giving2



a natural lose up of the surfae. Nonetheless, for some appliations, �lling the holes is questionable. Forexample, if the goal is to build a losed loop sanning proess, the aquisition holes should be detetedrather than �lled in, so as to guide the laser head towards them. High quality laser aquisition systemshave a potential to aquire very �ne geometri texture details, provided these details are not lost in thereonstrution. On suh data we shall see that an ideal detail-preserving mesh an have all raw datapoint set as verties.1.2 Raw data point set proessingYet, it is impossible to apply a lassi meshing method diretly to the raw data point set. The literaturehas therefore onsidered more and more sophistiated smoothing and interpolation methods. In [Lev03℄and [Lev98℄, the onept of "Moving Least Square Surfaes" (MLS surfaes) was introdued. MLSsurfaes are de�ned as the set of stationary points of an operator projeting eah point to the surfae.The MLS algorithm estimates at eah point a degree n polynomial from a set of its weighted neighbors.The obtained least square surfae an be used to projet the point on the MLS surfae, or to sub-samplethe surfae by removing step by step the points with least in�uene [ABCO+03℄. The proof of theapproximation power of MLS was published in [Lev98℄. Variations of the MLS algorithm for denoisingpoint sampled surfaes and preserving edges were proposed in [FCOS05℄ (see also [GTE+06℄, [OGG09℄,[LCOL07℄).Another produt of smoothing methods is the detetion of geometri features. Deteting the geometryis important for various appliations, one of them being a resampling adapted to surfae geometry. In[MD04℄, [MD03℄, the authors simplify a point loud by using geodesi Voronoi diagrams and fast marhingmethods. More theoretial work on point louds inlude [MS02℄ where theoretial results were presentedfor bounding the error on distanes de�ned on point sampled surfaes.Sale spae proessing was reently extended to meshes and point louds. The main di�ulty isthe omputation of the surfae instrinsi Laplaian (or mean urvature motion) to apply the intrinsidi�usion equation ∂x
∂t

= ∆x. For meshes, the standard disretization of the Laplaian operator is throughthe otangent formula [MDSB02℄. For point louds, in [PKG06℄, eah point is moved in the diretion ofits normal proportionally to its urvature. The urvature is either estimated by a polynomial regressionor by projetion on a �tted least square surfae (in other terms, by MLS). The reverse operator is builtby storing the displaements of eah point at eah step. A similar sale spae approah will be used here,but with quite di�erent sopes. In [PKG06℄, the proposed appliations are morphing and shape editing.The present paper instead fouses on raw meshing and raw surfae segmentation. A more tehnialdi�erene stands in the implementation of the sale spae: the urvature in our MCM implementationis not expliitly omputed, the robust motion being obtained by a simple planar projetion operator.In [UH08℄, another MCM disretization is proposed. The surfae Laplaian is omputed by buildingan operator Aθ at eah point position and for every diretion θ in the tangent plane. Aθ moves a point
p proportionally to the urvature Hθ of the setion urve in diretion θ. By integrating over θ, it yieldsa mean urvature motion. The non-uniform subsampling problem is leverly treated by using a nonuniform kernel. The resulting sale spae is used to detet harateristi sales of the shape, and regionsof interest.1.3 Computing urvaturesComputing urvatures reliably on a given surfae is ruial to various appliations, the main ones beingto perform anisotropi �ltering, i.e. �ltering preserving sharp edges ([HP04℄, [MDSB02℄), and to resamplethe surfae aording to its urvature ([PGK02℄).On meshes, the urvature estimation problem has already been investigated in [MDSB02℄ where thefamous otangent formula is proven and extended. [Tau95℄ derive an analyti expression for estimat-ing the diretional urvatures in the edge diretions. In [Rus04℄, [TRZS04℄, the tensor urvature wasestimated on eah fae of a mesh surfae. Other mesh urvature omputation tehniques inlude theuse of the normal yle theory [CSM03℄. For a summary and omparison of mesh urvature estimationmethods, see [MSR07℄. It is also possible to estimate urvatures by building urves ontained in thesurfae and passing through the onsidered point [Tan05℄.To determine the urvature of a given point, diret methods �t a surfae (a polynomial or a quadri)loally to eah neighborhood and then ompute the fundamental forms in their expliit form. This allows3



to ompute the Weingarten map whose eigenvalues and eigenvetors are the prinipal urvatures andprinipal diretions ([SF04℄, [LFM96℄ among others). In [PGK02℄, the authors simplify meshes usinga geometrially oherent method (i.e. points lying in �at areas are removed but points lying in highlyurved areas are kept). To determine if points should be removed or not, the urvature was replaedby a new quantity, the surfae variation. This quantity is de�ned as the ratio of the least eigenvalueof the ovariane matrix versus the sum of all eigenvalues. An interesting feature is that it is diretlyomputed from the raw data set point. However, the surfae variation is a rather ompliated funtionof the prinipal urvatures and loses their sign. Indeed, one an prove:Theorem 1. In the loal oordinate system the surfae variation σ de�ned in [PGK02℄ satis�es
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+ o(r2) (1)where r is the neighborhood radius, and k1, k2 are the prinipal urvatures.In [BC94℄, another way of omputing the urvature from an oriented raw data set without surfae�tting was presented. It relies on expressing the fundamental forms of a 3D surfae as ovarianematries. The authors laim that the ovariane matrix of point normals projeted on the regressionplane yields the prinipal urvatures and their diretions. Now, this method requires that the point loudbe previously oriented and therefore does not ompletely ompute the urvature on the raw point set.Other approahes avoiding surfae regression inlude the omputation of integral invariants ([PWHY09℄,[PWY+07℄). They are based on the idea that di�erentiation is not robust in a disrete and potentiallynoisy data set, whereas integration is muh more resistent to noise. The proofs link the omputation ofthe area of the intersetion of the surfae with a ball to the prinipal urvatures. Another possibility is toadapt the urvature estimation of [Tau95℄ to the ase of point louds as in [LP05℄. Instead of onsideringthe edge diretion, sine no edge information is given for the point loud, they onsider all diretionsfrom the enter point to one of its neighbors.More reently, measuring the ovariane of Voronoi ells was shown to allow the omputation of theprinipal urvature diretions. The soundness of this estimation is proved in [MOG09℄. MLS surfaeswere also used to derive analyti expressions for the urvatures of point set surfaes [YQ℄ .1.4 Feature extrationIn aordane with the edge detetion paradigm in image proessing, it is lassi to perform a 3D shapeanalysis by extrating the rest lines (the real edges) on meshes or point louds. Ridge lines are theloi of points where the maximal urvature takes a positive maximum along its urvature line. Valleylines are the loi of points where the minimal prinipal urvature attains a negative minimum along itsurvature line. These points an be linked to form lines (see among others [OBS04℄, [AGB05℄, [LFM96℄,[YBS05℄, [SF04℄). Most methods use a quadri or polynomial regression. In [GWM01℄, the lines aredeteted by neighborhood ovariane analysis. Indeed, from a point neighborhood, the entroid andentered ovariane an be omputed. Comparing the ratios of the ovariane matrix eigenvalues givesthe geometry of the neighborhood (see also [MOG09℄). In [HMG00℄, edges of a mesh are �rst lassi�edaording to their importane (this importane is an inreasing funtion of the adjaent faes angle).A multisale approah was proposed in [PKG03℄. Nearby feature points are �rst deteted. In theneighborhood of these points surfaes are �tted, and depending on the number of �tted surfaes, pointsare projeted to the nearest surfae. Intersetion points of these surfaes are �nally lassi�ed as edge ororner points. By inreasing the proessing radius, one ould trak feature lines and keep only the onesat a given sale. Though dealing with sales, this method does not introdue a sale spae framework.A similar idea for points lassi�ation and point projetion was used in [DIOHS08℄.Although these papers introdue a ridge/valley line detetion, none of them proposes a ridge andvalley segmentation. In [IFP95℄ the idea was suggested, though: indeed points lying near ridges or nearvalleys were labeled and this labeling was used to obtain a better rendering of the ridge and valley lines.But rest lines as de�ned by these methods require the omputation of degree three surfae derivatives.Here we will fous on other interesting and well de�ned line features: namely the urvature level linesand level sets, analogous to the image grey level lines. Of partiular interest are the zero-rossings ofthe urvature, whih are tehnially similar to the zero-rossings of the Laplaian in image proessing.4
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Figure 2: Comparison between ylindrial and spherial neighborhoodsThese zero-rossings de�ne in�exion lines, easy to ompute from the raw data point set. They reliablysegment the surfae into ridges and valleys.The paper is divided as follows: Set. 2 gives mathematial results proving the onsisteny of theproposed sale spae algorithm. Input data are brie�y presented in Set. 4. Setions 5, 6 and 7desribe the three main appliations of the sale spae: a point loud orientation method, a faithfulmesh onstrution for the raw data set and a raw shape segmentation method.2 Continuous TheoryThis setion investigates a new way of estimating the surfae urvature based on the loal ovarianeanalysis. Interestingly for our sopes, it only requires a degree one surfae regression to ompute aurvature related operator. In this theoretial setion the surfae (denoted byM) supporting the datapoint set is always assumed to be smooth (at least C2). The samples on the surfaeM are denoted by
MS .Let P (xP , yP , zP ) be a point of the surfae M. Loally we an express the surfae as the graph
z = f(x, y) of a funtion f . At eah non umbilial point P , onsider the prinipal urvatures k1 and
k2 linked to the prinipal diretions ~t1 and ~t2, with k1 > k2 where ~t1 and ~t2 are orthogonal vetors.(At umbilial points, any orthogonal pair (~t1,~t2) an be taken.) Set ~n = ~t1 × ~t2 so that (~t1,~t2, ~n) is anorthonormal basis. The quadruplet (P,~t1,~t2, ~n) is alled the loal intrinsi oordinate system, and theTaylor expansion of f yields

z = f(x, y) = −
1

2
(k1x

2 + k2y
2) + o(x2 + y2) (2)Notie that the sign of z is irrelevant, sine it only depends on the arbitrary surfae orientation.2.1 Spherial neighborhoods vs ylindrial neighborhoodsConsider two kinds of neighborhoods in M for P de�ned in the loal intrinsi oordinate system

(P,~t1,~t2, ~n):
• a neighborhood Br = Br(P )∩M is the set of all points Q ofM with oordinates (x, y, z) satisfying

(x− xP )2 + (y − yP )2 + (z − zP )2 < r2

• a ylindrial neighborhood Cr = Cr(P ) ∩ M is the set of all points Q(x, y, z) on M suh that
(x− xP )2 + (y − yP )2 < r2.For ommodity the ylindrial neighborhood will used in the �rst estimates of eah proof. The di�erenebetween both neighborhoods will be proved negligible by the next lemma.Lemma 1. Integrating on M any funtion f(x, y) suh that f(x, y) = O(rn) on a ylindrial neighbor-hood Cr(P ) instead of a spherial neighborhood Br(P ) introdues an o(rn+3) error. More preisely:

∫

B(r)

f(x, y)dM =

∫

x2+y2<r2

f(x, y)dxdy + O(r3+n). (3)5



Proof. The surfae area element of a point M(x, y, z(x, y)) on the surfaeM, expressed as a funtion of
x, y, dx and dy is dM(x, y) =

√

1 + z2
xdx

√

1 + z2
ydy. One has zx = −k1x+O(r2) and zy = −k2y+O(r2).Thus

dM(x, y) =
√

(1 + k2
1x

2 + O(r3))(1 + k2
2y

2 + O(r3))dxdywhih yields
dM(x, y) = (1 + O(r2))dxdy. (4)Using (4), the integrals we are interested in beome

∫
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f(x, y)dM = (1 + O(r2))

∫
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f(x, y)dxdy; (5)and
∫

Cr

f(x, y)dM = (1 + O(r2))

∫

Br

f(x, y)dxdy (6)
= (1 + O(r2))

∫

x2+y2<r2

f(x, y)dxdy.This last form is more amenable to analyti omputations, whih explains why Lemma 1 introdues it.Consider polar oordinates (ρ, θ) suh that x = ρ cos θ and y = ρ sin θ with −r ≤ ρ ≤ r and 0 ≤ θ ≤ π.Then for M(x, y, z) belonging to the surfaeM, we have z = − 1
2ρ2(k1 cos2 θ + k2 sin2 θ) +O(r3). Fixing

θ we obtain a urve with equation z = − 1
2ρ2k(θ) + O(r3), where k(θ) = k1 cos2 θ + k2 sin2 θ. With thisnotation, the ondition that (x, y, z) belongs to the neighborhood Br(P ) an be rewritten as ρ2+z2 < r2,that is

ρ2 +
1

4
k(θ)2ρ4 < r2 + O(r5)Computing the boundaries ±ρ(θ) of this neighborhood yield ρ(θ)2 + 1

4k(θ)2ρ(θ)4 − r2 + O(r5) = 0 andtherefore
ρ(θ)2 =

−1 +
√

1 + k(θ)2(r2 + O(r5))
1
2k(θ)2

.This yields ρ(θ) = r − 1
8k(θ)2r3 + o(r3). We shall use this estimate for the error term E appearing in

∫

B(r)

f(x, y)dxdy =

∫

[0,2π]

∫

[0,ρ(θ)]

f(x, y)ρdρdθ

=

∫

[0,2π]

∫

[0,r]

f(x, y)ρdρdθ − E

=

∫
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f(x, y)dxdy − E,with E =:
∫

[0,2π]

∫

[ρ(θ),r] f(x, y)ρdρdθ. Thus
|E| ≤

π

4
sup

x2+y2≤r2

|f(x, y)|k(θ)2r3,whih yields |E| ≤ π|k1|
2

4 supx2+y2≤r2 |f(x, y)|r3. In partiular if f(x, y) = O(rn), then |E| ≤ O3+n.Finally we have
∫

B(r)

f(x, y)dxdy =

∫

Cr∩M

f(x, y)dxdy + O(r3+n). (7)Combining (5), (6) and (7) yields the announed result (3).
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2.2 Curvature EstimationThe next theorem deals with the simplest loal smoothing operator based on raw points and onsistentwith urvature, the baryenter.Theorem 2. In the loal intrinsi oordinate system, the baryenter of a neighborhood Br(P ) where Pis the origin of the neighborhood has oordinates xO = o(r2), yO = o(r2) and zO = −Hr2

4 + o(r2), where
H = k1+k2

2 is the mean urvature at P .Proof. By Lemma 1 applied to the numerator and denominator of the following fration, we have
zO = −

∫
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zdM
∫
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dM
= −
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x2+y2<r2 z(x, y)dxdy + O(r5)
∫

x2+y2<r2 dxdy + O(r3)

=−

∫
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2 (k1x
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]
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∫
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+ O(r3)
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2πr2

∫ r

ρ=0

∫ 2π

θ=0

ρ2(k1 cos2 θ + k2 sin2 θ)ρdρdθ + o(r2)

=−
r2

8π
(k1π + k2π) + o(r2)

=−
Hr2

4
+ o(r2.)A similar but simpler omputation yields the estimates of xO and yO.Theorem 2 states that projeting a point onto the neighborhood baryenter approximates the meanurvature motion. We shall disuss later on why, in spite of Theorem 1, the baryenter annot be usedfor implementing the mean urvature motion.2.3 Surfae motion indued by projetions on the regression planeThe main tool of the sale spae will be a simple projetion of eah surfae point P on the loal regressionplane found by loal ovariane analysis. The projeted point is alled P ′. Let us �rst ompare the normalto the loal regression plane with the point normal ~n(P )Lemma 2. The normal ~v to the PCA regression plane at P ∈M is equal to the surfae normal at point

P , up to a negligible fator: ~v = ~n(P ) + O(r).Proof. The loal PCA regression plane of point P is de�ned as the plane passing through the baryenterof the neighborhood Br(P ) and with normal ~v minimizing:
I(~v) =

∫

Br(P )

|〈~v, PP ′〉|2dP ′ s.t. ‖v‖ = 1Let the oordinates of ~v be (vx, vy, vz). We have
I(~v) =

∫

Br

(vxx + vyy + vz

1

2
(k1x

2 + k2y
2) + o(r2))2dxdy.Considering the partiular value ~v = (0, 0, 1) shows that the minimal value Imin of I(~v) satis�es Imin ≤

O(r6). In onsequene the minimum (vx, vy, vz) satis�es vx ≤ O(r) and vy ≤ O(r). Thus vz ≥ 1− O(r)and therefore ~v = ~n(P ) + O(r).By Lemma 2, projeting P onto the regression plane indues a motion whih is asymptotially inthe normal diretion: P ′P is almost parallel to ~n(P ). A onsequene is that the simple operation ofprojeting eah surfae point P onto its loal regression plane approximates a 3D sale spae (meanurvature motion) as shown in the next theorem. 7



Figure 3: Visualization of the raw point loud showing the irregular sampling of our Tanagra input data.The loud has been uniformly and randomly subsampled to visualize the sampling variations. Otherwise,the loud would look ompletely dense). This is a top view of the �gurine in �g. 11(a)Theorem 3. Let Tr be the operator de�ned on the surfae M transforming eah point P into its pro-jetion P ′ on the loal regression plane. Then
Tr(P )− P = −

Hr2

4
~n(P ) + o(r2). (8)Thus, this operator is tangent to the mean urvature motion (for theoretial results on the Mean CurvatureMotion for surfaes, see, for example [ATW93℄).Proof. By Theorem 2 the baryenter O of Br has loal oordinates ~PO = (o(r2), o(r2),−Hr2

4 + o(r2)).On the other hand ~PP ′ is proportional to ~v. Thus by Lemma 2 ~PP ′ = λ(O(r), O(r), 1 − O(r)). Toompute λ, we use the fat that P ′ is the projetion on the regression plane of P , and that O belongsby de�nition ot this plane. This implies that ~PP ′ ⊥ ~OP ′ and therefore
λ2O(r2) + λ(1 −O(r))(H

r2

4
+ o(r2) + λ(1−O(r))) = 0,whih yields λ = −Hr2

4 + o(r2) and therefore
~PP ′ = (O(r3), O(r3),−

Hr2

4
+ o(r2)) = −

Hr2

4
~n(P ) + o(r2).3 Disrete TheoryThe main di�erene with the previous theory is the irregular sampling. Indeed, the raw triangulationsanner sampling density is highly linked to the surfae geometry and an vary a lot (�g 3).The previous theorems assume that the surfae is a uniform Lebesgue mesure. Their appliabilityto a raw data set point requires some adjustment and some disussion. A onstant sampling densityis assumed by the theorem and an be approximated by weighting eah point by a weight inverselyproportional to its initial density, as proposed in [UH08℄. More preisely, let p be a point and Nr(p) itsneighborhood on the surfae, de�ned as the set of all points q inMs suh that ‖p− q‖ < r. Eah point qshould ideally have a weight 0 ≤ w(q) ≤ 1 omputed so that for all p, ∑

q∈Nr(p) w(q) = 1. This amountsto solve a huge linear system. For this reason, we shall be ontented with ensuring ∑

q∈Nr(p) w(q) ≃ 1 bytaking w(p) = 1
♯(Bp(r)) . Let O be the weighted baryenter of this neighborhood. In R

3, the oordinatesare written with supersripts e.g. the oordinates of a point u are (u1, u2, u3). Thus, for i = 1, 2, 3,
Oi = 1

P

q∈Nr (p) w(q)

∑

q∈Nr(p) w(q)qi. The entered ovariane matrix Σ = (mij)i,j=1,··· ,3 is de�ned as8



mij =
∑

q∈Nr(p) w(q)(qi −Oi) · (qj −Oj) for i, j = 1, 2, 3. Let λ0 ≤ λ1 ≤ λ2 be the eigenvalues of Σ withorresponding eigenvetors v0, v1, v2. For k = 0, 1, 2,
λk =

∑

q∈Nr(p)

w(q)〈(q −O), vk〉
2. (9)Eah eigenvalue gives the variane of the point set in the diretion of the orresponding eigenvetor.Sine v1 and v2 are the vetors that apture most variations, they de�ne the PCA regression plane.The normal v0 to this plane is the diretion v minimizing ∑

q∈Nr(p) w(q)〈(pi −O), v〉2. We showed thatprojeting the point onto its loal regression plane is a good approximation of the mean urvature motionand that, asymptotially, it is the same as projeting the point to the baryenter of the neighborhood.Disussion: Both Theorems 2 and 3 permit a priori to implement the mean urvature motion on theraw data point set. The numerial appliation of these theorems depends nonetheless on the assumptionthat the Lebesgue measure on the surfae is well approximated by its sample density. This is not truefor the baryenter method of Theorem 2. Iterating the baryenter method with a small neighborhoodand a slightly varying sample density leads to a loal lustering of the samples. Indeed, a too loalneighborhood in an irregular sampling always has some loal asymmetry. Thus, the baryenter methodprovokes a normal motion, but also a non negligible tangential motion to the surfae. More rudely said,the algorithm sending eah point to the baryenter of its neighborhood is nothing but the well knownMean Shift �lter [Che95℄, whih is used for data lustering. This is illustrated in �g. 4. Even thoughthe point distribution on the sphere is probabilistially uniform, sample lustering ours. Theorem 2is e�etive in the sense that globally the sampled sphere evolves in a sampled sphere. But the samplesare not moving only in the normal diretion. We therefore needed a �lter whih preserves samplingirregularity while keeping the asymptoti mean urvature motion property. When applying the projetion�lter, no point luster is reated, sine there is no tangent shift, but only a motion along the normaldiretion. Theorem 3 is in that ase e�etive with an fairly small neighborhood. This fat is easilyexplained. Take any irregular sampling of the tangent plane to the surfae. Then the linear regressionwill always �nd bak the right plane if all samples are not aligned. This good behaviour is experimentallyillustrated in �g. 4.
(a) Original sam-ples on a sphere (b) 4 iterations ofMean Shift () Four iterationsof the projetion�lterFigure 4: Comparison of the lustering e�et for the mean shift �lter and the projetion �lter on arandomly sampled sphere. Clusters appear when the mean shift is iterated, whereas the sampling densityis preserved with the projetion �lter �lter. The undesired mean shift lustering e�et is due to atangential motion to the surfae aused by the irregular sampling. This tangential motion is avoidedwith the normal motion, whih estimates orretly the normal diretion by omputing the regressionplane, even with irregular samplingComputing urvatures As a onsequene of Theorem 3, the urvature of a point an be omputedwithout any surfae �tting step. It is enough to ompute 4

r2 〈n, P −P ′〉. On Figs 5, and 6, the urvatureis omputed on various types of shapes. 9



Figure 5: Curvature of the Tanagra raw point set

Figure 6: Curvature of the san of diamond shaped mire used in our lab (5m diameter)
10



Figure 7: Initial surfae: a sharp edge with angle π
3 . This is a 3D surfae, and the �gures depit itsorthogonal projetion in the diretion of the edgeBak propagation The notion of sale spae has been invented in image proessing for detetingedges at a oarse sale, and then traking them bak to their �ne sale loation. The oarse sale isomputed by onvolving the image with Gaussians, or equivalently by applying the heat equation. Theedge bakward traking has always been problemati, beause the heat equation is not reversible: itis not easy to deide where an edge deteted at sale t ame from at sale 0. In the ase of surfaes,however, the reverse normal motion de�nes a natural baktraking. The mean urvature motion writes

dP

dt
= H(P )~n(P ) (10)where H(P ) is the mean urvature at P (whose sign depends on the normal orientation), and ~n(P ) thenormal. Thus, a normal motion an be de�ned for every point P0 on the initial surfae as a solutionof (10) onsidered as an ordinary di�erential equation with initial point P0. Thus, the bakward salespae is trivial, provided the forward MCM implementation atually implements the evolution of eahraw data set point P0. Let us onsider a point Pt and its evolution Pt+1 at steps t and t+1. Now, we anbuild the sequene dP (t) = Pt+1 − Pt and the reverse sale spae operator P−1

t (Pt+1) = Pt+1 − dP (t),this operator allows to go bakward in the sale spae evolution from step t + 1 to 0. This is exatly theonstrution proposed in [PKG06℄. If we only need to go from step t to the initial data 0, without anyintermediate step, the operator is even simpler to build, sine we only need to store for eah point P (t)its initial position P−1
t (Pt) = P0. This reverse sale spae operator will be alled bak propagation, orbak transportation.3.1 Projetion on a higher order regression surfae[CP03℄ proved that a degree n polynomial �tting estimates all kthorder di�erential quantity to auray

O(hn−k+1). At �rst sight this suggests implementing the mean urvature motion by performing a degree2 regression instead of the plane regression. This would yield a diret urvature estimate by omputingexpliitly the fundamental form. However, this estimation annot be turned into an iterative projetionoperator. In [PKG06℄ the Moving Least Squares Projetion (projeting the point onto the loally �ttedleast squares surfae) was proposed as a sale spae operator, but no proof was made of the onsistenyof these iterated projetions with the di�usion equation. Fitting a degree two polynomial to the pointset leaves error terms of third order or more. This means that the motion indued by suh a projetionis proportional to partial di�erential operator with order larger than 2, whereas the PDE we are approx-imating relies on seond order spatial derivatives. This fat an be experimentally heked by omparingiterations of the 2nd order MLS projetion with iterations of our �rst order projetion operator on asharp edge (7). Figs 8 and 9 show the edge evolution. As proved in Theorem 3, the �rst order projetionimplements a mean urvature driven motion where highly urved points evolve faster than low urvedpoints, and �at points do not move. On the ontrary the motion indued by the MLS projetion is nosmoother. It enhanes the edge and reates a higher order singularity.4 Input DataThe algorithms desribed in the next setions are devised for highly aurate point louds aquired by alaser sanner. Three objets aquired by our sanner devie will be used in the following experiment. The11



(a) Iteration 1 (b) Iteration 2 () Iteration 3 (d) Iteration 4Figure 8: Iterated MLS projetion operator (4 iterations). It reates a singularity on the edge. IteratedMLS an be used as a sale spae only with degree 1 surfae, beause the iterated operator is onsistentwith the mean urvature motion

(a) Iteration 1 (b) Iteration 2 () Iteration 3 (d) Iteration 4Figure 9: Sale spae operator: the order 1 iterated MLS (four iterations). The edge is smoothed outniely. Indeed, this operator is onsistent with the mean urvature motion
12



�rst one is a Tanagra �gurine. This objet is a mould of a fourth entury B.C. Greek �gurine obtainedat the Museum of Cyladi Arts, Athens (�g. 11(a)). It is 22m high and the point loud ontains 6 ·106points. The seond one is a geometri 5m long diamond shaped mire ontaining 2.5 · 105 points, andthe third one is a reprodution of a Nefertiti head �gurine (see �g. 20) aquired at the Louvre Museum,Paris ontaining 3 · 106 points. Thanks to a very aurate alibration of the laser sanner devie, theoutput is a well registered point loud ontaining a negligible warp. Sine the data point set proessingrelies on deteting the points ontained in a ball entered at eah given point, an otree struture is builtto to aelerate the neighborhood omputations.Tests will also be made on objets of the Stanford Fragment Urbis Romae database. In that ase aregistration is needed to have a point loud representing the whole objet. Sine we do not address thesweep registration problem in this paper, we will use single sweeps for our meshing experiments. It isinteresting to note that even if the mesh obtained using two badly registered point louds is not goodenough for visualization, the deteted feature lines are still oherent provided that the registration wrapis not too important (see �g. 23 for feature extration on a surfae ontaining more than one sweep).The points aquired are non-oriented. An important feature of the sale spae operator we justde�ned is that it does not need a previous surfae orientation to proeed. However, if we want to inferthe urvature sign from the sale spae, we shall need a oherent orientation. The orientation will beobtained thanks to the sale spae. This is the objet of the next setion.5 First appliation: sale spae raw data point orientationGiven an initial non oriented raw point loud the surfae orientation is a muh needed information.Finding normal diretions is very easy, sine a loal PCA yields the diretion orresponding to the leasteigenvalue of the loal ovariane matrix. This diretion is a good approximation of the normal diretion.We must then pik one of two possible orientations, and this hoie must be loally oherent. The idea isto start by piking a random orientation for one point and then propagate it to the neighboring points.Now, sharp edges or a messy surfae may fool suh a propagation. If, however, the surfae is smoothedenough, the propagation of the normal is safe. Thus the overall tehnique to orient the raw data set willbe to smooth it by the sale spae, to orient the smoothed surfae, and to transport bak this oherentorientation to the initial data points.The �rst tool to realize this program is a simple propagation method for a point p whose neighborhood
Nr(p) ontains some previously oriented points. The orientation is transmitted from a point to the nextif their normal diretions are similar. The algorithm is summed up below:OrientateFromNeighbors(p,r,t)Algorithm 1: OrientateFromNeighbors(p,r,t)Data: p an unoriented point, a threshold 0 < t < 1, a radius r, the set Nr(p) of p's neighborswithin radius rResult: true if the point was oriented, false otherwiseCompute p's normal diretion n by loal PCA;1

n̄← normalized mean of already oriented neighbors' normals;2 if (n̄ · n)2 > t then3 if n̄ · n > 0 then4
n(p) = n;5 else6
n(p) = −n;7 end8 Return true;9 else10 Return false;11 end12Sale spae Point Cloud Orientation algorithm The input parameters are the radius r and athreshold 0 ≤t≤ 1. 13



Algorithm 2: Sale spae Point Cloud OrientationData: A point loud P , a radius r, an update parameter a > 1Iterate the projetion �lter Tr and keep trak of eah raw data point sample (Mean Curvature1 Motion);Find a point p0 in a �at area, pik its orientation and mark it as oriented. Add its neighbors to2 the pile S;while S is not empty or S does not beome onstant do3 Take p the �rst point in S;4 if orientateFromNeighbors(p,r,t) then5 Mark the point as oriented and remove p from S;6 end7 Add p's neighbors to S;8 end9 Add all remaining unoriented points to S;10 while S is not empty and ♯S does not beome onstant do11
r = αr;12 for p in S do13 Perform orientateFromNeighbors(p,r,t);14 end15 end16Steps from 10 to the end are neessary beause adding neighbors of points to the pile might not beenough to over the whole loud due to sampling irregularities. One this proedure is over, there mightremain non oriented points. These points are usually isolated points, and it is simplest to ignore them.Atually, in all our experiments the number of remaining non oriented points was below 0.1%. At eahstep the radius is multiplied by an α > 1 fator. In step 12, the radius r is hanged. Thus all normalsare not omputed with the same radius. This is why we must reverse the sale spae to ome bak tothe original point loud. At sale 0, reompute the normal diretion by loal PCA for all points andpik the orientation whih has positive salar produt with the previous normal. The whole proess issummed up in algorithm 3. It is a �rst straightforward appliation of the sale spae framework, wherethe information is omputed at a oarse sale and propagated bak to the �nest sale.Algorithm 3: Point Cloud ReorientationData: An oriented point loud P , a radius rResult: A point loud with normals omputed at the same salefor p ∈ P do1 Compute the normal ~v of p's neighbors Nr(p) by loal PCA;2 if 〈~n(p), ~v < 0 then3

~n(p) = −v;4 else5
~n(p) = v;6 end7 end8 Having oriented the surfae allows us to de�ne positive and negative urvature level sets and 0-urvature level lines, as will be shown in setion 7.6 Sale spae meshingWe now disuss how to build a mesh on a high preision point loud. Diret meshing is not possiblebeause of the surfae osillation due to texture. The idea is to perform meshing on the smoothed surfaeand to transport this mesh bak on the original point loud. We need an e�ient triangulation tehniquesuh as [BMR+99℄, [CSD04℄. The only requirement on the algorithm is that the mesh should interpolatethe points. The �nal verties must be a subset of the original points almost idential to the raw data14



set point. This is not the ase with level set methods ([KBH06℄, [HDD+92℄, [Kaz05℄,[LC87℄, [CA97℄ and[LGS06℄). The whole pipeline was implemented using the Ball Pivoting Algorithm (BPA) [BMR+99℄.The method proeeds as follows:Algorithm 4: Sale Spae Meshing AlgorithmData: A point set with omputed normalsResult: A mesh of the original 3D data point setIterate (four times) the projetion �lter Tr and keep trak of eah raw data point sample: this is1 the forward mean urvature motion;Mesh the smoothed samples;2 Transport the mesh bak to the original points (thus reverting the mean urvature motion).3 To set the radius automatially, we an get a good approximation of what a good radius would bewhile we ompute the otree to sort the points. Indeed the root of the otree is the bounding box ofall points. Let us all Lmax the length of its largest side. Then, eah ell represents a 3D ube withsize Lmax/2d where d is the depth of the ell. Counting the number of points in that ell gives anapproximation of the number of neighbors of a point ontained in this ell for a spherial neighborhoodof radius rd = Lmax/2d+1. Performing this approximation in all non empty ells at the same depth givesan approximation of the number of neighbors for spherial neighborhoods with radius rd. To perform theprojetion �lter, the minimum number of neighbors of a point is 3 (inluding the point itself), beausewe need to estimate a regression plane. But having only 3 neighbors will lead to instable regression planeestimations. To have a robust geometri proessing, our experiments led us to onsider 30 neighbors agood value. Of ourse, sine the same radius is used for all points, it may our that for some points,the hosen radius does not ensure enough neighbors to perform the plane regression, those points areirrelevant and should be eliminated. Sine we deal with a dense point loud, removing them shouldnot a�et the point loud. In all our experiments we removed less than 0.1% of points. With thisautomatially set radius, only a few sale spae iterations are neessary: in all our experiments fourprojetion iterations were used.Algorithm 5: Setting the radius automatiallyData: An otree with depth d ontaining the point loud (root is at depth d and leaves are atdepth 0) Lmax size of the otree bounding box. A minimum number of neighbors NminResult: A radius r
np = 0;1
l = 0;;2 while np < Nmin do3

n = 0;4
np = 0;5 for all non empty ells at depth l do6

n = n + 1;7
np = np + cell→ Npoints;8 end9

np = np/n;10
l ← l + 1;11 end12

r = Lmax/2d−l+1;13Transporting bak the onnetivity information (step 3) an in theory lead to a self rossing mesh. Indeed,if two points lie too lose to eah other they may "swith position" in the sale spae iterations, leadingto a ompliated surfae topology. This problem an be solved by deteting all pairs of intersetingtriangles. Then any remeshing algorithm an solve the problem by swithing edges in quadrilaterals.However, this additional step was not implemented for two good reasons. First, the existene of a fewinterseting triangles is no serious visual inonveniene. Seond, we did not �nd any suh rossing in allof our experiments.Fig. 10 illustrates the mesh rendering of a simple geometri pattern by a bak propagated mesh. Fig10(a) shows the oarse sale mesh, i.e. the mesh obtained after four sale spae iterations. The sharpedges have been smoothed out. Nonetheless, a diret bak-projetion of this mesh at the original sale15



allows to reover the sharp edges (�g 10(b)). The result an be ompared to the meshes obtained bydiret meshing (Fig. 10(), simple Ball Pivoting Algorithm) and 10(d) (level set method [KBH06℄). Inthat simple ase with no texture and little noise, there is no signi�ant di�erene between 10(b), 10(),and 10(d)). Sale spae meshing reovers edges as well as other state of the art methods.Figs. 11 shows the appliation of sale spae meshing with a mesh rendering at �ne and oarse sale.We an see on Fig. 11 that the surfae texture is lost at a oarse sale, but ompletely and auratelyreovered by simply propagating the mesh information to the initial points at �ne sale. Comparing thebak projeted mesh to the result of a diret meshing of the initial samples (Fig. 12) shows that thesale spae triangulation is muh more preise. In fat, a diret meshing is not appliable. It reates,among other artifats, many spurious triangles. Fig. 13 shows a omparison between the reonstrutionobtained by VRIP reonstrution method (see [CL96℄) and sale spae meshing. The sale spae methodprodues a muh more preise mesh, as an be seen on the lose up of �gs 14 and 15
(a) Coarse sale mesh (b) Bak-projetedmesh () Diret Meshing (d) Poisson MeshingFigure 10: Multi-resolution mesh reonstrution from the Diamond point set illustrating the reovery ofsharp edges. In that ase the objet has no texture and almost no noise. Thus all methods give the sameresult, whih proves the onsisteny of mesh bak propagation methodFig. 11 displays the many aquisition holes at the bottom of the Tanagra �gurine, in the tuni's foldsor near the right foot. By the sale spae meshing these holes are not �lled in and an be deteted andharaterized by their border Jordan urve (see Fig. 16). Sine the Ball Pivoting Algorithm is used fortriangulation, no triangle larger than a given threshold has been reated. Indeed, to form a triangle,three points must lie on a sphere of given radius r. Thus, low density areas are onsidered holes. Fig.12 illustrate the loss of details with level sets methods. Level set methods reate a smoothed zero levelsurfae of the signed distane to the raw data set point. They do not ontain the raw data set points andlose trak of them. Fig. 18 shows that not only these methods, but even diret meshing methods anmiss small details. Fig. 17 illustrate why sale spae meshing allows to reover those details: standardmeshing at a smooth sale is simply easy beause details have been unfolded. It is then trivial to bakpropagate the verties of the smooth mesh to their initial positions. This yields a diret triangulation ofthe original raw data set.The quantitative performane of eah algorithm an be evaluated by meshing simple shapes. Testpoint sets were built by sampling perfet geometri shapes (for example a sinusoidal surfae). The rootmean square distane of the triangle baryenters of the mesh to the real surfae were ompared foreah meshing method. This distane is omputed by the Newton-Raphson method. The �rst surfae"Wave 1" has equation z = 0.2 cos(5x), "Wave 1" has equation z = 0.2 cos(5x) ∗ cos(5y), the thirdsurfae is a regularly sampled sphere and the last one is a sum of two lose and narrow Gaussians

z = − exp(− (x−0.1)2

0.01 − exp(− (x+0.1)2

0.01 . The RMSE results are shown in Table 19. It is obvious from theseresults that the Poisson reonstrution or any level set method annot be applied to reover a surfaewith very thin details. On shapes ontaining no sharp edges, diret BPA and sale spae meshing performomparably. On the thin struture reated by adding two very lose Gaussians, the loss of preision ofBPA is lear. This phenomenon is similar to the one observable in Fig. 12() where BPA does notreover thin details. 16



(a) initial objet(22 m high) (b) Coarse salemesh () Bak-projeted mesh (d) Photo of thebak side (e) Detail sele-tion

(f) Detail expansion(1) (g) Detail expansion(2)Figure 11: Multi-resolution mesh reonstrution of the Tanagra point set illustrating the reovery of �netexture. All bak propagated textures are present on the original7 Sale Spae geometri features extrationHaving a method to ompute urvature diretly on the data point set, and a method to baktrak rawpoints, has onsequenes on two losely related problems: the ridge-valley lassi�ation and the ompu-tation of in�exion lines. In�exion lines are de�ned as the urvature zero-rossings: they are thereforeequivalent to the �zero-rossing of Laplaian�proposed by Hildreth and Marr [MH80℄. These urves arelosed and segment the shape into ridges (positive mean urvature points) and valleys (negative meanurvature points). In order to ahieve this sale-dependent segmentation, several sale spae iterationsyield a sale-dependent urvature. The sign of this multisale urvature yields a binary lassi�ationin ridge and valley regions (see 20). Of ourse, the presene of �ne textures hinders the detetion oflarge sale ridges and valleys. They are instead easily omputed after several sale spae iterations, andtransported bak on the initial raw data set point. We have de�ned in�exion lines as zero-rossings of theurvature. They therefore separate ridges (positive urvature) from valleys (negative urvature). At eahsale, urvature level lines an be drawn on the sale spae mesh of the raw original samples as de�ned inSetion 6. For α ∈ R, to extrat a α-level line, we detet edges whose extremities P1 P2 have urvatures
H(P1), suh that (H(P1)− α) · (H(P2)− α) < 0. In�exion lines verties are linearly interpolated along17



(a) Piture of the Logo (b) Bak-propagatedmesh () Diret mesh (d) Reonstrutionobtained by PoissonReonstrutionFigure 12: Comparison between the diret mesh and the bak projeted mesh. The width of this logois approximately 1m. Diret meshing reates many wrong triangles. Compare the details in 12(b) and12(). See �gs 17-18 for an explanation of this di�erene.these edges and linked using mesh the onnetivity information. The algorithm is summed in algorithm6, an edge e will be alled α-rossing if its extremities verify (H(P1)− α) · (H(P2)− α) < 0.Algorithm 6: Extrating the urvature level linesData: A meshed point loud with urvature information for eah pointResult: L a set of in�exion lineswhile There remain unmarked α-rossing edges do1
l an empty list of points;2 Find an α-rossing edge e0;3 Mark e0;4 Choose T one of the adjaent triangles to e0;5
e← e0;6 Add e to the right of l;7 while e is not a border edge and e is not e0 do8

eprev = e Find e the other α-rossing edge of T ;9 Mark e;10 Add e to the right of l;11 Pik T adjaent to e but not to eprev;12 end13
L ← L∪ l;14 end15 The algorithm is based on the fat that eah triangle with one α-rossing edge has two α-rossingedges. Sine the in�exion lines surround the surfae rest lines, rest lines an be onsidered as a sortof skeleton of well hosen level lines, as an be seen on Fig. 22. Furthermore, in�exion lines are wellde�ned losed Jordan urves. The only open in�exion lines are those that end on a hole. At the bottomof the Tanagra �gurine some open in�exion line end up on the aquisition holes (see Fig. 16).8 ConlusionThe inreasing auray of 3D triangulation sanners requires an e�ort to reonsider the whole renderinghain, and to obtain high quality visualization, atually better than those obtained by photography. Thepresent paper has proposed a strategy to mesh the raw original surfae, therefore ensuring a faithfulrendering and an aurate hole detetion. Future work will be on the testing of a losed sanning loopwith our experimental sanner. The sanner will be steered towards the deteted holes to get a data18



(a) Piture of the Objet (b) Bak-projeted mesh () Reonstruted Mesh availableon the FUR websiteFigure 13: Comparison on a piee of the Fragment Urbis Romae (FUR) database. Texture and detailsare better reovered on the bak-propagated mesh (middle). Compare with the VRIP reonstrutionmethod available on the FUR website (right)

(a) Bak-projeted mesh (b) Vrip Reonstruted MeshFigure 14: Closeup of a piee of the (FUR) database reonstruted by sale spae meshing (left) andVRIP method (right)point set as omplete as geometrially possible. Future work will also reonsider the registration andfusion algorithms for several sanning sweeps in textured areas. The �nal goal would be to performaurate supperresolution from several sweeps.Aknowledgements The authors would like to aknowledge the Stanford Digital Forma Urbis RomaeProjet (http://formaurbis.stanford.edu) for the fragments and photographs of �gures 13, 14 and 15 andespeially professor Mar Levoy for allowing us to use the fragments data. Those photographs and rawdatas are property of both the Sovraintendenza in Rome and Stanford University.Referenes[ABCO+03℄ Mar Alexa, Johannes Behr, Daniel Cohen-Or, Shahar Fleishman, David Levin, and Clau-dio T. Silva, Computing and rendering point set surfaes, IEEE Transations on Visualiza-tion and Computer Graphis 9 (2003), no. 1, 3�15.19



(a) Original Fragment (b) Bak-projeted mesh () Level Set meshFigure 15: Closeup of a piee of the (FUR) Database reonstruted by Sale Spae Meshing and PoissonReonstrution Method

Figure 16: The holes in the Tanagra are deteted and surrounded by Jordan urves after sale spaemeshing[ACSTD07℄ P. Alliez, D. Cohen-Steiner, Y. Tong, and M. Desbrun, Voronoi-based variational reonstru-tion of unoriented point sets, SGP '07: Proeedings of the �fth Eurographis symposium onGeometry proessing (Aire-la-Ville, Switzerland, Switzerland), Eurographis Assoiation,2007, pp. 39�48.[AGB05℄ Elena V. Anoshkina Alexander G. Belyaev, Mathematis of surfaes xi, ima onferene onthe mathematis of surfaes 2005, h. Detetion of Surfae Creases in Range Data, Springer,2005.[ATW93℄ Fred Almgren, Jean E. Taylor, and Lihe Wang, Curvature-driven �ows: a variational ap-proah, SIAM J. Control Optim. 31 (1993), no. 2, 387�438. MR MR1205983 (94h:58067)[BC94℄ J. Berkmann and T. Caelli, Computation of surfae geometry and segmentation using o-variane tehniques, IEEE Trans. Pattern Anal. Mah. Intell. 16 (1994), no. 11, 1114�1116.[BMR+99℄ Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cláudio Silva, and Gabriel Taubin,The ball-pivoting algorithm for surfae reonstrution, IEEE Transations on Visualizationand Computer Graphis 5 (1999), 349�359.[CA97℄ Patriia Crossno and Edward Angel, Isosurfae extration using partile systems, IEEEVisualization '97 (Roni Yagel and Hans Hagen, eds.), 1997, pp. 495�498.20



(a) Original sam-ples (b) Points proje-tion motion () Resultingsamples (d) Mesh ofthe resultingsamples (redline) (e) Bak pro-jeted Mesh (redline)Figure 17: 2D example of the steps performed by the sale spae meshing algorithm
(a) Original samples (b) Level set method(mesh will be sampledon the 0 level set=redurve) () Diret Meshing(red line) (d) Sale Spae Mesh-ing (red line)Figure 18: Comparison of three meshing methods[Che95℄ Yizong Cheng, Mean shift, mode seeking, and lustering, IEEE Trans. Pattern Anal. Mah.Intell. 17 (1995), no. 8, 790�799.[CL96℄ Brian Curless and Mar Levoy, A volumetri method for building omplex models from rangeimages, SIGGRAPH '96: Proeedings of the 23rd Annual Conferene on Computer Graphisand Interative Tehniques (New York, NY, USA), ACM Press, 1996, pp. 303�312.[CP03℄ F. Cazals and M. Pouget, Estimating di�erential quantities using polynomial �tting of osu-lating jets, SGP '03: Proeedings of the 2003 Eurographis/ACM SIGGRAPH symposiumon Geometry proessing (Aire-la-Ville, Switzerland, Switzerland), Eurographis Assoia-tion, 2003, pp. 177�187.[CSD04℄ David Cohen-Steiner and Frank Da, A greedy delaunay-based surfae reonstrution algo-rithm, Vis. Comput. 20 (2004), no. 1, 4�16.[CSM03℄ David Cohen-Steiner and Jean-Marie Morvan, Restrited delaunay triangulations and nor-mal yle, SCG '03: Proeedings of the nineteenth annual symposium on Computationalgeometry (New York, NY, USA), ACM, 2003, pp. 312�321.[DIOHS08℄ Joel Daniels II, Tilo Ohotta, Linh K. Ha, and Claudio T. Silva, Spline-based feature urvesfrom point-sampled geometry, Vis. Comput. 24 (2008), no. 6, 449�462.Method Wave 1 Wave 2 sphere sharpSale Spae 0.00019 0.00028 0.000041 0.00045BPA 0.00018 0.00024 0.00004 0.0012Poisson 0.0015 0.043 0.00024 0.004Figure 19: Quantitative omparison of three meshing methods, sale spae meshing, Ball Pivoting Algo-rithm and Poisson Reonstrution 21



(a) Initial ob-jet (b) Initialsegmentation () First pro-jetion (d) Seondprojetion (e) Thirdprojetion (f) Bak pro-jetion at theoriginal posi-tionFigure 20: Classi�ation of the Nefertiti point set. Four steps of the sale spae are applied to the pointset. The �nal oarse sale lassi�ation is transported bak to the original point positions. The �nallassi�ation aptures the global geometri properties of the shape at the desired sale

Figure 21: Tanagra in�exion lines (front part), dividing the folds in ridges and valleys.22
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(b) Showing in�exion lines with length above 2mm () Showing in�exion lines with length above 3m

(d) Showing in�exion lines with length above 6m (e) Showing in�exion lines with length above 22mFigure 23: Extration of in�exion lines of the FUR fragment 10g. Some of the deteted lines are due tosurfae irregularity and not to surfae arving. They are in general short and are �ltered out by a lengththreshold
24



[Lev98℄ David Levin, The approximation power of moving least-squares, Math. Comput. 67 (1998),no. 224, 1517�1531.[Lev03℄ , Mesh-independent surfae interpolation, Geometri Modeling for Sienti� Visual-ization (Hamann Brunnett and Mueller, eds.), Springer-Verlag, 2003, pp. 37�49.[LFM96℄ R. Lengagne, P. Fua, and O. Monga, Using rest lines to guide surfae reonstrution fromstereo, ICPR '96: Proeedings of the 1996 International Conferene on Pattern Reognition(ICPR '96) Volume I (Washington, DC, USA), IEEE Computer Soiety, 1996, p. 9.[LGS06℄ F. LEVET, X. GRANIER, and C. SCHLICK, Fast sampling of impliit surfaes by partilesystems, Shape Modeling International (SMI 2006) - short paper, Fast sampling of impliitsurfaes by partile systems, jun 2006.[LP05℄ Carsten Lange and Konrad Polthier, Anisotropi smoothing of point sets, Comput. AidedGeom. Des. 22 (2005), no. 7, 680�692.[MD03℄ Carsten Moenning and Neil A. Dodgson, A new point loud simpli�ation algorithm, Pro.3rd Int. Conf. on Visualization, Imaging and Image Proessing, 2003, pp. 1027�1033.[MD04℄ , Intrinsi point loud simpli�ation, Proeedings of the 14th GraphiCon '04, 2004.[MDSB02℄ M. Meyer, M. Desbrun, P. Shr�der, and A. Barr, Disrete di�erential geometry operatorsfor triangulated 2-manifolds, International Workshop on Visualization and Mathematis,2002.[MH80℄ D. Marr and E. Hildreth, Theory of edge detetion, Proeedings of the Royal Soiety ofLondon. Series B, Biologial Sienes, 207 (1980), no. 1167, 187�217.[MOG09℄ Quentin Mérigot, Maks Ovsjanikov, and Leonidas J. Guibas, Robust Voronoi-based Cur-vature and Feature Estimation, SIAM/ACM Joint Conferene on Geometri and PhysialModeling (San Franiso États-Unis d'Amérique), 2009 (Anglais).[MS02℄ Faundo Memoli and Guillermo Sapiro, Distane funtions and geodesis on point louds,Teh. report, Eletrial and Computer Engineering, University of Minnesota, Minneapolis,MN 55455, 2002.[MSR07℄ Evgeni Magid, Otavian Soldea, and Ehud Rivlin, A omparison of gaussian and meanurvature estimation methods on triangular meshes of range image data, Comput. Vis.Image Underst. 107 (2007), no. 3, 139�159.[OBS04℄ Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel, Ridge-valley lines on meshesvia impliit surfae �tting, ACM Trans. Graph. 23 (2004), no. 3, 609�612.[OGG09℄ A. C. Oztireli, G. Guennebaud, and M. Gross, Feature preserving point set surfaes basedon non-linear kernel regression, Computer Graphis Forum 28 (April 2009), 493�501(9).[PGK02℄ Mark Pauly, Markus Gross, and Leif P. Kobbelt, E�ient simpli�ation of point-sampledsurfaes, VIS '02: Proeedings of the Conferene on Visualization '02 (Washington, DC,USA), IEEE Computer Soiety, 2002, pp. 163�170.[PKG03℄ M. Pauly, R. Keiser, and M. Gross,Multi-sale feature extration on point-sampled surfaes,Computer Graphis Forum, vol. 22, september 2003, pp. 281�289.[PKG06℄ Mark Pauly, Leif P. Kobbelt, and Markus Gross, Point-based multisale surfae representa-tion, ACM Trans. Graph. 25 (2006), no. 2, 177�193.[PWHY09℄ Helmut Pottmann, Johannes Wallner, Qi-Xing Huang, and Yong-Liang Yang, Integral in-variants for robust geometry proessing, Comput. Aided Geom. Des. 26 (2009), no. 1, 37�60.[PWY+07℄ Helmut Pottmann, Johannes Wallner, Yong-Liang Yang, Yu-Kun Lai, and Shi-Min Hu,Prinipal urvatures from the integral invariant viewpoint, Comput. Aided Geom. Des. 24(2007), no. 8-9, 428�442. 25



[Rus04℄ Szymon Rusinkiewiz, Estimating urvatures and their derivatives on triangle meshes,3DPVT '04: Proeedings of the 3D Data Proessing, Visualization, and Transmission, 2ndInternational Symposium (Washington, DC, USA), IEEE Computer Soiety, 2004, pp. 486�493.[SF04℄ Georgios Stylianou and Gerald Farin, Crest lines for surfae segmentation and �attening,IEEE Transations on Visualization and Computer Graphis 10 (2004), no. 5, 536�544.[Tan05℄ Xiaojing Tang, A sampling framework for aurate urvature estimation in disrete surfaes,IEEE Transations on Visualization and Computer Graphis 11 (2005), no. 5, 573�583,Member-Agam, Gady.[Tau95℄ G. Taubin, Estimating the tensor of urvature of a surfae from a polyhedral approxima-tion, ICCV '95: Proeedings of the Fifth International Conferene on Computer Vision(Washington, DC, USA), IEEE Computer Soiety, 1995, p. 902.[TRZS04℄ Holger Theisel, Christian Rossl, Rhaleb Zayer, and Hans-Peter Seidel, Normal based esti-mation of the urvature tensor for triangular meshes, PG '04: Proeedings of the ComputerGraphis and Appliations, 12th Pai� Conferene (Washington, DC, USA), IEEE Com-puter Soiety, 2004, pp. 288�297.[UH08℄ Ranjith Unnikrishnan and Martial Hebert, Multi-sale interest regions from unorganizedpoint louds, Workshop on Searh in 3D (S3D), IEEE Conf. on Computer Vision and PatternReognition (CVPR), June 2008.[WH94℄ Andrew P. Witkin and Paul S. Hekbert, Using partiles to sample and ontrol impliit sur-faes, SIGGRAPH '94: Proeedings of the 21st Annual Conferene on Computer Graphisand Interative Tehniques (New York, NY, USA), ACM Press, 1994, pp. 269�277.[Wit83℄ Andrew P. Witkin, Sale-spae �ltering., 8th Int. Joint Conf. Arti�ial Intelligene (Karl-sruhe), vol. 2, August 1983, pp. 1019�1022.[YBS05℄ Shin Yoshizawa, Alexander Belyaev, and Hans-Peter Seidel, Fast and robust detetion ofrest lines on meshes, SPM '05: Proeedings of the 2005 ACM Symposium on Solid andPhysial Modeling (New York, NY, USA), ACM Press, 2005, pp. 227�232.[YQ℄ P. Yang and X. Qian, Diret omputing of surfae urvatures for point-set surfaes, Pro-eedings of 2007 IEEE/Eurographis Symposium on Point-based Graphis(PBG).

26


