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tThis paper develops a s
ale spa
e strategy for the meshing and segmentation of 
omplete rawdata points sets. The s
ale spa
e is based on the intrinsi
 heat equation (mean 
urvature motion,MCM). A simple iterative s
heme implementing MCM dire
tly on the raw points is des
ribed, and amathemati
al proof of its 
onsisten
y with MCM given. Points evolved by this MCM implementation
an be trivially ba
ktra
ked to their initial raw position. A 
onsequen
e is that the reversible MCMs
heme permits to �rst orient, and then mesh reliably a raw textured surfa
e. The a

ura
y gain isdemonstrated on ar
haeologi
al obje
ts by 
omparisons with other meshing methods. The obtaineddis
rete 3D s
ale spa
e also 
omplies with its traditional role: It permits to segment the original rawsurfa
e into ridges and valleys 
omputed at 
oarse s
ales, and to draw the meaningful in�exion lineson the raw meshed surfa
e.1 Introdu
tionA growing number of appli
ations involve 
reating numeri
al models for existing obje
ts a
quired bytriangulation laser s
anner. Those s
anners are 
alled triangulation laser s
anner be
ause of the triangleformed by the dete
ted point, the laser emitter and the 
amera. S
anners 
an either produ
e a dire
ttriangulation of points sampled on the surfa
e, or the raw set of points with no 
onne
tivity information.In this paper, only raw input data will be 
onsidered, namely a set of unorganized and non-orientedpoints given by their x, y, z 
oordinates. The fo
us is indeed to build a highly a

urate meshing methodfor these raw data set, with two s
opes: the visualization of the �nest surfa
e details, and a robustsegmentation in ridges, valleys, and s
anning holes. Fig. 1 shows a high pre
ision laser a
quisitionsystem devised for our experiments on small artisti
 and ar
haeologi
al models. The a
quisition error isaround 20µ, allowing in prin
iple to re
over all of the obje
t's texture and �nest details.The main tool that we shall use is a raw data set point smoothing operator 
onsistent with theintrinsi
 heat equation. The intrinsi
 heat equation, or mean 
urvature motion (MCM), is the moststandard way to smooth out a surfa
e. It will be given an implementation that permits to ba
ktra
k theevolved surfa
e to the initial raw data set point. At �rst sight, the proposed MCM implementation is aninstan
e of the moving least square surfa
e method, whi
h performs a lo
al surfa
e regression for ea
hpoint, and proje
ts the point on the regression surfa
e. Yet, this pro
ess will be made iterative. Indeed,mathemati
al and experimental arguments will show that the iterated degree one (planar) regression
onsistently implements the MCM. The proposed MCM implementation 
an therefore be summarized ina few words: it is the iterated proje
tion on the regression plane of a spheri
al neighborhood. Theorem3 will state that by these iterations, ea
h raw data set point moves forward at the speed of the surfa
emean 
urvature in the dire
tion of the surfa
e normal. By the iterated proje
tion algorithm ea
h initialraw data point 
an be tra
ked forward in the surfa
e smoothing pro
ess. But is 
an also be triviallytra
ked ba
kward. As a 
onsequen
e, we shall prove that all dete
ted surfa
e features and stru
tures
an be transported ba
k on the raw data set point. To the best of our knowledge, several appli
ations1



Figure 1: Our laser a
quisition system at LURPA (ENS Ca
han)of this easy reverse s
ale spa
e had not yet been noti
ed. The main appli
ation is to obtain dire
tly atopologi
ally faithful orientation and mesh for the whole raw data set point. A se
ond appli
ation is thea

urate dete
tion of holes in the raw data, useful for further s
anning attempts. A third appli
ation isan easy ridge-valley segmentation of the raw data point set. Comparative experiments will illustrate thata dire
t meshing gives poor results, while the ba
k transported mesh gives an a

urate surfa
e rendering,whose verti
es are simply all initial raw points. Obviously, su
h a 
omplete mesh is not e
onomi
al, butpermits an a

urate rendering of �ne art or ar
haeologi
al pie
es.The use of the mean 
urvature motion, forward and ba
kward, is a dire
t 3D extension of the s
alespa
e paradigm in image pro
essing. Image s
ale spa
e is introdu
ed in the founding Witkin paper[Wit83℄. It 
onsists of applying the heat equation ∂u
∂t

= ∆u to the image, whi
h entails a rapid imagesimpli�
ation. The main image features (the edges) are dete
ted a 
oarse s
ale (large t) and then ba
ktra
ked to their �ne s
ale position. A main di�
ulty of this s
ale spa
e edge dete
tion is the fa
t thatnon straight edges and 
orners are displa
ed by the heat equation. Thus the ba
k tra
king of edges and
orners is not easy, and has therefore provoked a huge literature. The ba
k propagation of a surfa
esegmentation is 
omparatively easier be
ause, as we shall see, the MCM is implementable as a pointevolution from the raw data. It 
an therefore be followed forward and ba
kward.The remainder of this introdu
tion is a review of the state of the art on raw data point set pro
essing,and of the various 
omputation methods of surfa
e 
urvatures and normals.1.1 Building a meshGiven an initial oriented point 
loud most pro
essing methods (be it for rendering, for geometry dete
tionor for any other purpose) begin with building a mesh. The methods are mostly based on de�ning asigned distan
e �eld [HDD+92℄, [KBH06℄, [Kaz05℄. The signed distan
e fun
tion 
an be estimated atany point by 
omputing the distan
e between the point and the regression plane of its k-nearest neighbors[HDD+92℄. Sin
e the neighbors are assumed previously oriented, the distan
e's sign is straightforward.All of these methods indeed need point orientation. However, a level set method whi
h does not need thesurfa
e orientation was re
ently introdu
ed in [ACSTD07℄. Instead of looking for an impli
it fun
tion
f satisfying ∇f = ~n, this method �nds the impli
it fun
tion f whose gradient dire
tion is best alignedwith the normal �eld.Other su

essful methods approximate the distan
e fun
tion using its de
omposition on a lo
al basis:radial basis fun
tions [KBH06℄ or a Fourier basis [Kaz05℄. On
e the distan
e fun
tion is de�ned, extra
t-ing the surfa
e 
orresponds to extra
ting the zero level set of the distan
e fun
tion. This 
an be done byusing the mar
hing 
ubes algorithm [LC87℄ whi
h gives the triangulation of the shape, or by samplingthe zero level set with parti
le systems [WH94℄, [CA97℄. These methods yield meshes that approximatewell the shape, but they always in
lude an approximation entailing some surfa
e smoothing and the lossof �ne texture. A
quisition holes are also �lled in by those methods, the signed distan
e fun
tion giving2



a natural 
lose up of the surfa
e. Nonetheless, for some appli
ations, �lling the holes is questionable. Forexample, if the goal is to build a 
losed loop s
anning pro
ess, the a
quisition holes should be dete
tedrather than �lled in, so as to guide the laser head towards them. High quality laser a
quisition systemshave a potential to a
quire very �ne geometri
 texture details, provided these details are not lost in there
onstru
tion. On su
h data we shall see that an ideal detail-preserving mesh 
an have all raw datapoint set as verti
es.1.2 Raw data point set pro
essingYet, it is impossible to apply a 
lassi
 meshing method dire
tly to the raw data point set. The literaturehas therefore 
onsidered more and more sophisti
ated smoothing and interpolation methods. In [Lev03℄and [Lev98℄, the 
on
ept of "Moving Least Square Surfa
es" (MLS surfa
es) was introdu
ed. MLSsurfa
es are de�ned as the set of stationary points of an operator proje
ting ea
h point to the surfa
e.The MLS algorithm estimates at ea
h point a degree n polynomial from a set of its weighted neighbors.The obtained least square surfa
e 
an be used to proje
t the point on the MLS surfa
e, or to sub-samplethe surfa
e by removing step by step the points with least in�uen
e [ABCO+03℄. The proof of theapproximation power of MLS was published in [Lev98℄. Variations of the MLS algorithm for denoisingpoint sampled surfa
es and preserving edges were proposed in [FCOS05℄ (see also [GTE+06℄, [OGG09℄,[LCOL07℄).Another produ
t of smoothing methods is the dete
tion of geometri
 features. Dete
ting the geometryis important for various appli
ations, one of them being a resampling adapted to surfa
e geometry. In[MD04℄, [MD03℄, the authors simplify a point 
loud by using geodesi
 Voronoi diagrams and fast mar
hingmethods. More theoreti
al work on point 
louds in
lude [MS02℄ where theoreti
al results were presentedfor bounding the error on distan
es de�ned on point sampled surfa
es.S
ale spa
e pro
essing was re
ently extended to meshes and point 
louds. The main di�
ulty isthe 
omputation of the surfa
e instrinsi
 Lapla
ian (or mean 
urvature motion) to apply the intrinsi
di�usion equation ∂x
∂t

= ∆x. For meshes, the standard dis
retization of the Lapla
ian operator is throughthe 
otangent formula [MDSB02℄. For point 
louds, in [PKG06℄, ea
h point is moved in the dire
tion ofits normal proportionally to its 
urvature. The 
urvature is either estimated by a polynomial regressionor by proje
tion on a �tted least square surfa
e (in other terms, by MLS). The reverse operator is builtby storing the displa
ements of ea
h point at ea
h step. A similar s
ale spa
e approa
h will be used here,but with quite di�erent s
opes. In [PKG06℄, the proposed appli
ations are morphing and shape editing.The present paper instead fo
uses on raw meshing and raw surfa
e segmentation. A more te
hni
aldi�eren
e stands in the implementation of the s
ale spa
e: the 
urvature in our MCM implementationis not expli
itly 
omputed, the robust motion being obtained by a simple planar proje
tion operator.In [UH08℄, another MCM dis
retization is proposed. The surfa
e Lapla
ian is 
omputed by buildingan operator Aθ at ea
h point position and for every dire
tion θ in the tangent plane. Aθ moves a point
p proportionally to the 
urvature Hθ of the se
tion 
urve in dire
tion θ. By integrating over θ, it yieldsa mean 
urvature motion. The non-uniform subsampling problem is 
leverly treated by using a nonuniform kernel. The resulting s
ale spa
e is used to dete
t 
hara
teristi
 s
ales of the shape, and regionsof interest.1.3 Computing 
urvaturesComputing 
urvatures reliably on a given surfa
e is 
ru
ial to various appli
ations, the main ones beingto perform anisotropi
 �ltering, i.e. �ltering preserving sharp edges ([HP04℄, [MDSB02℄), and to resamplethe surfa
e a

ording to its 
urvature ([PGK02℄).On meshes, the 
urvature estimation problem has already been investigated in [MDSB02℄ where thefamous 
otangent formula is proven and extended. [Tau95℄ derive an analyti
 expression for estimat-ing the dire
tional 
urvatures in the edge dire
tions. In [Rus04℄, [TRZS04℄, the tensor 
urvature wasestimated on ea
h fa
e of a mesh surfa
e. Other mesh 
urvature 
omputation te
hniques in
lude theuse of the normal 
y
le theory [CSM03℄. For a summary and 
omparison of mesh 
urvature estimationmethods, see [MSR07℄. It is also possible to estimate 
urvatures by building 
urves 
ontained in thesurfa
e and passing through the 
onsidered point [Tan05℄.To determine the 
urvature of a given point, dire
t methods �t a surfa
e (a polynomial or a quadri
)lo
ally to ea
h neighborhood and then 
ompute the fundamental forms in their expli
it form. This allows3



to 
ompute the Weingarten map whose eigenvalues and eigenve
tors are the prin
ipal 
urvatures andprin
ipal dire
tions ([SF04℄, [LFM96℄ among others). In [PGK02℄, the authors simplify meshes usinga geometri
ally 
oherent method (i.e. points lying in �at areas are removed but points lying in highly
urved areas are kept). To determine if points should be removed or not, the 
urvature was repla
edby a new quantity, the surfa
e variation. This quantity is de�ned as the ratio of the least eigenvalueof the 
ovarian
e matrix versus the sum of all eigenvalues. An interesting feature is that it is dire
tly
omputed from the raw data set point. However, the surfa
e variation is a rather 
ompli
ated fun
tionof the prin
ipal 
urvatures and loses their sign. Indeed, one 
an prove:Theorem 1. In the lo
al 
oordinate system the surfa
e variation σ de�ned in [PGK02℄ satis�es
σ =

r2

16

(

k2
1 + k2

2

2
−

1

3
k1k2

)

+ o(r2) (1)where r is the neighborhood radius, and k1, k2 are the prin
ipal 
urvatures.In [BC94℄, another way of 
omputing the 
urvature from an oriented raw data set without surfa
e�tting was presented. It relies on expressing the fundamental forms of a 3D surfa
e as 
ovarian
ematri
es. The authors 
laim that the 
ovarian
e matrix of point normals proje
ted on the regressionplane yields the prin
ipal 
urvatures and their dire
tions. Now, this method requires that the point 
loudbe previously oriented and therefore does not 
ompletely 
ompute the 
urvature on the raw point set.Other approa
hes avoiding surfa
e regression in
lude the 
omputation of integral invariants ([PWHY09℄,[PWY+07℄). They are based on the idea that di�erentiation is not robust in a dis
rete and potentiallynoisy data set, whereas integration is mu
h more resistent to noise. The proofs link the 
omputation ofthe area of the interse
tion of the surfa
e with a ball to the prin
ipal 
urvatures. Another possibility is toadapt the 
urvature estimation of [Tau95℄ to the 
ase of point 
louds as in [LP05℄. Instead of 
onsideringthe edge dire
tion, sin
e no edge information is given for the point 
loud, they 
onsider all dire
tionsfrom the 
enter point to one of its neighbors.More re
ently, measuring the 
ovarian
e of Voronoi 
ells was shown to allow the 
omputation of theprin
ipal 
urvature dire
tions. The soundness of this estimation is proved in [MOG09℄. MLS surfa
eswere also used to derive analyti
 expressions for the 
urvatures of point set surfa
es [YQ℄ .1.4 Feature extra
tionIn a

ordan
e with the edge dete
tion paradigm in image pro
essing, it is 
lassi
 to perform a 3D shapeanalysis by extra
ting the 
rest lines (the real edges) on meshes or point 
louds. Ridge lines are thelo
i of points where the maximal 
urvature takes a positive maximum along its 
urvature line. Valleylines are the lo
i of points where the minimal prin
ipal 
urvature attains a negative minimum along its
urvature line. These points 
an be linked to form lines (see among others [OBS04℄, [AGB05℄, [LFM96℄,[YBS05℄, [SF04℄). Most methods use a quadri
 or polynomial regression. In [GWM01℄, the lines aredete
ted by neighborhood 
ovarian
e analysis. Indeed, from a point neighborhood, the 
entroid and
entered 
ovarian
e 
an be 
omputed. Comparing the ratios of the 
ovarian
e matrix eigenvalues givesthe geometry of the neighborhood (see also [MOG09℄). In [HMG00℄, edges of a mesh are �rst 
lassi�eda

ording to their importan
e (this importan
e is an in
reasing fun
tion of the adja
ent fa
es angle).A multis
ale approa
h was proposed in [PKG03℄. Nearby feature points are �rst dete
ted. In theneighborhood of these points surfa
es are �tted, and depending on the number of �tted surfa
es, pointsare proje
ted to the nearest surfa
e. Interse
tion points of these surfa
es are �nally 
lassi�ed as edge or
orner points. By in
reasing the pro
essing radius, one 
ould tra
k feature lines and keep only the onesat a given s
ale. Though dealing with s
ales, this method does not introdu
e a s
ale spa
e framework.A similar idea for points 
lassi�
ation and point proje
tion was used in [DIOHS08℄.Although these papers introdu
e a ridge/valley line dete
tion, none of them proposes a ridge andvalley segmentation. In [IFP95℄ the idea was suggested, though: indeed points lying near ridges or nearvalleys were labeled and this labeling was used to obtain a better rendering of the ridge and valley lines.But 
rest lines as de�ned by these methods require the 
omputation of degree three surfa
e derivatives.Here we will fo
us on other interesting and well de�ned line features: namely the 
urvature level linesand level sets, analogous to the image grey level lines. Of parti
ular interest are the zero-
rossings ofthe 
urvature, whi
h are te
hni
ally similar to the zero-
rossings of the Lapla
ian in image pro
essing.4
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Figure 2: Comparison between 
ylindri
al and spheri
al neighborhoodsThese zero-
rossings de�ne in�exion lines, easy to 
ompute from the raw data point set. They reliablysegment the surfa
e into ridges and valleys.The paper is divided as follows: Se
t. 2 gives mathemati
al results proving the 
onsisten
y of theproposed s
ale spa
e algorithm. Input data are brie�y presented in Se
t. 4. Se
tions 5, 6 and 7des
ribe the three main appli
ations of the s
ale spa
e: a point 
loud orientation method, a faithfulmesh 
onstru
tion for the raw data set and a raw shape segmentation method.2 Continuous TheoryThis se
tion investigates a new way of estimating the surfa
e 
urvature based on the lo
al 
ovarian
eanalysis. Interestingly for our s
opes, it only requires a degree one surfa
e regression to 
ompute a
urvature related operator. In this theoreti
al se
tion the surfa
e (denoted byM) supporting the datapoint set is always assumed to be smooth (at least C2). The samples on the surfa
eM are denoted by
MS .Let P (xP , yP , zP ) be a point of the surfa
e M. Lo
ally we 
an express the surfa
e as the graph
z = f(x, y) of a fun
tion f . At ea
h non umbili
al point P , 
onsider the prin
ipal 
urvatures k1 and
k2 linked to the prin
ipal dire
tions ~t1 and ~t2, with k1 > k2 where ~t1 and ~t2 are orthogonal ve
tors.(At umbili
al points, any orthogonal pair (~t1,~t2) 
an be taken.) Set ~n = ~t1 × ~t2 so that (~t1,~t2, ~n) is anorthonormal basis. The quadruplet (P,~t1,~t2, ~n) is 
alled the lo
al intrinsi
 
oordinate system, and theTaylor expansion of f yields

z = f(x, y) = −
1

2
(k1x

2 + k2y
2) + o(x2 + y2) (2)Noti
e that the sign of z is irrelevant, sin
e it only depends on the arbitrary surfa
e orientation.2.1 Spheri
al neighborhoods vs 
ylindri
al neighborhoodsConsider two kinds of neighborhoods in M for P de�ned in the lo
al intrinsi
 
oordinate system

(P,~t1,~t2, ~n):
• a neighborhood Br = Br(P )∩M is the set of all points Q ofM with 
oordinates (x, y, z) satisfying

(x− xP )2 + (y − yP )2 + (z − zP )2 < r2

• a 
ylindri
al neighborhood Cr = Cr(P ) ∩ M is the set of all points Q(x, y, z) on M su
h that
(x− xP )2 + (y − yP )2 < r2.For 
ommodity the 
ylindri
al neighborhood will used in the �rst estimates of ea
h proof. The di�eren
ebetween both neighborhoods will be proved negligible by the next lemma.Lemma 1. Integrating on M any fun
tion f(x, y) su
h that f(x, y) = O(rn) on a 
ylindri
al neighbor-hood Cr(P ) instead of a spheri
al neighborhood Br(P ) introdu
es an o(rn+3) error. More pre
isely:

∫

B(r)

f(x, y)dM =

∫

x2+y2<r2

f(x, y)dxdy + O(r3+n). (3)5



Proof. The surfa
e area element of a point M(x, y, z(x, y)) on the surfa
eM, expressed as a fun
tion of
x, y, dx and dy is dM(x, y) =

√

1 + z2
xdx

√

1 + z2
ydy. One has zx = −k1x+O(r2) and zy = −k2y+O(r2).Thus

dM(x, y) =
√

(1 + k2
1x

2 + O(r3))(1 + k2
2y

2 + O(r3))dxdywhi
h yields
dM(x, y) = (1 + O(r2))dxdy. (4)Using (4), the integrals we are interested in be
ome

∫

Br

f(x, y)dM = (1 + O(r2))

∫

Br

f(x, y)dxdy; (5)and
∫

Cr

f(x, y)dM = (1 + O(r2))

∫

Br

f(x, y)dxdy (6)
= (1 + O(r2))

∫

x2+y2<r2

f(x, y)dxdy.This last form is more amenable to analyti
 
omputations, whi
h explains why Lemma 1 introdu
es it.Consider polar 
oordinates (ρ, θ) su
h that x = ρ cos θ and y = ρ sin θ with −r ≤ ρ ≤ r and 0 ≤ θ ≤ π.Then for M(x, y, z) belonging to the surfa
eM, we have z = − 1
2ρ2(k1 cos2 θ + k2 sin2 θ) +O(r3). Fixing

θ we obtain a 
urve with equation z = − 1
2ρ2k(θ) + O(r3), where k(θ) = k1 cos2 θ + k2 sin2 θ. With thisnotation, the 
ondition that (x, y, z) belongs to the neighborhood Br(P ) 
an be rewritten as ρ2+z2 < r2,that is

ρ2 +
1

4
k(θ)2ρ4 < r2 + O(r5)Computing the boundaries ±ρ(θ) of this neighborhood yield ρ(θ)2 + 1

4k(θ)2ρ(θ)4 − r2 + O(r5) = 0 andtherefore
ρ(θ)2 =

−1 +
√

1 + k(θ)2(r2 + O(r5))
1
2k(θ)2

.This yields ρ(θ) = r − 1
8k(θ)2r3 + o(r3). We shall use this estimate for the error term E appearing in

∫

B(r)

f(x, y)dxdy =

∫

[0,2π]

∫

[0,ρ(θ)]

f(x, y)ρdρdθ

=

∫

[0,2π]

∫

[0,r]

f(x, y)ρdρdθ − E

=

∫

Cr∩M

f(x, y)dxdy − E,with E =:
∫

[0,2π]

∫

[ρ(θ),r] f(x, y)ρdρdθ. Thus
|E| ≤

π

4
sup

x2+y2≤r2

|f(x, y)|k(θ)2r3,whi
h yields |E| ≤ π|k1|
2

4 supx2+y2≤r2 |f(x, y)|r3. In parti
ular if f(x, y) = O(rn), then |E| ≤ O3+n.Finally we have
∫

B(r)

f(x, y)dxdy =

∫

Cr∩M

f(x, y)dxdy + O(r3+n). (7)Combining (5), (6) and (7) yields the announ
ed result (3).
6



2.2 Curvature EstimationThe next theorem deals with the simplest lo
al smoothing operator based on raw points and 
onsistentwith 
urvature, the bary
enter.Theorem 2. In the lo
al intrinsi
 
oordinate system, the bary
enter of a neighborhood Br(P ) where Pis the origin of the neighborhood has 
oordinates xO = o(r2), yO = o(r2) and zO = −Hr2

4 + o(r2), where
H = k1+k2

2 is the mean 
urvature at P .Proof. By Lemma 1 applied to the numerator and denominator of the following fra
tion, we have
zO = −

∫

Br

zdM
∫

Br

dM
= −

∫

x2+y2<r2 z(x, y)dxdy + O(r5)
∫

x2+y2<r2 dxdy + O(r3)

=−

∫

x2+y2<r2

[

1
2 (k1x

2 + k2y
2) + o(x2 + y2)

]

dxdy
∫

x2+y2<r2 dxdy
+ O(r3)

=−
1

2πr2

∫ r

ρ=0

∫ 2π

θ=0

ρ2(k1 cos2 θ + k2 sin2 θ)ρdρdθ + o(r2)

=−
r2

8π
(k1π + k2π) + o(r2)

=−
Hr2

4
+ o(r2.)A similar but simpler 
omputation yields the estimates of xO and yO.Theorem 2 states that proje
ting a point onto the neighborhood bary
enter approximates the mean
urvature motion. We shall dis
uss later on why, in spite of Theorem 1, the bary
enter 
annot be usedfor implementing the mean 
urvature motion.2.3 Surfa
e motion indu
ed by proje
tions on the regression planeThe main tool of the s
ale spa
e will be a simple proje
tion of ea
h surfa
e point P on the lo
al regressionplane found by lo
al 
ovarian
e analysis. The proje
ted point is 
alled P ′. Let us �rst 
ompare the normalto the lo
al regression plane with the point normal ~n(P )Lemma 2. The normal ~v to the PCA regression plane at P ∈M is equal to the surfa
e normal at point

P , up to a negligible fa
tor: ~v = ~n(P ) + O(r).Proof. The lo
al PCA regression plane of point P is de�ned as the plane passing through the bary
enterof the neighborhood Br(P ) and with normal ~v minimizing:
I(~v) =

∫

Br(P )

|〈~v, PP ′〉|2dP ′ s.t. ‖v‖ = 1Let the 
oordinates of ~v be (vx, vy, vz). We have
I(~v) =

∫

Br

(vxx + vyy + vz

1

2
(k1x

2 + k2y
2) + o(r2))2dxdy.Considering the parti
ular value ~v = (0, 0, 1) shows that the minimal value Imin of I(~v) satis�es Imin ≤

O(r6). In 
onsequen
e the minimum (vx, vy, vz) satis�es vx ≤ O(r) and vy ≤ O(r). Thus vz ≥ 1− O(r)and therefore ~v = ~n(P ) + O(r).By Lemma 2, proje
ting P onto the regression plane indu
es a motion whi
h is asymptoti
ally inthe normal dire
tion: P ′P is almost parallel to ~n(P ). A 
onsequen
e is that the simple operation ofproje
ting ea
h surfa
e point P onto its lo
al regression plane approximates a 3D s
ale spa
e (mean
urvature motion) as shown in the next theorem. 7



Figure 3: Visualization of the raw point 
loud showing the irregular sampling of our Tanagra input data.The 
loud has been uniformly and randomly subsampled to visualize the sampling variations. Otherwise,the 
loud would look 
ompletely dense). This is a top view of the �gurine in �g. 11(a)Theorem 3. Let Tr be the operator de�ned on the surfa
e M transforming ea
h point P into its pro-je
tion P ′ on the lo
al regression plane. Then
Tr(P )− P = −

Hr2

4
~n(P ) + o(r2). (8)Thus, this operator is tangent to the mean 
urvature motion (for theoreti
al results on the Mean CurvatureMotion for surfa
es, see, for example [ATW93℄).Proof. By Theorem 2 the bary
enter O of Br has lo
al 
oordinates ~PO = (o(r2), o(r2),−Hr2

4 + o(r2)).On the other hand ~PP ′ is proportional to ~v. Thus by Lemma 2 ~PP ′ = λ(O(r), O(r), 1 − O(r)). To
ompute λ, we use the fa
t that P ′ is the proje
tion on the regression plane of P , and that O belongsby de�nition ot this plane. This implies that ~PP ′ ⊥ ~OP ′ and therefore
λ2O(r2) + λ(1 −O(r))(H

r2

4
+ o(r2) + λ(1−O(r))) = 0,whi
h yields λ = −Hr2

4 + o(r2) and therefore
~PP ′ = (O(r3), O(r3),−

Hr2

4
+ o(r2)) = −

Hr2

4
~n(P ) + o(r2).3 Dis
rete TheoryThe main di�eren
e with the previous theory is the irregular sampling. Indeed, the raw triangulations
anner sampling density is highly linked to the surfa
e geometry and 
an vary a lot (�g 3).The previous theorems assume that the surfa
e is a uniform Lebesgue mesure. Their appli
abilityto a raw data set point requires some adjustment and some dis
ussion. A 
onstant sampling densityis assumed by the theorem and 
an be approximated by weighting ea
h point by a weight inverselyproportional to its initial density, as proposed in [UH08℄. More pre
isely, let p be a point and Nr(p) itsneighborhood on the surfa
e, de�ned as the set of all points q inMs su
h that ‖p− q‖ < r. Ea
h point qshould ideally have a weight 0 ≤ w(q) ≤ 1 
omputed so that for all p, ∑

q∈Nr(p) w(q) = 1. This amountsto solve a huge linear system. For this reason, we shall be 
ontented with ensuring ∑

q∈Nr(p) w(q) ≃ 1 bytaking w(p) = 1
♯(Bp(r)) . Let O be the weighted bary
enter of this neighborhood. In R

3, the 
oordinatesare written with supers
ripts e.g. the 
oordinates of a point u are (u1, u2, u3). Thus, for i = 1, 2, 3,
Oi = 1

P

q∈Nr (p) w(q)

∑

q∈Nr(p) w(q)qi. The 
entered 
ovarian
e matrix Σ = (mij)i,j=1,··· ,3 is de�ned as8



mij =
∑

q∈Nr(p) w(q)(qi −Oi) · (qj −Oj) for i, j = 1, 2, 3. Let λ0 ≤ λ1 ≤ λ2 be the eigenvalues of Σ with
orresponding eigenve
tors v0, v1, v2. For k = 0, 1, 2,
λk =

∑

q∈Nr(p)

w(q)〈(q −O), vk〉
2. (9)Ea
h eigenvalue gives the varian
e of the point set in the dire
tion of the 
orresponding eigenve
tor.Sin
e v1 and v2 are the ve
tors that 
apture most variations, they de�ne the PCA regression plane.The normal v0 to this plane is the dire
tion v minimizing ∑

q∈Nr(p) w(q)〈(pi −O), v〉2. We showed thatproje
ting the point onto its lo
al regression plane is a good approximation of the mean 
urvature motionand that, asymptoti
ally, it is the same as proje
ting the point to the bary
enter of the neighborhood.Dis
ussion: Both Theorems 2 and 3 permit a priori to implement the mean 
urvature motion on theraw data point set. The numeri
al appli
ation of these theorems depends nonetheless on the assumptionthat the Lebesgue measure on the surfa
e is well approximated by its sample density. This is not truefor the bary
enter method of Theorem 2. Iterating the bary
enter method with a small neighborhoodand a slightly varying sample density leads to a lo
al 
lustering of the samples. Indeed, a too lo
alneighborhood in an irregular sampling always has some lo
al asymmetry. Thus, the bary
enter methodprovokes a normal motion, but also a non negligible tangential motion to the surfa
e. More 
rudely said,the algorithm sending ea
h point to the bary
enter of its neighborhood is nothing but the well knownMean Shift �lter [Che95℄, whi
h is used for data 
lustering. This is illustrated in �g. 4. Even thoughthe point distribution on the sphere is probabilisti
ally uniform, sample 
lustering o

urs. Theorem 2is e�e
tive in the sense that globally the sampled sphere evolves in a sampled sphere. But the samplesare not moving only in the normal dire
tion. We therefore needed a �lter whi
h preserves samplingirregularity while keeping the asymptoti
 mean 
urvature motion property. When applying the proje
tion�lter, no point 
luster is 
reated, sin
e there is no tangent shift, but only a motion along the normaldire
tion. Theorem 3 is in that 
ase e�e
tive with an fairly small neighborhood. This fa
t is easilyexplained. Take any irregular sampling of the tangent plane to the surfa
e. Then the linear regressionwill always �nd ba
k the right plane if all samples are not aligned. This good behaviour is experimentallyillustrated in �g. 4.
(a) Original sam-ples on a sphere (b) 4 iterations ofMean Shift (
) Four iterationsof the proje
tion�lterFigure 4: Comparison of the 
lustering e�e
t for the mean shift �lter and the proje
tion �lter on arandomly sampled sphere. Clusters appear when the mean shift is iterated, whereas the sampling densityis preserved with the proje
tion �lter �lter. The undesired mean shift 
lustering e�e
t is due to atangential motion to the surfa
e 
aused by the irregular sampling. This tangential motion is avoidedwith the normal motion, whi
h estimates 
orre
tly the normal dire
tion by 
omputing the regressionplane, even with irregular samplingComputing 
urvatures As a 
onsequen
e of Theorem 3, the 
urvature of a point 
an be 
omputedwithout any surfa
e �tting step. It is enough to 
ompute 4

r2 〈n, P −P ′〉. On Figs 5, and 6, the 
urvatureis 
omputed on various types of shapes. 9



Figure 5: Curvature of the Tanagra raw point set

Figure 6: Curvature of the s
an of diamond shaped mire used in our lab (5
m diameter)
10



Figure 7: Initial surfa
e: a sharp edge with angle π
3 . This is a 3D surfa
e, and the �gures depi
t itsorthogonal proje
tion in the dire
tion of the edgeBa
k propagation The notion of s
ale spa
e has been invented in image pro
essing for dete
tingedges at a 
oarse s
ale, and then tra
king them ba
k to their �ne s
ale lo
ation. The 
oarse s
ale is
omputed by 
onvolving the image with Gaussians, or equivalently by applying the heat equation. Theedge ba
kward tra
king has always been problemati
, be
ause the heat equation is not reversible: itis not easy to de
ide where an edge dete
ted at s
ale t 
ame from at s
ale 0. In the 
ase of surfa
es,however, the reverse normal motion de�nes a natural ba
ktra
king. The mean 
urvature motion writes

dP

dt
= H(P )~n(P ) (10)where H(P ) is the mean 
urvature at P (whose sign depends on the normal orientation), and ~n(P ) thenormal. Thus, a normal motion 
an be de�ned for every point P0 on the initial surfa
e as a solutionof (10) 
onsidered as an ordinary di�erential equation with initial point P0. Thus, the ba
kward s
alespa
e is trivial, provided the forward MCM implementation a
tually implements the evolution of ea
hraw data set point P0. Let us 
onsider a point Pt and its evolution Pt+1 at steps t and t+1. Now, we 
anbuild the sequen
e dP (t) = Pt+1 − Pt and the reverse s
ale spa
e operator P−1

t (Pt+1) = Pt+1 − dP (t),this operator allows to go ba
kward in the s
ale spa
e evolution from step t + 1 to 0. This is exa
tly the
onstru
tion proposed in [PKG06℄. If we only need to go from step t to the initial data 0, without anyintermediate step, the operator is even simpler to build, sin
e we only need to store for ea
h point P (t)its initial position P−1
t (Pt) = P0. This reverse s
ale spa
e operator will be 
alled ba
k propagation, orba
k transportation.3.1 Proje
tion on a higher order regression surfa
e[CP03℄ proved that a degree n polynomial �tting estimates all kthorder di�erential quantity to a

ura
y

O(hn−k+1). At �rst sight this suggests implementing the mean 
urvature motion by performing a degree2 regression instead of the plane regression. This would yield a dire
t 
urvature estimate by 
omputingexpli
itly the fundamental form. However, this estimation 
annot be turned into an iterative proje
tionoperator. In [PKG06℄ the Moving Least Squares Proje
tion (proje
ting the point onto the lo
ally �ttedleast squares surfa
e) was proposed as a s
ale spa
e operator, but no proof was made of the 
onsisten
yof these iterated proje
tions with the di�usion equation. Fitting a degree two polynomial to the pointset leaves error terms of third order or more. This means that the motion indu
ed by su
h a proje
tionis proportional to partial di�erential operator with order larger than 2, whereas the PDE we are approx-imating relies on se
ond order spatial derivatives. This fa
t 
an be experimentally 
he
ked by 
omparingiterations of the 2nd order MLS proje
tion with iterations of our �rst order proje
tion operator on asharp edge (7). Figs 8 and 9 show the edge evolution. As proved in Theorem 3, the �rst order proje
tionimplements a mean 
urvature driven motion where highly 
urved points evolve faster than low 
urvedpoints, and �at points do not move. On the 
ontrary the motion indu
ed by the MLS proje
tion is nosmoother. It enhan
es the edge and 
reates a higher order singularity.4 Input DataThe algorithms des
ribed in the next se
tions are devised for highly a

urate point 
louds a
quired by alaser s
anner. Three obje
ts a
quired by our s
anner devi
e will be used in the following experiment. The11



(a) Iteration 1 (b) Iteration 2 (
) Iteration 3 (d) Iteration 4Figure 8: Iterated MLS proje
tion operator (4 iterations). It 
reates a singularity on the edge. IteratedMLS 
an be used as a s
ale spa
e only with degree 1 surfa
e, be
ause the iterated operator is 
onsistentwith the mean 
urvature motion

(a) Iteration 1 (b) Iteration 2 (
) Iteration 3 (d) Iteration 4Figure 9: S
ale spa
e operator: the order 1 iterated MLS (four iterations). The edge is smoothed outni
ely. Indeed, this operator is 
onsistent with the mean 
urvature motion
12



�rst one is a Tanagra �gurine. This obje
t is a mould of a fourth 
entury B.C. Greek �gurine obtainedat the Museum of Cy
ladi
 Arts, Athens (�g. 11(a)). It is 22
m high and the point 
loud 
ontains 6 ·106points. The se
ond one is a geometri
 5
m long diamond shaped mire 
ontaining 2.5 · 105 points, andthe third one is a reprodu
tion of a Nefertiti head �gurine (see �g. 20) a
quired at the Louvre Museum,Paris 
ontaining 3 · 106 points. Thanks to a very a

urate 
alibration of the laser s
anner devi
e, theoutput is a well registered point 
loud 
ontaining a negligible warp. Sin
e the data point set pro
essingrelies on dete
ting the points 
ontained in a ball 
entered at ea
h given point, an o
tree stru
ture is builtto to a

elerate the neighborhood 
omputations.Tests will also be made on obje
ts of the Stanford Fragment Urbis Romae database. In that 
ase aregistration is needed to have a point 
loud representing the whole obje
t. Sin
e we do not address thesweep registration problem in this paper, we will use single sweeps for our meshing experiments. It isinteresting to note that even if the mesh obtained using two badly registered point 
louds is not goodenough for visualization, the dete
ted feature lines are still 
oherent provided that the registration wrapis not too important (see �g. 23 for feature extra
tion on a surfa
e 
ontaining more than one sweep).The points a
quired are non-oriented. An important feature of the s
ale spa
e operator we justde�ned is that it does not need a previous surfa
e orientation to pro
eed. However, if we want to inferthe 
urvature sign from the s
ale spa
e, we shall need a 
oherent orientation. The orientation will beobtained thanks to the s
ale spa
e. This is the obje
t of the next se
tion.5 First appli
ation: s
ale spa
e raw data point orientationGiven an initial non oriented raw point 
loud the surfa
e orientation is a mu
h needed information.Finding normal dire
tions is very easy, sin
e a lo
al PCA yields the dire
tion 
orresponding to the leasteigenvalue of the lo
al 
ovarian
e matrix. This dire
tion is a good approximation of the normal dire
tion.We must then pi
k one of two possible orientations, and this 
hoi
e must be lo
ally 
oherent. The idea isto start by pi
king a random orientation for one point and then propagate it to the neighboring points.Now, sharp edges or a messy surfa
e may fool su
h a propagation. If, however, the surfa
e is smoothedenough, the propagation of the normal is safe. Thus the overall te
hnique to orient the raw data set willbe to smooth it by the s
ale spa
e, to orient the smoothed surfa
e, and to transport ba
k this 
oherentorientation to the initial data points.The �rst tool to realize this program is a simple propagation method for a point p whose neighborhood
Nr(p) 
ontains some previously oriented points. The orientation is transmitted from a point to the nextif their normal dire
tions are similar. The algorithm is summed up below:OrientateFromNeighbors(p,r,t)Algorithm 1: OrientateFromNeighbors(p,r,t)Data: p an unoriented point, a threshold 0 < t < 1, a radius r, the set Nr(p) of p's neighborswithin radius rResult: true if the point was oriented, false otherwiseCompute p's normal dire
tion n by lo
al PCA;1

n̄← normalized mean of already oriented neighbors' normals;2 if (n̄ · n)2 > t then3 if n̄ · n > 0 then4
n(p) = n;5 else6
n(p) = −n;7 end8 Return true;9 else10 Return false;11 end12S
ale spa
e Point Cloud Orientation algorithm The input parameters are the radius r and athreshold 0 ≤t≤ 1. 13



Algorithm 2: S
ale spa
e Point Cloud OrientationData: A point 
loud P , a radius r, an update parameter a > 1Iterate the proje
tion �lter Tr and keep tra
k of ea
h raw data point sample (Mean Curvature1 Motion);Find a point p0 in a �at area, pi
k its orientation and mark it as oriented. Add its neighbors to2 the pile S;while S is not empty or S does not be
ome 
onstant do3 Take p the �rst point in S;4 if orientateFromNeighbors(p,r,t) then5 Mark the point as oriented and remove p from S;6 end7 Add p's neighbors to S;8 end9 Add all remaining unoriented points to S;10 while S is not empty and ♯S does not be
ome 
onstant do11
r = αr;12 for p in S do13 Perform orientateFromNeighbors(p,r,t);14 end15 end16Steps from 10 to the end are ne
essary be
ause adding neighbors of points to the pile might not beenough to 
over the whole 
loud due to sampling irregularities. On
e this pro
edure is over, there mightremain non oriented points. These points are usually isolated points, and it is simplest to ignore them.A
tually, in all our experiments the number of remaining non oriented points was below 0.1%. At ea
hstep the radius is multiplied by an α > 1 fa
tor. In step 12, the radius r is 
hanged. Thus all normalsare not 
omputed with the same radius. This is why we must reverse the s
ale spa
e to 
ome ba
k tothe original point 
loud. At s
ale 0, re
ompute the normal dire
tion by lo
al PCA for all points andpi
k the orientation whi
h has positive s
alar produ
t with the previous normal. The whole pro
ess issummed up in algorithm 3. It is a �rst straightforward appli
ation of the s
ale spa
e framework, wherethe information is 
omputed at a 
oarse s
ale and propagated ba
k to the �nest s
ale.Algorithm 3: Point Cloud ReorientationData: An oriented point 
loud P , a radius rResult: A point 
loud with normals 
omputed at the same s
alefor p ∈ P do1 Compute the normal ~v of p's neighbors Nr(p) by lo
al PCA;2 if 〈~n(p), ~v < 0 then3

~n(p) = −v;4 else5
~n(p) = v;6 end7 end8 Having oriented the surfa
e allows us to de�ne positive and negative 
urvature level sets and 0-
urvature level lines, as will be shown in se
tion 7.6 S
ale spa
e meshingWe now dis
uss how to build a mesh on a high pre
ision point 
loud. Dire
t meshing is not possiblebe
ause of the surfa
e os
illation due to texture. The idea is to perform meshing on the smoothed surfa
eand to transport this mesh ba
k on the original point 
loud. We need an e�
ient triangulation te
hniquesu
h as [BMR+99℄, [CSD04℄. The only requirement on the algorithm is that the mesh should interpolatethe points. The �nal verti
es must be a subset of the original points almost identi
al to the raw data14



set point. This is not the 
ase with level set methods ([KBH06℄, [HDD+92℄, [Kaz05℄,[LC87℄, [CA97℄ and[LGS06℄). The whole pipeline was implemented using the Ball Pivoting Algorithm (BPA) [BMR+99℄.The method pro
eeds as follows:Algorithm 4: S
ale Spa
e Meshing AlgorithmData: A point set with 
omputed normalsResult: A mesh of the original 3D data point setIterate (four times) the proje
tion �lter Tr and keep tra
k of ea
h raw data point sample: this is1 the forward mean 
urvature motion;Mesh the smoothed samples;2 Transport the mesh ba
k to the original points (thus reverting the mean 
urvature motion).3 To set the radius automati
ally, we 
an get a good approximation of what a good radius would bewhile we 
ompute the o
tree to sort the points. Indeed the root of the o
tree is the bounding box ofall points. Let us 
all Lmax the length of its largest side. Then, ea
h 
ell represents a 3D 
ube withsize Lmax/2d where d is the depth of the 
ell. Counting the number of points in that 
ell gives anapproximation of the number of neighbors of a point 
ontained in this 
ell for a spheri
al neighborhoodof radius rd = Lmax/2d+1. Performing this approximation in all non empty 
ells at the same depth givesan approximation of the number of neighbors for spheri
al neighborhoods with radius rd. To perform theproje
tion �lter, the minimum number of neighbors of a point is 3 (in
luding the point itself), be
ausewe need to estimate a regression plane. But having only 3 neighbors will lead to instable regression planeestimations. To have a robust geometri
 pro
essing, our experiments led us to 
onsider 30 neighbors agood value. Of 
ourse, sin
e the same radius is used for all points, it may o

ur that for some points,the 
hosen radius does not ensure enough neighbors to perform the plane regression, those points areirrelevant and should be eliminated. Sin
e we deal with a dense point 
loud, removing them shouldnot a�e
t the point 
loud. In all our experiments we removed less than 0.1% of points. With thisautomati
ally set radius, only a few s
ale spa
e iterations are ne
essary: in all our experiments fourproje
tion iterations were used.Algorithm 5: Setting the radius automati
allyData: An o
tree with depth d 
ontaining the point 
loud (root is at depth d and leaves are atdepth 0) Lmax size of the o
tree bounding box. A minimum number of neighbors NminResult: A radius r
np = 0;1
l = 0;;2 while np < Nmin do3

n = 0;4
np = 0;5 for all non empty 
ells at depth l do6

n = n + 1;7
np = np + cell→ Npoints;8 end9

np = np/n;10
l ← l + 1;11 end12

r = Lmax/2d−l+1;13Transporting ba
k the 
onne
tivity information (step 3) 
an in theory lead to a self 
rossing mesh. Indeed,if two points lie too 
lose to ea
h other they may "swit
h position" in the s
ale spa
e iterations, leadingto a 
ompli
ated surfa
e topology. This problem 
an be solved by dete
ting all pairs of interse
tingtriangles. Then any remeshing algorithm 
an solve the problem by swit
hing edges in quadrilaterals.However, this additional step was not implemented for two good reasons. First, the existen
e of a fewinterse
ting triangles is no serious visual in
onvenien
e. Se
ond, we did not �nd any su
h 
rossing in allof our experiments.Fig. 10 illustrates the mesh rendering of a simple geometri
 pattern by a ba
k propagated mesh. Fig10(a) shows the 
oarse s
ale mesh, i.e. the mesh obtained after four s
ale spa
e iterations. The sharpedges have been smoothed out. Nonetheless, a dire
t ba
k-proje
tion of this mesh at the original s
ale15



allows to re
over the sharp edges (�g 10(b)). The result 
an be 
ompared to the meshes obtained bydire
t meshing (Fig. 10(
), simple Ball Pivoting Algorithm) and 10(d) (level set method [KBH06℄). Inthat simple 
ase with no texture and little noise, there is no signi�
ant di�eren
e between 10(b), 10(
),and 10(d)). S
ale spa
e meshing re
overs edges as well as other state of the art methods.Figs. 11 shows the appli
ation of s
ale spa
e meshing with a mesh rendering at �ne and 
oarse s
ale.We 
an see on Fig. 11 that the surfa
e texture is lost at a 
oarse s
ale, but 
ompletely and a

uratelyre
overed by simply propagating the mesh information to the initial points at �ne s
ale. Comparing theba
k proje
ted mesh to the result of a dire
t meshing of the initial samples (Fig. 12) shows that thes
ale spa
e triangulation is mu
h more pre
ise. In fa
t, a dire
t meshing is not appli
able. It 
reates,among other artifa
ts, many spurious triangles. Fig. 13 shows a 
omparison between the re
onstru
tionobtained by VRIP re
onstru
tion method (see [CL96℄) and s
ale spa
e meshing. The s
ale spa
e methodprodu
es a mu
h more pre
ise mesh, as 
an be seen on the 
lose up of �gs 14 and 15
(a) Coarse s
ale mesh (b) Ba
k-proje
tedmesh (
) Dire
t Meshing (d) Poisson MeshingFigure 10: Multi-resolution mesh re
onstru
tion from the Diamond point set illustrating the re
overy ofsharp edges. In that 
ase the obje
t has no texture and almost no noise. Thus all methods give the sameresult, whi
h proves the 
onsisten
y of mesh ba
k propagation methodFig. 11 displays the many a
quisition holes at the bottom of the Tanagra �gurine, in the tuni
's foldsor near the right foot. By the s
ale spa
e meshing these holes are not �lled in and 
an be dete
ted and
hara
terized by their border Jordan 
urve (see Fig. 16). Sin
e the Ball Pivoting Algorithm is used fortriangulation, no triangle larger than a given threshold has been 
reated. Indeed, to form a triangle,three points must lie on a sphere of given radius r. Thus, low density areas are 
onsidered holes. Fig.12 illustrate the loss of details with level sets methods. Level set methods 
reate a smoothed zero levelsurfa
e of the signed distan
e to the raw data set point. They do not 
ontain the raw data set points andlose tra
k of them. Fig. 18 shows that not only these methods, but even dire
t meshing methods 
anmiss small details. Fig. 17 illustrate why s
ale spa
e meshing allows to re
over those details: standardmeshing at a smooth s
ale is simply easy be
ause details have been unfolded. It is then trivial to ba
kpropagate the verti
es of the smooth mesh to their initial positions. This yields a dire
t triangulation ofthe original raw data set.The quantitative performan
e of ea
h algorithm 
an be evaluated by meshing simple shapes. Testpoint sets were built by sampling perfe
t geometri
 shapes (for example a sinusoidal surfa
e). The rootmean square distan
e of the triangle bary
enters of the mesh to the real surfa
e were 
ompared forea
h meshing method. This distan
e is 
omputed by the Newton-Raphson method. The �rst surfa
e"Wave 1" has equation z = 0.2 cos(5x), "Wave 1" has equation z = 0.2 cos(5x) ∗ cos(5y), the thirdsurfa
e is a regularly sampled sphere and the last one is a sum of two 
lose and narrow Gaussians

z = − exp(− (x−0.1)2

0.01 − exp(− (x+0.1)2

0.01 . The RMSE results are shown in Table 19. It is obvious from theseresults that the Poisson re
onstru
tion or any level set method 
annot be applied to re
over a surfa
ewith very thin details. On shapes 
ontaining no sharp edges, dire
t BPA and s
ale spa
e meshing perform
omparably. On the thin stru
ture 
reated by adding two very 
lose Gaussians, the loss of pre
ision ofBPA is 
lear. This phenomenon is similar to the one observable in Fig. 12(
) where BPA does notre
over thin details. 16



(a) initial obje
t(22 
m high) (b) Coarse s
alemesh (
) Ba
k-proje
ted mesh (d) Photo of theba
k side (e) Detail sele
-tion

(f) Detail expansion(1) (g) Detail expansion(2)Figure 11: Multi-resolution mesh re
onstru
tion of the Tanagra point set illustrating the re
overy of �netexture. All ba
k propagated textures are present on the original7 S
ale Spa
e geometri
 features extra
tionHaving a method to 
ompute 
urvature dire
tly on the data point set, and a method to ba
ktra
k rawpoints, has 
onsequen
es on two 
losely related problems: the ridge-valley 
lassi�
ation and the 
ompu-tation of in�exion lines. In�exion lines are de�ned as the 
urvature zero-
rossings: they are thereforeequivalent to the �zero-
rossing of Lapla
ian�proposed by Hildreth and Marr [MH80℄. These 
urves are
losed and segment the shape into ridges (positive mean 
urvature points) and valleys (negative mean
urvature points). In order to a
hieve this s
ale-dependent segmentation, several s
ale spa
e iterationsyield a s
ale-dependent 
urvature. The sign of this multis
ale 
urvature yields a binary 
lassi�
ationin ridge and valley regions (see 20). Of 
ourse, the presen
e of �ne textures hinders the dete
tion oflarge s
ale ridges and valleys. They are instead easily 
omputed after several s
ale spa
e iterations, andtransported ba
k on the initial raw data set point. We have de�ned in�exion lines as zero-
rossings of the
urvature. They therefore separate ridges (positive 
urvature) from valleys (negative 
urvature). At ea
hs
ale, 
urvature level lines 
an be drawn on the s
ale spa
e mesh of the raw original samples as de�ned inSe
tion 6. For α ∈ R, to extra
t a α-level line, we dete
t edges whose extremities P1 P2 have 
urvatures
H(P1), su
h that (H(P1)− α) · (H(P2)− α) < 0. In�exion lines verti
es are linearly interpolated along17



(a) Pi
ture of the Logo (b) Ba
k-propagatedmesh (
) Dire
t mesh (d) Re
onstru
tionobtained by PoissonRe
onstru
tionFigure 12: Comparison between the dire
t mesh and the ba
k proje
ted mesh. The width of this logois approximately 1
m. Dire
t meshing 
reates many wrong triangles. Compare the details in 12(b) and12(
). See �gs 17-18 for an explanation of this di�eren
e.these edges and linked using mesh the 
onne
tivity information. The algorithm is summed in algorithm6, an edge e will be 
alled α-
rossing if its extremities verify (H(P1)− α) · (H(P2)− α) < 0.Algorithm 6: Extra
ting the 
urvature level linesData: A meshed point 
loud with 
urvature information for ea
h pointResult: L a set of in�exion lineswhile There remain unmarked α-
rossing edges do1
l an empty list of points;2 Find an α-
rossing edge e0;3 Mark e0;4 Choose T one of the adja
ent triangles to e0;5
e← e0;6 Add e to the right of l;7 while e is not a border edge and e is not e0 do8

eprev = e Find e the other α-
rossing edge of T ;9 Mark e;10 Add e to the right of l;11 Pi
k T adja
ent to e but not to eprev;12 end13
L ← L∪ l;14 end15 The algorithm is based on the fa
t that ea
h triangle with one α-
rossing edge has two α-
rossingedges. Sin
e the in�exion lines surround the surfa
e 
rest lines, 
rest lines 
an be 
onsidered as a sortof skeleton of well 
hosen level lines, as 
an be seen on Fig. 22. Furthermore, in�exion lines are wellde�ned 
losed Jordan 
urves. The only open in�exion lines are those that end on a hole. At the bottomof the Tanagra �gurine some open in�exion line end up on the a
quisition holes (see Fig. 16).8 Con
lusionThe in
reasing a

ura
y of 3D triangulation s
anners requires an e�ort to re
onsider the whole rendering
hain, and to obtain high quality visualization, a
tually better than those obtained by photography. Thepresent paper has proposed a strategy to mesh the raw original surfa
e, therefore ensuring a faithfulrendering and an a

urate hole dete
tion. Future work will be on the testing of a 
losed s
anning loopwith our experimental s
anner. The s
anner will be steered towards the dete
ted holes to get a data18



(a) Pi
ture of the Obje
t (b) Ba
k-proje
ted mesh (
) Re
onstru
ted Mesh availableon the FUR websiteFigure 13: Comparison on a pie
e of the Fragment Urbis Romae (FUR) database. Texture and detailsare better re
overed on the ba
k-propagated mesh (middle). Compare with the VRIP re
onstru
tionmethod available on the FUR website (right)

(a) Ba
k-proje
ted mesh (b) Vrip Re
onstru
ted MeshFigure 14: Closeup of a pie
e of the (FUR) database re
onstru
ted by s
ale spa
e meshing (left) andVRIP method (right)point set as 
omplete as geometri
ally possible. Future work will also re
onsider the registration andfusion algorithms for several s
anning sweeps in textured areas. The �nal goal would be to performa

urate supperresolution from several sweeps.A
knowledgements The authors would like to a
knowledge the Stanford Digital Forma Urbis RomaeProje
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(a) Original Fragment (b) Ba
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(a) Initial ob-je
t (b) Initialsegmentation (
) First pro-je
tion (d) Se
ondproje
tion (e) Thirdproje
tion (f) Ba
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(a) Original Obje
t

(b) Showing in�exion lines with length above 2mm (
) Showing in�exion lines with length above 3
m

(d) Showing in�exion lines with length above 6
m (e) Showing in�exion lines with length above 22
mFigure 23: Extra
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ted lines are due tosurfa
e irregularity and not to surfa
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arving. They are in general short and are �ltered out by a lengththreshold
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