
Local controllability and non controllability for a 1D

wave equation with bilinear control

Karine Beauchard
∗†

Abstract

We consider a linear wave equation, on a bounded interval, with bilinear control and
Neumann boundary conditions. We study the controllability of this nonlinear control
system, locally around a constant reference trajectory. We prove that the following
results hold generically.

• For every T > 2, this system is locally controllable in H3 ×H2, in time T , with
controls in L2((0, T ),R).

• For T = 2, this system is locally controllable up to codimension one in H3 ×H2,
in time T , with controls in L2((0, T ),R): the reachable set is (locally) a non �at
submanifold of H3 ×H2 with codimension one.

• For every T < 2, this system is not locally controllable, more precisely, the
reachable set, with controls in L2((0, T ),R), is contained in a non �at submanifold
of H3 ×H2, with in�nite codimension.

The proof of these results relies on the inverse mapping theorem and second order
expansions.

1 Introduction

1.1 Main result

The goal of this article is to investigate the exact controllability of the wave equation with
bilinear controls. We consider the following 1D-wave equation{

∂2w
∂t2 (t, x) = ∂2w

∂x2 (t, x) + u(t)µ(x)w(t, x), x ∈ (0, 1), t ∈ (0, T ),
∂w
∂x (t, 0) = ∂w

∂x (t, 1) = 0,
(1)

where µ ∈W 2,∞((0, 1),R). The system (1) is a bilinear control system, in which

• the state is
(
w, ∂w∂t

)
,

• the control is the real valued function u : [0, T ]→ R.

Let us introduce some conventions and notations. Unless otherwise speci�ed, the func-
tions are real valued. The operator A is de�ned by

D(A) :=
{
ϕ ∈ H2(0, 1);ϕ′(0) = ϕ′(1) = 0

}
, Aϕ := −ϕ′′. (2)

Its eigenvalues (λk)k∈N and eigenvectors (ϕk)k∈N are

λ0 := 0, ϕ0(x) := 1,

λk := (kπ)2, ϕk(x) :=
√

2 cos(kπx),∀k ∈ N∗. (3)
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We de�ne the spaces
Hs

(0)(0, 1) := D(As/2),∀s > 0 (4)

equipped with the norm

‖ϕ‖Hs
(0)

:=

( ∞∑
k=0

|ks∗〈ϕ,ϕk〉|2
)1/2

,

where k∗ := max{k, 1},∀k ∈ N and 〈., 〉 is the L2(0, 1)-scalar product. Notice that

H1
(0)(0, 1) = H1(0, 1),

H2
(0)(0, 1) = {ϕ ∈ H2(0, 1);ϕ′(0) = ϕ′(1) = 0},

H3
(0)(0, 1) = {ϕ ∈ H3(0, 1);ϕ′(0) = ϕ′(1) = 0}.

The goal of this article is to prove that, under generic assumptions on µ, the system (1)
is locally controllable around the reference trajectory (w(t, x) = 1, u(t) = 0), if and only if
T > 2. The restriction T > 2 is not surprising because this wave equation has a propagation
speed equal to 1, but, in this article, a particular attention is given to the case T 6 2.
Precisely, we prove the following results.

• When T > 2, the system (1) is locally controllable in H3
(0) ×H

2
(0)(0, 1) with L2(0, T )-

controls.

• When T = 2, the system (1) is not locally controllable in H3
(0) × H2

(0)(0, 1) with

L2(0, T )-controls because the reachable set is (locally) a non �at submanifold of H3
(0)×

H2
(0)(0, 1) with codimension one. However, the system (1) is locally controllable up to

codimension one: one can control the couple (w −
∫ 1

0
w(x)dx, ∂w/∂t). Moreover, for

any reachable (local) target, there exists a unique (small) control allowing to reach
this target.

• When T < 2, the system (1) is strongly not controllable: the reachable set, with
L2(0, T )-controls, is (locally) contained in a non �at submanifold of H3

(0) ×H
2
(0)(0, 1)

with in�nite codimension.

The goal of this article is the proof of the following Theorem.

Theorem 1 Let µ ∈W 2,∞(0, 1). We assume

∃c > 0 such that
c

k2
∗
6 |〈µ, ϕk〉|,∀k ∈ N. (5)

(1) Let T > 2. There exists δ > 0 and a C1-map

ΓT : VT → L2(0, T )
(wf , ẇf ) 7→ ΓT (wf , ẇf )

where
VT := {(wf , ẇf ) ∈ H3

(0) ×H
2
(0)(0, 1); ‖wf − 1‖H3

(0)
+ ‖ẇf‖H2

(0)
< δ},

such that, ΓT (1, 0) = 0 and for every (wf , ẇf ) ∈ VT , the solution of (1) with initial condition(
w,

∂w

∂t

)
(0, x) = (1, 0),∀x ∈ (0, 1), (6)

and control u = ΓT (wf , ẇf ) satis�es (w, ∂w∂t )(T ) = (wf , ẇf ).
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(2) Let T = 2. There exists δ, r > 0 and a C1 map

ΓT : VT → Br[L
2(0, T )]

(w̃f , ẇf ) 7→ ΓT (w̃f , ẇf )

where

VT := {(w̃f , ẇf ) ∈ H3
(0) ×H

2
(0)(0, 1);

∫ 1

0

w̃f (x)dx = 0, ‖w̃f‖H3
(0)

+ ‖ẇf‖H2
(0)
< δ},

Br[L
2(0, T )] := {u ∈ L2((0, T ),R); ‖u‖L2 < r},

such that, ΓT (0, 0) = 0 and for every (w̃f , ẇf ) ∈ VT , u ∈ Br[L2(0, T )], the solution of (1),
(6) satis�es

w(T )−
∫ 1

0

w(T, x)dx = w̃f and
∂w

∂t
(T ) = ẇf ,

if and only if u = ΓT (w̃f , ẇf ).
The reachable set from (6) is, locally, a C1-submanifold with codimension one. More pre-

cisely, there exists r′ > 0 and a locally surjective non linear C1-map GT : H3
(0)×H

2
(0)(0, 1)→

R such that, for every u ∈ Br′ [L2(0, T )], the solution of (1), (6) satis�es

GT

[(
w,

∂w

∂t

)
(T )

]
= 0.

(3) We assume

(µ2)′(1)± (µ2)′(0)

µ′(1)± µ′(0)
6=
∫ 1

0
µ(x)2dx∫ 1

0
µ(x)dx

. (7)

Let T < 2. The reachable set from (6) is, locally, contained in a C1-submanifold of H3
(0) ×

H2
(0)(0, 1), with in�nite codimension, that does not coincide with its tangent space at (1, 0).

More precisely, there exists r > 0, a strict vector subspace RT of H3
(0) × H2

(0)(0, 1) with

in�nite dimension and a locally surjective C1 map

GT : H3
(0) ×H

2
(0)(0, 1)→ RT

such that, for every u ∈ Br[L2(0, T )], the solution of (1), (6) satis�es

GT

[(
w,

∂w

∂t

)
(T )

]
= 0.

Remark 1 Notice that, when (5) holds, then
∫ 1

0
µ = 〈µ, ϕ0〉 6= 0 and µ′(1) ± µ′(0) 6= 0.

Indeed, we have

〈µ, ϕk〉 =

√
2

(kπ)2

(
(−1)kµ′(1)− µ′(0)

)
−
√

2

(kπ)2

∫ 1

0

µ′′(x) cos(kπx)dx. (8)

This remark gives a sense to each term in (7).

Remark 2 The assumptions (5) and (7) hold simultaneously, for example, with µ(x) = x2,
because

〈x2, ϕ0〉 =
∫ 1

0
x2dx = 1

3 ,

〈x2, ϕk〉 =
∫ 1

0
x2
√

2 cos(kπx)dx = (−1)k2
√

2
(kπ)2 ,∀k ∈ N∗,

(9)
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(µ2)′(1)± (µ2)′(0)

µ′(1)± µ′(0)
= 2, and

∫ 1

0
µ(x)2dx∫ 1

0
µ(x)dx

=
3

5
.

But (5) and (7) are not always satis�ed. For example, (5) does not hold when 〈µ, ϕk〉 = 0 for
some k ∈ N, or when µ has a symmetry with respect to x = 1/2. However, the assumptions
(5) and (7) are generic in W 2,∞(0, 1) (see Appendix A for a proof), thus, Theorem 1 is very
general.

Remark 3 In Theorem 1, the spaces are optimal. Indeed, we will see in this article that,
for every control u ∈ L2(0, T ), there exists a unique solution of (1), (6) and it satis�es(

w,
∂w

∂t

)
(T ) ∈ H3

(0) ×H
2
(0)(0, 1).

Remark 4 Let us mention the reference [15] by Coron, Rouchon and the author, in which
similar results are proved. In this reference, we consider the Bloch equation

∂M

∂t
(t, ω) =

 0 −ω v(t)
ω 0 u(t)
−v(t) −u(t) 0

M(t, ω), t ∈ [0,+∞), ω ∈ (ω∗, ω
∗),

where −∞ 6 ω∗ < ω∗ 6 +∞, u, v : [0,+∞) → R. It is a control system where the state
is the function M = M(t, ω) and the control is (u, v) : [0,+∞) → R2. This system is a
prototype for in�nite dimensional bilinear control systems, with continuous spectrum. In
[15, Theorem 2], we prove that, when ω∗ = −∞ and ω∗ = +∞, then, this system is not
exactly controllable, locally around the reference trajectory (Mref = e3, uref = 0, vref = 0).
The proof consists in proving that the reachable set from M(0, ω) = e3, in time T , with
bounded L2(0, T )-controls, is locally a non �at submanifold of some functional space, with
in�nite codimension. The proof of this result relies on the inverse mapping theorem, and
second order expansions, as in the present article.

In this article, the same letter C denotes a positive constant that can change from one
line to another one.

1.2 Sketch of the proof

The proof of Theorem 1 relies on the inverse mapping theorem, applied to the end point
map

ΘT : u 7→
(
w,

∂w

∂t

)
(T ), (10)

where w solves (1), (6).
First, we prove that, for every T > 0, the map ΘT is C1 between the following spaces

ΘT : L2(0, T )→ H3
(0) ×H

2
(0)(0, 1).

Then, the local controllability of the nonlinear system when T > 2 (i.e. the local surjectivity
of ΘT ) is a consequence of the surjectivity of dΘT (0). And the non controllability of the
nonlinear system when T 6 2 is a consequence of the injectivity and non-surjectivity of
dΘT (0). More precisely, we prove the following results.

• When T > 2, the continuous linear map dΘT (0) : L2(0, T ) → H3
(0) ×H

2
(0)(0, 1) has a

continuous right inverse. This means that the linearized system around the reference
trajectory (w(t, x) = 1, u(t) = 0) is controllable, in time T , in H3

(0) ×H
2
(0)(0, 1), with

controls in L2(0, T ).

4



• When T = 2, the continuous linear map dΘT (0) : L2(0, T ) → H3
(0) × H2

(0)(0, 1) is

injective, its image RT is a vector subspace of H3
(0)×H

2
(0)(0, 1) with codimension one,

and the map dΘT (0) : L2(0, T ) → RT has a continuous (left and right) inverse. This
means that the linearized system around the reference trajectory (w(t, x) = 1, u(t) = 0)
is controllable up to codimension one, in time T , in H3

(0)×H
2
(0)(0, 1), with controls in

L2(0, T ): it misses exactly one direction. Moreover, for every reachable target, there
exists a unique control allowing this motion.

• When T < 2, the continuous linear map dΘT (0) : L2(0, T )→ H3
(0)×H

2
(0)(0, 1) is injec-

tive, its image RT is a vector subspace ofH3
(0)×H

2
(0)(0, 1) with in�nite codimension and

the map dΘT (0) : L2(0, T )→ RT has a continuous (left and right) inverse. This means
that the linearized system around the reference trajectory (w(t, x) = 1, u(t) = 0) is
strongly not controllable: it misses an in�nite number of directions. Moreover, for
every reachable target, there exists a unique control allowing this motion.

Thus, by applying the inverse mapping theorem, we prove that the reachable set in time
T 6 2 is a strict submanifold of H3

(0) × H
2
(0)(0, 1). Now, let us explain how we prove this

submanifold is not �at. First, we prove that the image of the quadratic form d2ΘT (0) is not
contained in the image of the linear map dΘT (0). Then, thanks to a second order expansion
of ΘT around 0, we see that the (local) submanifold (i.e. the image of ΘT ) does not coincide
with its tangent space at (1, 0) (i.e. the image of dΘT (0)).

Remark 5 The �rst (local) exact controllability result, for an in�nite dimensional bilinear
system, has been proved in [10], for a Schrödinger equation. In [10], the strategy is the same
as in this article: �rst, we prove the controllability of the linearized system and then, we
conclude by applying an inverse mapping theorem. However, because of an a priori loss of
regularity, we use the Nash-Moser implicit function theorem, instead of the classical inverse
mapping theorem. Thus, the analysis is quite complicated.

One of the interests of this article is to provide an example of in�nite dimensional bilinear
control system (i.e. the equation (1)), for which the proof of the (local) exact controllability
relies only on the classical inverse mapping theorem, and is rather simple. In order to avoid
the use of the Nash-Moser theorem, we emphasize a 'hidden' regularization e�et for the
equation 1.

1.3 A brief bibliography

1.3.1 A previous negative result for this equation

The following result is due to Ball, Marsden and Slemrod [5, Theorem 3.6].

Theorem 2 Let X be a Banach space with in�nite dimension. Let A be the generator of a
C0-group of bounded operators of X and B be a bounded operator of X. For w0 ∈ X and
p ∈ L1

loc([0,+∞),R), U [T ; p, w0] denotes the value at time T of the unique weak solution of{
dw
dt = Aw + p(t)Bw(t),
w(0) = w0.

(11)

For every w0 ∈ X, the reachable set from w0,

R(w0) := {U [T ; p, w0];T > 0, p ∈ Lrloc([0,+∞),R), r > 1}

has an empty interior in X.

A consequence of this theorem is the non controllability of the system (11), in X, with
controls p ∈ Lrloc([0,+∞),R), r > 1.
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Theorem 2 applies to the system (1), written in �rst order form, with

X := H2
(0) ×H

1(0, 1),

D(A) := H2
(0) ×H

1(0, 1), A :=

(
0 I
−A 0

)
,

D(B) := L2 × L2(0, 1), B :=

(
0 0
µ 0

)
.

(12)

Indeed, for every (w0, ẇ0) ∈ H1 × L2(0, 1), we have

eAt
(
w0

ẇ0

)
=

(
w(t)
ẇ(t)

)
,

where

w(t) = (〈w0, ϕ0〉+ 〈ẇ0, ϕ0〉t)ϕ0 +

∞∑
k=1

(
〈w0, ϕk〉 cos(

√
λkt) +

1√
λk
〈ẇ0, ϕk〉 sin(

√
λkt)

)
ϕk,

ẇ(t) = 〈ẇ0, ϕ0〉ϕ0 +

∞∑
k=1

(
−
√
λk〈w0, ϕk〉 sin(

√
λkt) + 〈ẇ0, ϕk〉 cos(

√
λkt)

)
ϕk.

Thus A generates a C0-group of bounded operators of X. Moreover B is a bounded operator
of X when µ ∈ W 1,∞(0, 1). For a precise de�nition of weak solutions of (1), we refer to
Proposition 2. Thanks to Theorem 2, we have the following non controllability result for
(1).

Proposition 1 Let µ ∈ W 1,∞(0, 1), T > 0 and (w0, ẇ0) ∈ H2
(0) × H1(0, 1). For u ∈

L1
loc[0,+∞), U [T ;u,w0, ẇ0] denotes the value at time T of the weak solution of (1) with

initial condition (
w,

∂w

∂t

)
(0) = (w0, ẇ0).

The reachable set from (w0, ẇ0),

R(w0, ẇ0) := {U [T ;u,w0, ẇ0];T > 0, u ∈ Lrloc[0,+∞), r > 1}

has an empty interior in H2
(0) ×H

1(0, 1).

Thus, the system (1) is not controllable in H2
(0) ×H

1(0, 1) with controls in Lrloc[0,+∞),
r > 1.

Remark 6 Notice that Theorem 2 does not apply with

X := H3
(0) ×H

2
(0)(0, 1).

Indeed, A generates a C0-group of bounded operators of X, but B does not map X into X:
for ϕ ∈ H3

(0)(0, 1) (i.e. ϕ ∈ H3(0, 1) and ϕ′(0) = ϕ′(1) = 0), we have (µϕ)′(0) = µ′(0)ϕ(0)

and (µϕ)′(1) = µ′(1)ϕ(1) that may not vanish.

Such a negative controllability result may be rather weak, because it does not prevent
from positive controllability results, in di�erent functional spaces. For example, the reach-
able set R(w0, ẇ0) may be the whole space H3

(0) ×H
2
(0)(0, 1) (which has an empty interior

in H2
(0) ×H

1
(0)(0, 1)) and then the system would be controllable in H3

(0) ×H
2
(0)(0, 1). In this

article, we prove that this is indeed the case, at least locally, when T > 2. On the contrary,
when T < 2, the system (1) is not controllable in a very strong sense (stronger that Ball,
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Marsden and Slemrod's one): the reachable set R(1, 0) is locally a non �at submanifold of
H3

(0) × H
2
(0)(0, 1), with in�nite codimension. In particular, when T < 2, no positive exact

controllability result can be expected in smoother spaces (because the manifold is not �at).
Thus, the results of this article complete the ones of [5].

The same kind of situation arises with bilinear Schrödinger or beam equations (see [13],
[10], [11], [12], [14]).

1.3.2 Iterated Lie brackets for general bilinear systems

Now, let us discuss the exact controllability of general bilinear systems.

First, the controllability of �nite dimensional bilinear control systems (i.e. modeled by
an ordinary di�erential equation) is well understood. Let us consider the control system

dX

dt
= AX + u(t)BX, (13)

where X(t) ∈ Rn is the state, A,B are n ∗ n matrices, and t 7→ u(t) ∈ R is the control. The
controllability of (13) is linked to the rank of the Lie algebra spanned by A and B (see for
example [2] by Agrachev and Sachkov, [21, Chapter 3] by Coron or [22] by D'Alessandro).

In in�nite dimension, there are cases where the iterated Lie brackets provide the right
intuition. For instance, it holds for the non controllability of the harmonic quantum oscillator
with bilinear control (see [37] by Mirrahimi and Rouchon). However, the Lie brackets are
sometimes less powerful in in�nite dimension than in �nite dimension. It is precisely the
case of our system. Let us compute the iterated Lie brackets of the operators A and B
de�ned by (12), at the point

W0 =

(
1
0

)
.

We have

[A,B]W0 = (AB − BA)W0 = ABW0 =

(
µ
0

)
(µ is assumed to belong to W 2,∞(0, 1)). Notice that [A,B]W0 does not belong to D(A)
because µ′ may not vanish at 0 and 1. Thus, in order to compute the iterated Lie bracket
[A, [A,B]]W0, one needs to extend the de�nition of A to couples (w0, w1) such that w′0 does
not vanish at 0 and 1. A natural choice is

A
(
w0

w1

)
:=

(
w1

w′′0 − w′0(1)δ1 + w′0(0)δ0

)
,∀(w0, w1) ∈ H2 ×H1(0, 1). (14)

With this de�nition, we get

[A, [A,B]]W0 =

(
0

µ′′ − µ′(1)δ1 + µ′(0)δ0

)
,

[A, [A, [A,B]]]W0 =

(
µ′′ − µ′(1)δ1 + µ′(0)δ0

0

)
.

But again, [A, [A, [A,B]]]W0 does not belong to H2 × H1(0, 1), thus the de�nition (14)
cannot be used to compute [A, [A, [A, [A,B]]]]W0. Moreover, even if we could give a sense
to any iterated Lie bracket, because of the presence of Dirac masses, it would not be clear
which space the Lie brackets should generate in case of local controllability around the ref-
erences trajectory (w(t, x) = 1, u(t) = 0). Therefore, the way the Lie algebra rank condition
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could be used directly in in�nite dimension is not clear.

Finally, let us quote important articles about the controllability of PDEs, in which
positive results are proved by applying such geometric control methods but to the (�nite
dimensional) Galerkin approximations of the equation. In [3] by Sarychev and Agrachev
and [41] by Shirikyan, the authors prove exact controllability results for dissipative equa-
tions. In [19] by Boscain, Chambrion, Mason and Sigalotti, the authors prove approximate
controllability results for Schrödinger equations.

1.3.3 Wave equation with bilinear control

Now, let us quote few articles about the controllability of wave equations with bilinear
control. In [32], Khapalov considers the following control system{

∂2y
∂t2 = ∂2y

∂x2 + v(t, x)y(t, x)− γ(t)yt − F (t, x, y), x ∈ (0, 1), t ∈ (0,+∞),
y(t, 0) = y(t, 1) = 0,

(15)

in which the controls are v ∈ L∞((0,+∞) × (0, 1)) and γ ∈ L∞(0,+∞). This equation
represents a semilinear vibrating string, with clamped ends, with a variable axial load v(t, x)
and a variable damping gain γ(t). The nonlinearity F is �xed. Such controllability problems
may arise in the context of 'smart materials', whose properties can be altered by applying
various factors (temperature, electric current, magnetic �eld). In [32], the author proves
the global approximate controllability to nonnegative equilibrium states: ∀(y0, y1) ∈ H1

0 ×
L2(0, 1) with (y0, y1) 6= 0, ∀yd ∈ L1(0, 1) with yd > 0 a.e. on (0, 1), ∀ε > 0 there exists
T = T (ε, y0, y1, yd) > 0 and piecewise-constant-in-time controls (v, γ) such that the solution
of (15) with initial condition (

y,
∂y

∂t

)
(0) = (y0, y1),

satis�es

‖y(T )− yd‖L2 +
∥∥∥∂y
∂t

∥∥∥
L2
< ε.

The proof consists in, �rst, �nding a control (v, γ) that realizes the approximate controlla-
bility for the homogeneous truncated system (i.e. with F = 0), and then, proving that, the
nonlinear system with the same control follows closely the linear one. We also refer to [31]
and [29] by Khapalov for similar results on similar equations (with γ = 0 or F = 0).

1.3.4 Wave equation with linear controls

Now, let us quote few articles about the controllability of wave equations with distributed
or boundary controls acting linearly on the state. There is a huge literature on this subject.
One of the best result has been obtained by Bardos, Lebeau and Rauch in [6]. See also the
paper [18] by Burq and Gérard, the paper [17] by Burq for improvements or simpler proofs,
and the papers [43] by Zuazua for semilinear equations. Let us also mention the survey
paper [40] by Russell and the books [21] by Coron, [25] by Fursikov and Imanuvilov, [35] by
Jacques Louis Lions and [34] by Komornik, where one can �nd plenty of results and useful
references.

1.3.5 Other results about in�nite dimensional bilinear systems

In the last years, important progress have been made about the controllability of Schrödinger
equations with bilinear control.

The �rst results were negative: in [42], Turinici adapted Theorem 2 to linear Schrödinger
equations; in [28], Lange and Teismann adapted it to nonlinear equations; in [37], Mirrahimi
and Rouchon proved a stronger negative result for the quantum harmonic oscillator.
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Concerning exact controllability issues, local results for 1D models have been proved in
[10, 11] by the author, who proposed a simpli�ed proof in [13]; almost global results have
been proved in [14], by Coron and the author. In [20], Coron proved the existence of a
positive minimal time required for the local controllability of the 1D model studied in [10].

Now, let us quote some approximate controllability results. In [16] Mirrahimi and the
author proved the global approximate controllability, in in�nite time, for a 1D model and
in [36] Mirrahimi proved a similar result for equations involving a continuous spectrum.
Approximate controllability, in �nite time, has been proved for particular models by Boscain
and Adami in [1], by using adiabatic theory and intersection of the eigenvalues in the
space of controls. Approximate controllability, in �nite time, for more general models, have
been studied by 3 teams, with di�erent tools: by Boscain, Chambrion, Mason, Sigalotti in
[19], with geometric control methods; by Nersesyan in [39, 38] with feedback controls and
variational methods; and by Ervedoza and Puel in [24] thanks to a simpli�ed model.

Let us emphasize that the local exact controllability of [13] and the global approximate
controllability of [39, 38] can be put together in order to get the global exact controllability
of 1D models (see [38]).

Optimal control techniques have also been investigated for Schrödinger equations with
a non linearity of Hartee type in [7, 8] by Baudouin, Kavian, Puel and in [23] by Cances,
Le Bris, Pilot. An algorithm for the computation of such optimal controls is studied in [9]
by Baudouin and Salomon.

Finally, let us also quote [30, 33] by Khapalov for approximate controllability results
about the heat equation, [12] by the author for an exact controllability result about a 1D
beam equation, and [15] for a negative exact controllability result and positive approximate
controllability results for the Bloch equation.

1.4 A toy model for 2D quantum systems

Finally, let us emphasize that the system (1) may be considered as a toy model for 2D (i.e.
n = 2) Schrödinger bilinear control systems,{

i∂ψ∂t = −∆ψ − u(t)µ(x)ψ, x ∈ Ω, t ∈ [0, T ],
ψ(t, x) = 0, x ∈ ∂Ω,

(16)

where Ω is a bounded regular open subset of Rn, and µ : Ω→ R is a smooth function.
The system (16) represents a quantum particle in a in�nite square potential well Ω,

subjected to a 1D uniform (in space) time dependent electric �eld with amplitude u(t). The
function µ is the dipolar moment of the particle. The controllability of such systems is a
challenging problem.

In the references above, the approximate controllability results [19, 39, 38] hold in any
space dimension (∀n ∈ N∗), but the local exact controllability results [13] hold only in 1D
(n = 1). Thus, the global exact controllability is proved only in 1D (see [38]). It would
be interesting to know if the same program works in any dimension, i.e. if the local exact
controllability result also holds in 2D and 3D.

A key point in the proof of [13] is the following property: the eigenvalues of the Laplacian
on a 1D domain (take, for instance λk = (kπ)2, k ∈ N∗ with Ω = (0, 1)) satisfy a gap
condition:

∃δ > 0 such that λk+1 − λk > δ, ∀k ∈ N∗.

Such a property does not hold on 2D and 3D domains, for which we only know the Weyl
formula,

∃d > 0, α ∈ (0, n/2) such that Card{k ∈ N;µk ∈ [0, t]} = dtn/2 +O(tα) when t→ +∞.
(17)
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The system (1) may be considered as a toy model for (16) with n = 2. Indeed, the
spectrum of the underlying operator A de�ned by (12) satis�es the Weyl formula (17) with
n = 2, : its eigenvalues are (ikπ)k∈N with the associated eigenvectors (Xk)k∈N,

Xk :=

(
ϕk

ikπϕk

)
,∀k ∈ N∗

(see (3) for a de�nition of ϕk). The control system (1) is easier to deal with that (16)
because the spectrum of the underlying operator has more structure.

1.5 Structure of this article

This article is organized as follows.

The Section 2 is dedicated to the well posedness of the Cauchy problem (1), (6).
In Subsection 2.1, we state classical results about existence, uniqueness, regularity, and

bounds for the solutions of a more general Cauchy problem.
In Subsection 2.2, improving these classical results, we prove that the end point map

ΘT , de�ned by (10), is C1 from L2(0, T ) to H3
(0) ×H

2
(0)(0, 1).

In Section 3 we consider the linearized system of (1) around the reference trajectory
(w(t, x) = 1, u(t) = 0). We study its controllability in H3

(0) × H2
(0)(0, 1) with L2(0, T )-

controls.

In Section 4, we study the second order term around (w(t, x) = 1, u(t) = 0). We prove
that, for every T > 2, the image of the quadratic form d2ΘT (0) is not contained in the
image of the linear map dΘT (0).

In Section 5 we prove Theorem 1, by applying the inverse mapping theorem.

Finally, Section 6 is dedicated to conclusions, open problems and perspectives.

2 Well posedness and C1 regularity of the end point map

This section is dedicated to the statement of existence, uniqueness, regularity results, and
bounds for the solutions of the Cauchy problem

∂2w
∂t2 (t, x) = ∂2w

∂x2 (t, x) + u(t)µ(x)w(t, x) + f(t, x), x ∈ (0, 1), t ∈ R+,
∂w
∂x (t, 0) = ∂w

∂x (t, 1) = 0,
w(0, x) = w0(x),
∂w
∂t (0, x) = ẇ0(x).

(18)

These results are presented in Subsection 2.1. Then, in Subsection 2.2, improving the results
of Subsection 2.1, we prove that the map ΘT , de�ned by (10), is of class C1 from L2(0, T )
to H3

(0) ×H
2
(0)(0, 1).

2.1 Existence, uniqueness, regularity and bounds

In order to study the well posedness of (18), it is convenient to write it in �rst order form.
With the notations

W :=

(
w
∂w
∂t

)
, W0 :=

(
w0

ẇ0

)
, F(t, x) :=

(
0

f(t, x)

)
,
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and A, B de�ned by (12), the equation (18) may be written{
∂W
∂t (t, x) = AW(t, x) + u(t)BW(t, x) + F(t, x),
W(0) =W0.

(19)

The operator A generates a C0-group of bounded operators of Hs+1
(0) ×H

s
(0)(0, 1), for every

s > 0 (see (4) for a de�nition) and the operator B is bounded on H2
(0) × H

1(0, 1) when

µ ∈ W 1,∞(0, 1). These two facts allow to prove the following classical existence result of
weak solutions for (18).

Proposition 2 Let µ ∈ W 1,∞(0, 1) and T > 0. There exists C = C(µ, T ) > 0 such that,
for every u ∈ L1(0, T ), (w0, ẇ0) ∈ H2

(0)×H
1(0, 1), and f ∈ L1((0, T ), H1(0, 1)), there exists

a unique weak solution of (18), i.e. a function(
w,

∂w

∂t

)
∈ C0([0, T ], H2

(0) ×H
1(0, 1))

such that the following equality holds in H2
(0) ×H

1(0, 1), for every t ∈ [0, T ],

W(t) = eAtW0 +

∫ t

0

eA(t−τ)
(
u(τ)BW(τ) + F(τ)

)
dτ, (20)

and this weak solution satis�es∥∥∥(w, ∂w
∂t

)∥∥∥
C0([0,T ],H2

(0)
×H1)

6 C
(
‖(w0, ẇ0)‖H2

(0)
×H1 + ‖f‖L1((0,T ),H1)

)
eC‖u‖L1 . (21)

Proof of Proposition 2 : The existence and uniqueness come from a �xed point argument
on the map F de�ned on C0([0, T ], H2

(0) ×H
1(0, 1)) by F (W) := ξ where

ξ(t) = eAtW0 +

∫ t

0

eA(t−τ)
(
u(τ)BW(τ) + F(τ)

)
dτ,∀t ∈ [0, T ].

F maps C0([0, T ], H2
(0) ×H

1(0, 1)) into itself because B and eAt preserve H2
(0) ×H

1(0, 1).

When ‖u‖L1((0,T ),R) is small enough, then F is a contraction, because

‖F (W1)(t)− F (W2)(t)‖H2
(0)
×H1 =

∥∥∥ ∫ t0 eA(t−τ)u(τ)B
(
W1(τ)−W2(τ)

)
dτ
∥∥∥
H2

(0)
×H1

6
∫ t

0
|u(τ)|

∥∥∥eA(t−τ)B
(
W1(τ)−W2(τ)

)∥∥∥
H2

(0)
×H1

dτ

6 C1

∫ t
0
|u(τ)|

∥∥∥B(W1(τ)−W2(τ)
)∥∥∥

H2
(0)
×H1

dτ

6 C1C2‖u‖L1(0,T )‖W1 −W2‖C0([0,T ],H2
(0)
×H1),

where C1 = C1(A, T ), C2 = C2(B) > 0. Thus, F has a unique �xed point W ∈
C0([0, T ], H2

(0) × H1) that satis�es (20). If ‖u‖L1((0,T ),R) is not small, one may use

0 = T0 < T1 < ... < Tn = T where, for i = 0, ..., n − 1, ‖u‖L1(Ti,Ti+1) is small enough
so that the previous result holds on [Ti, Ti+1], for i = 0, ..., n−1. Then we glue the solutions
de�ned on [T0, T1], [T1, T2],...,[Tn−1, Tn]. We deduce from the equality (20) that

‖W(t)‖H2
(0)
×H1 6 C1

(
‖W0‖H2

(0)
×H1 + ‖F‖L1((0,T ),H2

(0)
×H1) +

∫ t

0

|u(τ)|C2‖W(τ)‖H2
(0)
×H1dτ

)
,

and Gronwall's Lemma gives (21). �

Remark 7 This proof does not work with H3
(0)×H

2
(0)(0, 1) instead of H2

(0)×H
1(0, 1) because

B does not conserve H3
(0) × H

2
(0)(0, 1). Indeed, for ϕ ∈ H3

(0)(0, 1) (i.e. ϕ ∈ H3(0, 1) and

ϕ′(0) = ϕ′(1) = 0), we have (µϕ)′ = µ′ϕ at x = 0, 1 that may not vanish. Thus it is not
obvious that the map ΘT de�ned by (10) maps L2(0, T ) into H3

(0) ×H
2
(0).
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2.2 C1 regularity of the end point map

Thanks to Proposition 2, we can consider the map ΘT de�ned by (10), and we know that it
is continuous from L2(0, T ) to H2

(0) ×H
1(0, 1). The goal of this section is the proof of the

following hidden regularization e�ect.

Theorem 3 Let T > 0 and µ ∈ W 2,∞(0, 1). The map ΘT de�ned by (10) is C1 between
the following spaces

ΘT : L2(0, T )→ H3
(0) ×H

2
(0)(0, 1).

Moreover, for every u, v ∈ L2(0, T ), we have

dΘT (u).v =

(
W,

∂W

∂t

)
(T ) (22)

where W is the weak solution of
∂2W
∂t2 = ∂2W

∂x2 + u(t)µ(x)W (t, x) + v(t)µ(x)w(t, x), x ∈ (0, 1), t ∈ (0, T ),
∂W
∂x (t, 0) = ∂W

∂x (t, 1) = 0,
W (0, x) = 0,
∂W
∂t (0, x) = 0,

(23)

and w is the weak solution of (1),(6).

In Subsection 2.2.1, we state preliminary results useful for the proof of Theorem 3, which
is detailed in Subsection 2.2.2.

2.2.1 Preliminaries

Lemma 1 Let T > 0. There exists C = C(T ) > 0 such that, for every g ∈ L2(0, T ),(∑
k∈N

∣∣∣ ∫ T

0

g(t)eikπtdt
∣∣∣2)1/2

6 C‖g‖L2(0,T ).

Proof of Lemma 1: Let n ∈ N∗ be such that 2(n− 1) < T 6 2n. Continuing g by zero on
[T, 2n] and using the Bessel Parseval inequality, we get

∑
k∈N

∣∣∣ 1

2n

∫ T

0

g(t)eikπtdt
∣∣∣2 6 1

2n

∫ T

0

|g(t)|2dt.

Thus, Lemma 1 holds with C(T ) :=
√

2n. �

For s > 0, we use the spaces

hs(N∗,C) :=

{
a = (ak)k∈N∗ ∈ CN;

∞∑
k=1

|ksak|2 < +∞

}

equipped with the norm

‖a‖hs :=
( ∞∑
k=1

|ksak|2
)1/2

.

Thanks to Lemma 1, we have the following result.
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Lemma 2 Let T > 0. There exists C = C(T ) > 0 such that, for every w ∈ L2(0, T ),
f ∈ C0([0, T ], H2(0, 1)), the sequence S0 = (S0,k)k∈N∗ de�ned by

S0,k :=

∫ T

0

w(t)〈f(t), ϕk〉ei
√
λktdt,∀k ∈ N∗,

belongs to h2(N∗,C) and

‖S0‖h2 6 C‖w‖L2‖f‖C0([0,T ],H2).

Proof of Lemma 2: Thanks to the equation Aϕk = λkϕk, two integrations by part and
the equalities ϕk(1) = (−1)k

√
2, ϕk(0) =

√
2 (see (3)), we get the decomposition

S0,k = 1
λk

∫ T
0
w(t)〈Af(t), ϕk〉ei

√
λktdt

+ (−1)k
√

2
λk

∫ T
0
w(t)f ′(t, 1)ei

√
λktdt

−
√

2
λk

∫ T
0
w(t)f ′(t, 0)ei

√
λktdt,

called S0 = Sa0 + Sb0 + Sc0. Thanks to (3) and Cauchy-Schwarz inequality, we have

‖Sa0‖h2 =

( ∞∑
k=1

∣∣∣k2 1
λk

∫ T
0
w(t)〈Af(t), ϕk〉ei

√
λktdt

∣∣∣2)1/2

6 1
π2

( ∞∑
k=1

(∫ T
0

∣∣∣w(t)〈Af(t), ϕk〉
∣∣∣dt)2

)1/2

6 1
π2

( ∞∑
k=1

‖w‖2L2

∫ T
0
|〈Af(t), ϕk〉|2dt

)1/2

6
√
T
π2 ‖w‖L2‖Af‖C0([0,T ],L2)

6
√
T
π2 ‖w‖L2‖f‖C0([0,T ],H2).

Thanks to Lemma 1, there exists C = C(T ) > 0 such that

‖Sb0‖h2 6 C‖w(t)f ′(t, 1)‖L2 6 C‖w‖L2‖f‖C0([0,T ],H2),
‖Sc0‖h2 6 C‖w(t)f ′(t, 0)‖L2 6 C‖w‖L2‖f‖C0([0,T ],H2).�

2.2.2 Proof of Theorem 3

Proof of Theorem 3: Let T > 0 and µ ∈W 2,∞(0, 1).

First step: We prove that ΘT indeed maps L2(0, T ) into H3
(0) ×H

2
(0)(0, 1).

Let u ∈ L2(0, T ) and w be the weak solution of (1),(6). Let

xk := 〈w(T ), ϕk〉+
1

i
√
λk

〈∂w
∂t

(T ), ϕk

〉
,∀k ∈ N∗. (24)

It is su�cient to prove that (xk)k∈N∗ belongs to h
3(N∗,C). From the formulation of a weak

solution, we get

xk =
1

i
√
λk

∫ T

0

u(t)〈µw(t), ϕk〉ei
√
λk(T−t)dt,∀k ∈ N∗.

From Proposition 2, we know that(
w,

∂w

∂t

)
∈ C0([0, T ], H2

(0) ×H
1(0, 1)).
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Thus µw ∈ C0([0, T ], H2), and Lemma 2 proves that (xk)k∈N∗ belongs to h
3(N∗,C).

Second step: We prove that the linear map v 7→ W is continuous from L2(0, T ) to
H3

(0) ×H
2
(0)(0, 1). Let u, v ∈ L2(0, T ) and w,W be the solutions of (1),(6) and (23). Let

Xk := 〈W (T ), ϕk〉+
1

i
√
λk

〈∂W
∂t

(T ), ϕk

〉
,∀k ∈ N∗.

It is su�cient to prove that X := (Xk)k∈N∗ belongs to h
3(N∗,C) and

‖X‖h3 6 C‖v‖L2 ,

for some constant C = C(T, µ, ‖u‖L2). From the formulation of a weak solution, we get

Xk =
1

i
√
λk

∫ T

0

(
u(t)〈µW (t), ϕk〉+ v(t)〈µw(t), ϕk〉

)
ei
√
λk(T−t)dt,∀k ∈ N∗.

From Proposition 2, we know that∥∥∥(W, ∂W
∂t

)∥∥∥
C0([0,T ],H2

(0)
×H1)

6 C‖v‖L2 ,

where C = C(T, µ, ‖v‖L2). Thus, applying Lemma 2, we get

‖X‖h3 6 C[‖u‖L2‖µW‖C0([0,T ],H2) + ‖v‖L2‖µw‖C0([0,T ],H2)] 6 C‖v‖L2

where C = C(T, µ, ‖u‖L2).

Third step: We prove that ΘT : L2(0, T ) → H3
(0) × H

2
(0)(0, 1) is di�erentiable and (22)

holds. Let u, v ∈ L2(0, T ), w, W , w̃ be the weak solutions of (1), (6), (23) and
∂2w̃
∂t2 = ∂2w̃

∂x2 + (u+ v)(t)µw̃, x ∈ (0, 1), t ∈ (0, T ),
∂w̃
∂x (t, 0) = ∂w̃

∂x (t, 1) = 0,
w̃(0, x) = 1,
∂w̃
∂t (0, x) = 0.

(25)

Then, ∆ := w̃ − w −W is the weak solution of
∂2∆
∂t2 = ∂2∆

∂x2 + (u+ v)µ∆ + vµW,
∂∆
∂x (t, 0) = ∂∆

∂x (t, 1) = 0,
∆(0, x) = 0,
∂∆
∂t (0, x) = 0.

(26)

We want to prove that∥∥∥(∆,
∂∆

∂t

)
(T )
∥∥∥
H3

(0)
×H2

(0)

= o(‖v‖L2) when ‖v‖L2 → 0.

Let

yk := 〈∆(T ), ϕk〉+
1

i
√
λk

〈∂∆

∂t
(T ), ϕk

〉
,∀k ∈ N∗.

It is su�cient to prove that y := (yk)k∈N∗ satis�es ‖y‖h3 = O(‖v‖2L2) when ‖v‖L2 → 0.
From the formulation of a weak solution, we get

yk =
1

i
√
λk

∫ T

0

(
(u+ v)(t)〈µ∆(t), ϕk〉+ v(t)〈µW (t), ϕk〉

)
ei
√
λk(T−t)dt,∀k ∈ N∗.
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From Proposition 2, we know that, when ‖v‖L2 6 1, we have∥∥∥ (W, ∂W∂t ) ∥∥∥
C0([0,T ],H2

(0)
×H1)

6 C‖vµw‖L1((0,T ),H1)

6 C‖v‖L2‖w‖C0([0,T ],H1)

6 C‖v‖L2 ,∥∥∥ (∆, ∂∆
∂t

) ∥∥∥
C0([0,T ],H2

(0)
×H1)

6 C‖vµW‖L1((0,T ),H1)

6 C‖v‖L2‖W‖C0([0,T ],H1)

6 C‖v‖2L2 ,

where C = C(µ, T, ‖u‖L2) > 0. Thus, applying Lemma 2, we deduce that

‖y‖h3 6 ‖u+ v‖L2‖µ∆‖C0([0,T ],H2) + ‖v‖L2‖µW‖C0([0,T ],H2) 6 C‖v‖2L2 .

Fourth step: We prove the continuity of the map

dΘT : L2(0, T ) → Lc(L2(0, T ), H3
(0) ×H

2
(0)(0, 1))

u 7→ dΘT (u).

Actually, we prove this map is locally Lipschitz. Let u, ũ, v ∈ L2(0, T ) with ‖u − ũ‖L2 < 1
and w,W, w̃, W̃ be the weak solutions of (1), (6), (23) and

∂2w̃
∂t2 = ∂2w̃

∂x2 + ũµw̃,
∂w̃
∂x (t, 0) = ∂w̃

∂x (t, 1) = 0,
w̃(0, x) = 1,
∂w̃
∂t (0, x) = 0,


∂2W̃
∂t2 = ∂2W̃

∂x2 + ũµW̃ + vµw̃,
∂W̃
∂x (t, 0) = ∂W̃

∂x (t, 1) = 0,

W̃ (0, x) = 0,
∂W̃
∂t (0, x) = 0.

We have

[dΘT (u)− dΘT (ũ)].v =

(
Ξ,
∂Ξ

∂t

)
(T )

where Ξ := W − W̃ is the weak solution of
∂2Ξ
∂t2 = ∂2Ξ

∂x2 + uµΞ + (u− ũ)µW̃ + vµ(w − w̃),
∂Ξ
∂x (t, 0) = ∂Ξ

∂x (t, 1) = 0,
Ξ(0, x) = 0,
∂Ξ
∂t (0, x) = 0.

Let

zk := 〈Ξ(T ), ϕk〉+
1

i
√
λk

〈∂Ξ

∂t
(T ), ϕk

〉
,∀k ∈ N∗.

It is su�cient to prove that z := (zk)k∈N∗ satis�es

‖z‖h3 6 C‖u− ũ‖L2‖v‖L2 , (27)

where C = C(µ, T, ‖u‖L2) > 0. We have, for every k ∈ N∗,

zk =
1

i
√
λk

∫ T

0

(
u(t)〈µΞ(t), ϕk〉+(u−ũ)(t)〈µW̃ (t), ϕk〉+v(t)〈µ(w−w̃)(t), ϕk〉

)
ei
√
λk(T−t)dt.

Thus, applying Lemma 2, we get

‖z‖h3 6 C[‖u‖L2‖Ξ‖C0([0,T ],H2) + ‖u− ũ‖L2‖W̃‖C0([0,T ],H2) + ‖v‖L2‖w − w̃‖C0([0,T ],H2)],

where C = C(µ, T, ‖u‖L2) > 0. Thanks to Proposition 2, we have

‖w − w̃‖C0([0,T ],H2
(0)

) 6 C‖(u− ũ)µw‖L1((0,T ),H1) 6 C‖u− ũ‖L2 ,
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‖W̃‖C0([0,T ],H2
(0)

) 6 C‖vµw̃‖L1((0,T ),H1) 6 C‖v‖L2 ,

‖Ξ‖C0([0,T ],H2
(0)

) 6 C‖(u− ũ)µW̃ + vµ(w − w̃)‖L1((0,T ),H1)

6 C[‖u− ũ‖L2‖W̃‖C0([0,T ],H1) + ‖v‖L2‖w − w̃‖C0([0,T ],H1)]
6 C‖u− ũ‖L2‖v‖L2 ,

where C = C(µ, T, ‖u‖L2) > 0. Therefore, we have (27).�

3 Controllability of the linearized system

The goal of this section is the proof of the following results.

Theorem 4 Let µ ∈W 2,∞(0, 1) be such that (5) holds.

(1) Let T > 2. The linear map dΘT (0) : L2(0, T )→ H3
(0) ×H

2
(0)(0, 1) has a continuous

right inverse dΘT (0)−1 : H3
(0) ×H

2
(0)(0, 1)→ L2(0, T ).

(2) Let T = 2. The image of the linear map dΘT (0) : L2(0, T )→ H3
(0) ×H

2
(0)(0, 1) is a

vector subspace RT of H3
(0)×H

2
(0)(0, 1) with codimension one, and there exists a continuous

(left and right) inverse dΘT (0)−1 : RT → L2(0, T ).

(3) Let T < 2. The image of the linear map dΘT (0) : L2(0, T ) → H3
(0) × H2

(0)(0, 1)

is a vector subspace RT of H3
(0) × H

2
(0)(0, 1) with in�nite codimension, and there exists a

continuous (left and right) inverse dΘT (0)−1 : RT → L2(0, T ).

This section is organized as follows. In Subsection 3.1, we state preliminary results,
useful for the proof of Theorem 4, which is detailed in Subsection 3.2.

3.1 Preliminaries: trigonometric moment problems

Let us introduce the space

l2r([−1,+∞),C) := {(dk)k>−1; d−1, d0 ∈ R}, (28)

equipped with the norm

‖d‖l2r :=

( ∞∑
k=−1

|dk|2
)1/2

.

Proposition 3 Let T > 2. There exists a continuous linear map

LT : l2r([−1,+∞),C) → L2(0, T )
d = (dk)k>−1 7→ LT (d)

such that, for every sequence d = (dk)k>−1 ∈ l2r([−1,+∞),C) the function u := LT (d) solves
the moment problem { ∫ T

0
tu(t)dt = d−1,∫ T

0
u(t)eikπtdt = dk,∀k ∈ N.

(29)

Proof of Proposition 3: Let T > 2. The set

Z := ClL2((0,T ),C)

(
Span{eikπt; k ∈ Z}

)
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(i.e. Z is the closure in L2((0, T ),C) of the vector space generated by the set {eikπt; k ∈ Z})
is a closed vector subspace of L2((0, T ),C) with in�nite codimension. Let us prove that
t /∈ Z. Working by contradiction, we assume that t ∈ Z. With successive integrations, we
get

tj ∈ ClC0([0,T ],C)

(
Span{t, eikπt; k ∈ Z}

)
,∀j ∈ N with j > 2.

The Stone Weierstrass theorem ensures that {1, tj ; j ∈ N, j > 2} is dense in C0([0, T ],C),
thus, it is also dense in L2((0, T ),C). Since t ∈ Z, we deduce that Z is dense in L2((0, T ),C),
which is impossible. Therefore, t /∈ Z, and we have the following orthogonal decomposition

L2((0, T ),C) = Z ⊕ Z⊥

t = z + z⊥

where z⊥ 6= 0. For d = (dk)k>−1 ∈ l2r([−1,+∞),C), we de�ne

LT (d) := v +

(
d−1 −

∫ T

0

tv(t)dt

)
z⊥

‖z⊥‖2L2

where

v :=

(∑
k∈Z

dke
−ikπt

)
1[0,2](t)

and d−k := dk,∀k ∈ N∗. The function LT (u) is real valued because v and z⊥ are. From
Bessel Parseval equation, we have

‖v‖2L2(0,T ) =
1

2

[
|d0|2 + 2

∞∑
k=1

|dk|2
]
,

thus there exists C = C(T ) such that

‖LT (d)‖L2(0,T ) 6 C(T )‖d‖l2r .�

The following proposition is a consequence of a more general result due to Horvath and
Joo in [27].

Proposition 4 For every T ∈ (0, 2π), there exists an extraction ξ : Z → Z such that
(eiξ(k)t)k∈Z is a Riesz basis of L2(0, T ).

We also have the following stronger result, for particular values of T .

Proposition 5 Let T ∈ (0, 2π) of the form

T =
(2r − 1)π

p
with r, p ∈ N∗.

There exists an extraction ξ : Z→ Z such that ξ(−k) = −ξ(k),∀k ∈ Z and (eiξ(k)t)k∈Z is a
Riesz basis of L2(0, T ).

Proof of Proposition 5: First, let us recall that the Kadec 1/4 Theorem says that, if the
real valued sequence (δn)n∈Z satis�es

sup
n∈Z
|δn| < 1/4,

then (ei(n+δn)t)n∈Z is a Riesz basis of L2(0, 2π). Avdonin made the important remark that
here, the 1/4 bound is su�cient to hold only for an average of the perturbations δn. Namely,
if
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• (δn)n∈Z is bounded,

• (n+ δn)n∈Z is separated, i.e.

inf{(n+ δn)− (m+ δm);n,m ∈ Z, n 6= m} > 0

• and we have

lim
K→+∞

sup
x∈R

1

K

∣∣∣ ∑
x<n<x+K

δn

∣∣∣ < 1

4
,

then (ei(n+δn)t)n∈Z is a Riesz basis of L2(0, 2π) (see [4]).

Now, let us prove Proposition 5 Let ξ : Z→ Z be the extraction such that ξ(0) = 0 and
the image of ξ is

R[ξ] = ∪n∈Z{2np− r + 1, 2np− r + 2, ..., 2np+ r − 1}.

This means that we keep (2r − 1) frequencies over 2p, in chains centered at the frequencies
2np, n ∈ Z. For this extraction, the average shift (with respect to {2pn/(2r− 1);n ∈ Z}) is
equal to zero. Indeed, on any chain, the global shift is equal to zero. Thus, (eiξ(k)t)k∈Z is a
Riesz basis of L2(0, T ).�

3.2 Study of the linearized system

The goal of this subsection is the proof of Theorem 4.

Proof of Theorem 4: Let µ ∈ W 2,∞(0, 1) be such that (5) holds. Let v ∈ L2(0, T ). We
have

dΘT (0).v =

(
W,

∂W

∂t

)
(T )

where W is the weak solution of
∂2W
∂t2 = ∂2W

∂x2 + v(t)µ(x), x ∈ (0, 1), t ∈ (0, T ),
∂W
∂x (t, 0) = ∂W

∂x (t, 1) = 0,
W (0, x) = 0,
∂W
∂t (0, x) = 0.

(30)

We have

W (T ) =
(
〈µ, ϕ0〉

∫ T
0

(T − t)v(t)dt
)
ϕ0 +

∞∑
k=1

(
〈µ,ϕk〉√
λk

∫ T
0
v(t) sin[

√
λk(T − t)]dt

)
ϕk,

∂W
∂t (T ) =

(
〈µ, ϕ0〉

∫ T
0
v(t)dt

)
ϕ0 +

∞∑
k=1

(
〈µ, ϕk〉

∫ T
0
v(t) cos[

√
λk(T − t)]dt

)
ϕk.

Thus, for (Wf , Ẇf ) ∈ H3
(0) ×H

2
(0)(0, 1), the equality dΘT (0).v = (Wf , Ẇf ) is equivalent to

the moment problem 
∫ T

0
(T − t)v(t)dt = d−1(Wf , Ẇf ),∫ T

0
v(t)dt = d0(Wf , Ẇf ),∫ T

0
v(t)e−i

√
λktdt = dk(Wf , Ẇf ),∀k ∈ N∗,

where d(Wf , Ẇf ) = (dk(Wf , Ẇf ))k>−1 is the sequence de�ned by

d−1(Wk, Ẇf ) :=
〈Wf ,ϕ0〉
〈µ,ϕ0〉 ,

d0(Wk, Ẇf ) :=
〈Ẇf ,ϕ0〉
〈µ,ϕ0〉 ,

dk(Wk, Ẇf ) := e−i
√
λkT

〈µ,ϕk〉

(
〈Ẇf , ϕk〉+ i

√
λk〈Wf , ϕk〉

)
,∀k ∈ N∗.

(31)
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Thanks to (5), the map

d : H3
(0) ×H

2
(0)(0, 1) → l2r([−1,+∞),C)

(Wf , Ẇf ) 7→ d(Wf , Ẇf )

is continuous (see (28) for a de�nition of l2r([−1,+∞),C)).

(1) We assume T > 2. Thanks to Proposition 3, the expression

dΘT (0)−1(Wf , Ẇf ) := LT [d(Wf , Ẇf )]

gives a suitable right inverse.

(2) We assume T = 2. Then the family (eikπt)k∈Z is an orthonormal basis of L2(0, T )
and we have

(T − t) =
∑
k∈Z

αke
−ikπt in L2(0, T ),

where (αk)k∈Z ∈ l2(Z,C). Then, the image of dΘT (0) is the vector space

RT :=
{

(Wf , Ẇf ) ∈ H3
(0) ×H

2
(0)(0, 1); d−1(Wf , Ẇf ) =

∑
k∈Z

αkd̃k(Wf , Ẇf )
}
,

where
d̃k(Wf , Ẇf ) := dk(Wf , Ẇf ),∀k ∈ N,
d̃−k(Wf , Ẇf ) := dk(Wf , Ẇf ),∀k ∈ N∗.

(32)

The map dΘT (0) : L2(0, T )→ RT has an inverse de�ned by

dΘT (0)−1(Wf , Ẇf ) = t 7→
∑
k∈Z

d̃k(Wf , Ẇf )eikπt,

which is continuous from RT (equipped with the H3
(0)×H

2
(0)(0, 1)-norm) to L2(0, T ), thanks

to the Bessel Parseval equality.

(3)We assume T < 2. Let ξ : Z→ Z be an extraction such that (e−iξ(k)πt)k∈Z is a Riesz
basis of L2(0, T ) (see Proposition 4). Then, there exists (βk)k∈Z ∈ l2(Z,C) such that

T − t =
∑
k∈Z

βke
−iξ(k)πt in L2(0, T )

and for every n ∈ N that do not belong to the image of ξ, there exists (γnk )k∈Z ∈ l2(Z,C)
such that

e−inπt =
∑
k∈Z

γnk e
−iξ(k)πt in L2(0, T ).

Then, the image of dΘT (0) is the vector space

RT :=
{

(Wf , Ẇf ) ∈ H3
(0) ×H

2
(0)(0, 1); d−1(Wf , Ẇf ) =

∑
k∈Z

βkd̃ξ(k)(Wf , Ẇf ) and

∀n ∈ N−R(ξ), dn(Wf , Ẇf ) =
∑
k∈Z

γnk d̃ξ(k)(Wf , Ẇf )
}
.

(33)

The set RT is a vector subspace of H3
(0) × H2

(0)(0, 1) with in�nite codimension because

it is de�ned by an in�nite number of linearly independent relations. Let (ζk)k∈Z be the
biorthogonal family to (e−iξ(k)πt)k∈Z in L2(0, T ). Then, the map dΘT (0) : L2(0, T ) → RT
has a continuous inverse dΘT (0)−1 : RT → L2(0, T ) de�ned by

dΘT (0)−1(Wf , Ẇf ) =
∑
k∈Z

d̃ξ(k)(Wf , Ẇf )ζk.�
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4 Second order term

Using the same kind of arguments as in the proof of Theorem 3, one may prove the following
result.

Proposition 6 Let µ ∈ W 2,∞(0, 1) and T > 0. The map ΘT de�ned by (10) is twice
di�erentiable at 0 and

d2ΘT (0).(v, v) =

(
ν,
∂ν

∂t

)
(T )

where ν is the weak solution of 
∂ν
∂t = ∂2ν

∂x2 + v(t)µ(x)W,
∂ν
∂x (t, 0) = ∂ν

∂x (t, 1) = 0,
ν(0, x) = 0,
∂ν
∂t (0, x) = 0,

(34)

and W is the weak solution of (30).

The main result of this section is the following one.

Proposition 7 Let µ ∈ W 2,∞(0, 1) be such that (5) and (7) hold and T ∈ (0, 2]. We
assume that, either T = 2, or T = (2r − 1)/p with p, r ∈ N∗. The image of the quadratic
form d2ΘT (0) is not contained in the image of the linear map dΘT (0).

The following Lemma is useful for the proof of Proposition 7.

Lemma 3 Let T > 0, D := {(t, τ) ∈ R2; 0 < τ < t < T} and h ∈ L2(D,R). If∫ T

0

v(t)

∫ t

0

v(τ)h(t, τ)dτdt = 0,∀v ∈ L2(0, T ),

then h = 0.

Proof of Lemma 3: We consider the quadratic form

Q : L2(0, T ) → R
v 7→ Q(v) :=

∫ T
0
v(t)

∫ t
0
v(τ)h(t, τ)dτdt.

It is easy to prove that

∇Q(v) = t 7→
∫ T

0

v(τ){h(t, τ)1τ<t + h(τ, t)1τ>t}dτ.

Since Q ≡ 0, we have ∇Q ≡ 0, i.e.∫ T

0

v(τ){h(t, τ)1τ<t + h(τ, t)1τ>t}dτ = 0, a.e t ∈ [0, T ],∀v ∈ L2(0, T ).

Thus, h(t, τ) = 0, a.e. (t, τ) ∈ D. �

Proof of Proposition 7: Let µ ∈W 2,∞(0, 1) be such that (5) and (7) hold and T ∈ (0, 2].
We assume that, either T = 2, or T = (2r − 1)/p with p, r ∈ N∗.

First step: Let us present the global strategy of the proof. Let ξ : Z→ Z be such that

ξ(−k) = −ξ(k),∀k ∈ N∗ (35)
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and (e−iξ(k)πt)k∈Z is a Riesz basis of L2(0, T ) (see Proposition 5 for T < 2 and take ξ(k) = k
for T = 2). There exists a unique sequence (αk)k∈Z ∈ l2(Z,C) such that

T − t = <

[ ∞∑
k=0

αke
−iξ(k)πt

]
in L2(0, T ). (36)

We have seen in the proof of Theorem 4 that the image RT of the linear map dΘT (0) is
contained in the vector space

R̃T :=

{
(Wf , Ẇf ) ∈ H3

(0) ×H
2
(0)(0, 1); d−1(Wf , Ẇf ) = <

[ ∞∑
k=0

αkdξ(k)(Wf , Ẇf )

]}
,

where (dk(Wf , Ẇf ))k>−1 is de�ned by (31). In order to prove Proposition 7, it is su�cient

to prove that the image of the quadratic form d2ΘT (0) is not contained in R̃T .

Second step: Let us state an equivalent property for �d2ΘT (0).(v, v) ∈ R̃T �. Let v ∈
L2(0, T ) and W, ν be the weak solutions of (30) and (34). We have

W (t) =

(
〈µ, ϕ0〉

∫ t

0

(t− τ)v(τ)dτ

)
ϕ0 +

∞∑
k=1

(
〈µ, ϕk〉√

λk

∫ t

0

v(τ) sin[
√
λk(t− τ)]dτ

)
ϕk, (37)

ν(T ) =
(∫ T

0
(T − t)v(t)〈µW (t), ϕ0〉dt

)
ϕ0

+
∞∑
k=1

(
1√
λk

∫ T
0
v(t)〈µW (t), ϕk〉 sin[

√
λk(T − t)]dt

)
ϕk

(38)

and
∂ν
∂t (T ) =

(∫ T
0
v(t)〈µW (t), ϕ0〉dt

)
ϕ0

+
∞∑
k=1

(∫ T
0
v(t)〈µW (t), ϕk〉 cos[

√
λk(T − t)]dt

)
ϕk.

(39)

Let us assume that d2ΘT (0).(v, v) ∈ R̃T . Then we have

〈ν(T ), ϕ0〉
〈µ, ϕ0〉

= <

[ ∞∑
k=0

αk
e−iξ(k)πT

〈µ, ϕξ(k)〉

(
〈ν̇(T ), ϕξ(k)〉+ i

√
λξ(k)〈ν(T ), ϕξ(k)〉

)]
. (40)

Thanks to (38) and (36), we have

〈ν(T ),ϕ0〉
〈µ,ϕ0〉 = 1

〈µ,ϕ0〉
∫ T

0
(T − t)v(t)〈µW (t), ϕ0〉dt

= 1
〈µ,ϕ0〉

∫ T
0
<
[ ∞∑
k=0

αke
−iξ(k)πt

]
v(t)〈µW (t), ϕ0〉dt

=
∫ T

0
v(t)<

[ ∞∑
k=0

αk
〈µW (t),ϕ0〉
〈µ,ϕ0〉 e−iξ(k)πt

]
dt.

Thanks to (38) and (39), we have

e−iξ(k)πT

〈µ,ϕξ(k)〉
(
〈ν̇(T ), ϕξ(k)〉+ i

√
λξ(k)〈ν(T ), ϕξ(k)〉

)
= e−iξ(k)πT

〈µ,ϕξ(k)〉
∫ T

0
v(t)〈µW (t), ϕξ(k)〉ei

√
λξ(k)(T−t)dt

=
∫ T

0
v(t)

〈µW (t),ϕξ(k)〉
〈µ,ϕξ(k)〉

e−iξ(k)πtdt.

Therefore, the equality (40) gives∫ T

0

v(t)<

[ ∞∑
k=0

αk

(
〈µW (t), ϕ0〉
〈µ, ϕ0〉

−
〈µW (t), ϕξ(k)〉
〈µ, ϕξ(k)〉

)
e−iξ(k)πt

]
dt = 0, (41)
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or, equivalently,∫ T

0

v(t)<

[ ∞∑
k=0

αk

〈
µW (t),

ϕ0

〈µ, ϕ0〉
−

ϕξ(k)

〈µ, ϕξ(k)〉

〉
e−iξ(k)πt

]
dt = 0. (42)

Noticing that 〈
µϕ0,

ϕ0

〈µ, ϕ0〉
−

ϕξ(k)

〈µ, ϕξ(k)〉

〉
= 0,

(because ϕ0 = 1) and using (37), we get〈
µW (t), ϕ0

〈µ,ϕ0〉 −
ϕξ(k)
〈µ,ϕξ(k)〉

〉
=

∞∑
j=1

〈µ,ϕj〉√
λj

∫ t
0
v(τ) sin[

√
λj(t− τ)]dτ

〈
µϕj ,

ϕ0

〈µ,ϕ0〉 −
ϕξ(k)
〈µ,ϕξ(k)〉

〉
.

Therefore, the equality (42) gives∫ T

0

v(t)

∫ t

0

v(τ)h(t, t− τ)dτdt = 0, (43)

where, for every s ∈ R, t ∈ [0, T ],

h(t, s) := <

 ∞∑
k=0

αke
−iξ(k)πt

∞∑
j=1

〈µ, ϕj〉√
λj

sin[
√
λjs]

〈
µϕj ,

ϕ0

〈µ, ϕ0〉
−

ϕξ(k)

〈µ, ϕξ(k)〉

〉 .
Third step: Let us prove that h ∈ C0(Rs, L2(0, T )t). We introduce the decomposition

h = h1 − h2 where

h1(t, s) := <

 ∞∑
k=0

αke
−iξ(k)πt

∞∑
j=1

〈µ, ϕj〉√
λj

sin[
√
λjs]
〈µϕj , ϕ0〉
〈µ, ϕ0〉

 ,
h2(t, s) := <

[ ∞∑
k=0

αkgk(s)e−iξ(k)πt

]
and gk(s) :=

∞∑
j=1

〈µ, ϕj〉√
λj

sin[
√
λjs]
〈µϕj , ϕξ(k)〉
〈µ, ϕξ(k)〉

.

Using (36), we get

h1(t, s) =
(T − t)
〈µ, ϕ0〉

f(s) where f(s) :=

∞∑
j=1

〈µ, ϕj〉2√
λj

sin[
√
λjs].

Explicit computations show that

∃C > 0 such that
〈µ, ϕj〉2√

λj
6
C

j5
,∀j ∈ N∗.

Thus f ∈ C0(Rs,R) and h1 ∈ C0(Rs, L2(0, T )t). Explicit computations show that

∃C > 0 such that
∣∣∣ 〈µ, ϕj〉〈µϕj , ϕK〉√

λj

∣∣∣ 6 C

j3
∗(j −K)2

∗
,∀j,K ∈ N,

thus

|gk(s)| 6 Cξ(k)2
∞∑
j=1

1

j2(j − ξ(k))2
∗
,∀k ∈ N,∀s ∈ R.
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The decomposition

1

j2(j −K)2
=

2

K3

(
1

j
− 1

j −K

)
+

1

K2

(
1

j2
+

1

(j −K)2

)
,

allows to prove that

∃C > 0 such that

∞∑
j=1

1

j2(j −K)2
∗
6

C

K2
,∀K ∈ N,

thus,
∃C > 0 such that |gk(s)| 6 C,∀s ∈ R,∀k ∈ N.

We have αkgk(σ) → αkgk(s) when σ → s, for every k ∈ N. Moreover, |αkgk(σ)| 6 C|αk|,
for every k ∈ N, σ ∈ R, and the sequence (|αk|)k∈N belongs to l2(N). The dominated
convergence theorem ensures that the sequence (αkgk(σ))k∈N converges to (αkgk(s))k∈N in
l2(N,C) when σ → s. Since (e−iξ(k)πt)k∈Z is a Riesz basis of L2(0, T ), we deduce that
h2(., σ)→ h2(., s) in L2(0, T ), when σ → s. This ends the proof of the third step.

Fourth step: Now, let us prove Proposition 7. Let us assume that d2ΘT (0).(v, v) ∈ R̃T
for every v ∈ L2(0, T ). Then, thanks to the second step, the equality (43) holds for every
v ∈ L2(0, T ). Moreover h ∈ L2(D,R) (see the third step), so we can apply Lemma 3, which
gives h = 0 in L2(D). Therefore, we also have ∂h/∂s = 0 in the sense of distributions over
D. In the sense of distributions on Rs × [0, T ]t, we have

∂h

∂s
(t, s) = <

 ∞∑
k=0

αke
−iξ(k)πt

∞∑
j=1

〈µ, ϕj〉 cos[
√
λjs]

〈
µϕj ,

ϕ0

〈µ, ϕ0〉
−

ϕξ(k)

〈µ, ϕξ(k)〉

〉 . (44)

Moreover, working as in the third step, one can prove that ∂h
∂s ∈ C

0(Rs, L2(0, T )t). Thus,
the equality (44) holds for every s ∈ R in L2(0, T )t. In particular, with s = 0, we get

<

 ∞∑
k=0

αke
−iξ(k)πt

∞∑
j=1

〈µ, ϕj〉
〈
µϕj ,

ϕ0

〈µ, ϕ0〉
−

ϕξ(k)

〈µ, ϕξ(k)〉

〉 = 0 in L2(0, T )t,

or, equivalently,

<

[ ∞∑
k=0

αke
−iξ(k)πt

〈
µ2,

ϕ0

〈µ, ϕ0〉
−

ϕξ(k)

〈µ, ϕξ(k)〉

〉]
= 0, in L2(0, T )t.

But (e−iξ(k)πt)k∈Z is a Riesz basis of L2(0, T ) and (35) holds, thus the previous equality
implies

αk

〈
µ2,

ϕ0

〈µ, ϕ0〉
−

ϕξ(k)

〈µ, ϕξ(k)〉

〉
= 0,∀k ∈ N. (45)

Let us assume temporarily that the number of integers p ∈ N such that〈
µ2,

ϕ0

〈µ, ϕ0〉
− ϕp
〈µ, ϕp〉

〉
= 0 (46)

is �nite. Then the equality (45) implies that only a �nite number of αk may be di�erent
from zero. But this is in contradiction with (36) because, for every N ∈ N, the family
{t, eikπt;−N 6 k 6 N} is linearly independent. Therefore, the image of d2ΘT (0) is not

contained in R̃T .
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Now let us prove that the number of integers p ∈ N such that (46) holds is �nite.
Integrations by parts give

〈µ, ϕp〉 =
√

2
(pπ)2

(
(−1)pµ′(1)− µ′(0)

)
−
√

2
(pπ)2

∫ 1

0
µ′′(x) cos(pπx)dx,

〈µ2, ϕp〉 =
√

2
(pπ)2

(
(−1)p(µ2)′(1)− (µ2)′(0)

)
−
√

2
(pπ)2

∫ 1

0
(µ2)′′(x) cos(pπx)dx.

Since µ′(1)± µ′(0) 6= 0, we have

〈µ2, ϕp〉
〈µ, ϕp〉

∼ (−1)p(µ2)′ − (µ2)′(0)

(−1)pµ′(1)− µ′(0)
when p→ +∞.

Thus the assumption (7) implies that the number of integers p ∈ N such that (46) holds is
�nite. �

5 Proof of Theorem 1

Proof of Theorem 1: Let µ ∈W 2,∞(0, 1) be such that (5) holds.

(1) Let T > 2. The map

ΘT : L2(0, T )→ H3
(0) ×H

2
(0)(0, 1)

is C1 (see Theorem 3), and dΘT (0) has a continuous right inverse (see Theorem 4 (1))

dΘT (0)−1 : H3
(0) ×H

2
(0)(0, 1)→ L2(0, T ).

Thus, thanks to the inverse mapping theorem, ΘT has a local C1 right inverse.

(3) Let T < 2. First, let us assume that T = (2r − 1)/p with p, r ∈ N∗. The set RT
de�ned by (33) is a closed vector subspace of the Hilbert space H3

(0) ×H
2
(0)(0, 1). Thus, we

have the orthogonal decomposition

H3
(0) ×H

2
(0)(0, 1) = RT ⊕R⊥T .

We consider the map

FT : L2(0, T ) × R⊥T → H3
(0) ×H

2
(0)(0, 1)

(u , y) 7→ ΘT (u) + y.

Thanks to Theorem 3, FT is C1. Thanks to Theorem 4 (3), the continuous linear map

dFT (0, 0) : L2(0, T )×R⊥T → H3
(0) ×H

2
(0)(0, 1)

has a continuous inverse

dFT (0, 0)−1 : H3
(0) ×H

2
(0)(0, 1)→ L2(0, T )×R⊥T

de�ned by

dFT (0, 0)−1.(Wf , Ẇf ) := (dΘT (0)−1.PRT (Wf , Ẇf ),PR⊥T (Wf , Ẇf ))

where PRT (resp. PR⊥T ) is the orthogonal projection from H3
(0) × H

2
(0)(0, 1) to RT (resp.

R⊥T ). Thanks to the inverse mapping theorem, the map FT has a local inverse: there exists
δ, r > 0 and a C1 map

F−1
T : VT → L2(0, T )×R⊥T
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where
VT := {(wf , ẇf ) ∈ H3

(0) ×H
2
(0)(0, 1); ‖wf − 1‖H3

(0)
+ ‖ẇf‖H2

(0)
< δ}

such that F−1
T (1, 0) = (0, 0), F−1

T [FT (u, y)] = (u, y), for every (u, y) ∈ L2(0, T ) × R⊥T with
‖u‖L2 + ‖y‖H3

(0)
×H2

(0)
< r and FT [F−1

T (z)] = z, for every z ∈ VT . Let us denote by GT the

second component of F−1
T . Then, the map

GT : VT → R⊥T

is locally surjective and we have

GT [ΘT (u)] = 0,∀u ∈ L2(0, T ) with ‖u‖L2 < r.

This proves that the image of ΘT is locally a C1-submanifold ofH3
(0)×H

2
(0)(0, 1) with in�nite

codimension. This submanifold does not coincide with its tangent space at (1, 0) thanks to
Proposition 7.

Now, let us consider an arbitrary T ∈ (0, 2). Let T ′ ∈ (T, 2) be such that T ′ = (2r−1)/p
for some p, r ∈ N∗. We continue the controls (de�ned on (0, T )) by zero on (T, T ′). Appying
the previous result, we get

GT ′ [e
A(T ′−T )ΘT (u)] = 0,∀u ∈ Br[L2(0, T )].

Thus, the map GT := GT ◦ eA(T ′−T ) gives the conclusion.

(2) Let T = 2. First, let us prove that the nonlinear system is locally controllable up to
codimension one. We consider the map

Θ̃T : L2(0, T ) → ṼT
u 7→

(
w(T )−

∫ 1

0
w(T, x)dx, ∂w∂t (T )

)
,

where

ṼT :=

{
(w̃f , ẇf ) ∈ H3

(0) ×H
2
(0)(0, 1);

∫ 1

0

w̃f (x)dx = 0

}
.

Thanks to Theorem 3, Θ̃T is C1. Thanks to Theorem 4 (2), the continuous linear map

dΘ̃T (0) : L2(0, T )→ ṼT

has a continuous inverse
dΘ̃T (0)−1 : ṼT → L2(0, T ).

Thanks to the inverse mapping theorem, Θ̃T has a local C1 inverse. This proves the lo-
cal controllability up to codimension one of (1) in time T = 2, in H3

(0) × H
2
(0)(0, 1), with

L2(0, T )-controls.

Working as in the proof of (3), we get a locally surjective C1 map

GT : H3
(0) ×H

2
(0) → R

such that, for every u ∈ L2(0, T ) small enough, GT [ΘT (u)] = 0. Thus, the image of ΘT

is a C1-submanifold of H3
(0) × H

1
(0) with codimension one. Thanks to Proposition 7, this

submanifold does not coincide with its tangent space at (1, 0). �
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6 Conclusion, open problems, perspectives

6.1 Same system, other reference trajectory

In this article, we have studied the local controllability of the system (1) around the reference
trajectory

(wref (t, x) = 1, uref (t) = 0). (47)

One may study the local controllability of the same system around other reference trajec-
tories, for example

(wref (t, x) := sin(Kπt)ϕK(x), uref (t) = 0) for K ∈ N∗. (48)

Let us explain why this problem is more di�cult than the one solved in this article. The
di�culty relies in the controllability of the linearized system. The linearized system of (1)
around the reference trajectory (48) is

∂2W
∂t2 = ∂2W

∂x2 + u(t)µ(x)wref (t, x), x ∈ (0, 1), t ∈ (0, T ),
∂W
∂x (t, 0) = ∂W

∂x (t, 1) = 0,
W (0, x) = ∂W

∂t (0, x) = 0.

(49)

Working as in the proof of Theorem 4, one may prove that, for every (Wf , Ẇf ) ∈ H3
(0) ×

H2
(0)(0, 1), the equality (

W,
∂W

∂t

)
(T ) = (Wf , Ẇf )

is equivalent to the moment problem∫ T
0

(T − t)v(t) sin(Kπt)dt = d−1(Wf , Ẇf ),∫ T
0
v(t) sin(Kπt)e−ikπtdt = dk(Wf , Ẇf ),∀k ∈ N,

(50)

where (dk(Wf , Ẇf ))k>−1 is de�ned by

d−1(Wf , Ẇf ) :=
〈Wf ,ϕ0〉
〈µϕK ,ϕ0〉 ,

dk(Wf , Ẇf ) := e−i
√
λkT

〈µϕK ,ϕk〉

(
〈Ẇf , ϕk〉+ i

√
λk〈Wf , ϕk〉

)
,∀k ∈ N.

In order to apply the same strategy as in this article, one would need to prove that the
family {t sin(Kπt), sin(Kπt)e−ikπt; k ∈ Z} satis�es the Riesz-basis property in L2(0, T ), for
every T > 2. However, this is false. Thus, the study if the local controllability of (1) around
the reference trajectory (48) needs additional tools.

The same problem appears with Dirichlet boundary conditions, instead of Neumann
boundary conditions in (1).

6.2 Other bilinear wave equations

Let us consider the following generalizations of the system (1).{
∂2w
∂t2 (t, x) = ∂2w

∂x2 (t, x) + u(t)
(
µ1(x)w(t, x) + µ2(x)∂w∂x (t, x)

)
, x ∈ (0, 1), t ∈ (0, T ),

∂w
∂x (t, 0) = ∂w

∂x (t, 1) = 0,
(51)

{
∂2w
∂t2 (t, x) = ∂2w

∂x2 (t, x) + u(t)
(
µ1(x)w(t, x) + µ2(x)∂w∂t (t, x)

)
, x ∈ (0, 1), t ∈ (0, T ),

∂w
∂x (t, 0) = ∂w

∂x (t, 1) = 0.
(52)

Let us study the local controllability of (51) and (52) around the reference trajectory (47).
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The operators

D(B1) := L2 × L2(0, 1), B1

(
0 0

µ1Id + µ2∂x 0

)
D(B2) := L2 × L2(0, 1), B2

(
0 0
µ1 µ2

)
are bounded on H2

(0) ×H
1(0, 1) when µ1, µ2 ∈ W 2,∞(0, 1). Thus Ball, Marsden and Slem-

rod's Theorem 2 applies: the systems (51) and (52) are not controllable in H2
(0) ×H

1(0, 1)

with controls in Lrloc[0,+∞), r > 1. The Proposition 2 also holds with (1) replaced by (51)
or (52): the Cauchy problems are well posed in H2

(0)×H
1(0, 1) with controls in L1

loc[0,+∞).

The linearized system of (51) or (52) around the reference trajectory (47) is exactly the
linearized system of (1) around the same trajectory. Thus, Theorem 4 may be used.

A new di�culty arises when one tries to prove the C1 regularity of the end point map
(i.e. the adaptation of Theorem 3). Let us explain why. As in the proof of Theorem 3, we
consider v ∈ L2(0, T ) and the weak solution w of (51) (resp. (52)) and (6). We want to
prove that (

w,
∂w

∂t

)
(T ) ∈ H3

(0) ×H
2
(0)(0, 1).

Let x := (xk)k∈N∗ be de�ned by (24) and let us try to prove that this sequence belongs to
h3(N∗,C). From the formulation of a weak solution, we get

xk =
1

i
√
λk

∫ T

0

u(t)

〈(
µ1w + µ2

∂w

∂x

)
(t), ϕk

〉
ei
√
λk(T−t)dt,∀k ∈ N∗

(resp. xk =
1

i
√
λk

∫ T

0

u(t)

〈(
µ1w + µ2

∂w

∂t

)
(t), ϕk

〉
ei
√
λk(T−t)dt,∀k ∈ N∗ ).

From Proposition 2, we know that(
w,

∂w

∂t

)
∈ C0([0, T ], H2

(0) ×H
1(0, 1)).

Thus µw ∈ C0([0, T ], H2) and µ∂w∂x ∈ C0([0, T ], H1) (resp. µ∂w∂t ∈ C0([0, T ], H1)). This
regularity is not su�cient to apply Lemma 2. Thus, for the systems (51) and (52), if the
end point map ΘT is C1 from L2(0, T ) to H3

(0) ×H
2
(0)(0, T ), then the proof of this property

would be di�erent from the one of Theorem 3.
Therefore, the local controllability of systems (51) and (52) around the reference trajec-

tory (47) is an open problem.

6.3 Conjecture for 2D and 3D bilinear Schrödinger equations.

As emphasized in Subsection 1.3, the system (1) is a toy model for 2D Schrödinger equations,
with bilinear controls (16). For such systems, we have the Weyl formula (17). We conjecture
that, under generic assumptions on µ,

• for every T > 2π/d, the system (16) is locally exactly controllable around the ground
state (or any eigenstate) in some function space (to be de�ned),

• for every T < 2π/d, the system (16) is not locally exactly controllable around the
ground state: the reachable set is contained in a non �at submanifold of some func-
tional space (to be de�ned), with in�nite codimension.

Similarly, for 3D Schrödinger equations with bilinear control (i.e. equation (16) with Ω
a bounded open subset of R3), we conjecture that, for every T > 0, the reachable set is a
non �at submanifold of some functional space, with in�nite codimension.
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A Genericity of the assumption on µ

The goal of this section is the proof of the following result.

Proposition 8 The set {µ ∈W 2,∞(0, 1); (5) and (7) hold} is dense in W 2,∞(0, 1).

The following lemma will be useful in the proof of Proposition 8.

Lemma 4 Let Φ±,Φ : W 2,∞(0, 1)→ R be de�ned by Φ(µ) := Φ+(µ)Φ−(µ) and

Φ±(µ) := [(µ2)′(1)± (µ2)′(0)]

∫ 1

0

µ(x)dx− [µ′(1)± µ′(0)]

∫ 1

0

µ(x)2dx.

For every µ ∈W 2,∞(0, 1) such that µ′(1)±µ′(0) 6= 0 and Φ(µ) = 0, we have either dΦ(µ) 6= 0
or dΦ(µ) = 0 and d2Φ(µ) 6= 0.

Proof of Lemma 4: For every µ, ν ∈W 2,∞(0, 1), we have

dΦ±(µ).ν = 2[(µν)′(1)± (µν)′(0)]
∫ 1

0
µ+ [(µ2)′(1)± (µ2)′(0)]

∫ 1

0
ν

−[ν′(1)± ν′(0)]
∫ 1

0
µ2 − [µ′(1)± µ′(0)]

∫ 1

0
2µν.

In particular, for every ν ∈ C∞c (0, 1) such that
∫ 1

0
ν = 0, we have

dΦ±(µ).ν = −2[µ′(1)± µ′(0)]

∫ 1

0

µν.

Let µ ∈W 2,∞(0, 1) be such that µ′(1)± µ′(0) 6= 0 and Φ(µ) = 0.

First case: We assume Φ+(µ) = 0 and Φ−(µ) 6= 0. Then, for every ν ∈ C∞c (0, 1) such

that
∫ 1

0
ν = 0 and

∫ 1

0
µν 6= 0, we have

dΦ(µ).ν = [dΦ+(µ).ν]Φ−(ν) = −2Φ−(ν)[µ′(1) + µ′(0)]

∫ 1

0

µν 6= 0.

The case Φ−(µ) = 0 and Φ+(µ) 6= 0 may be treated similarly.

Second case: We assume Φ+(µ) = Φ−(µ) = 0. Then, dΦ(µ) = 0 and, for every ν ∈
C∞c (0, 1) such that

∫ 1

0
ν = 0 and

∫ 1

0
µν 6= 0, we have

d2Φ(µ).ν = [dΦ+(µ).ν][dΦ−(µ).ν]

= 4[µ′(1)− µ′(0)][µ′(1) + µ′(0)]
(∫ 1

0
µν
)2

6= 0.�

Proof of Proposition 8: First, let us notice that

W := {µ ∈W 2,∞(0, 1);µ′(0)± µ′(1) 6= 0}

is a dense open subset of W 2,∞(0, 1). Thanks to Lemma 4, the set

V := {µ ∈ W; (7) holds}

is a dense open subset of W. Now, let us prove that the set

U := {µ ∈ V; 〈µ, ϕk〉 6= 0,∀k ∈ N}

is dense in V. For n ∈ N, we introduce the set

Un := {µ ∈ V; 〈µ, ϕk〉 6= 0,∀k ∈ {0, ..., n}},
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with the convention U−1 = V. Then, the sequence Un is decreasing and

U =

∞⋂
n=−1

Un.

We apply Baire Lemma : it is su�cient to prove that, for every n > −1, Un+1 is dense in
Un for the W 2,∞(0, 1)-topology. Let n > −1 and let µ ∈ Un − Un+1. Then 〈µϕ1, ϕk〉 6= 0
for k = 0, ..., n and 〈µϕ1, ϕn+1〉 = 0. There exists ε∗ > 0 such that, for every ε ∈ (0, ε∗),
µ+ εx2 ∈ V, because V is an open subset of W 2,∞(0, 1). Thanks to (9), µ+ εx2 ∈ Un+1 for
every ε ∈ (0, ε∗) such that

ε 6= − 〈µϕ1, ϕj〉
〈x2ϕ1, ϕj〉

,∀j ∈ {0, ..., n}.

Thus Un+1 is dense in Un. We have proved that U is dense in W 2,∞(0, 1).

Now, let us emphasize that

U ⊂ {µ ∈W 2,∞(0, 1); (5) and (7) hold}.

Indeed, for µ ∈ U , and k ∈ N∗, integrations by parts give (8). Since µ′(0)± µ′(1) 6= 0, there
exists N ∈ N such that, for every k > N ,

|〈µ, ϕk〉| >
1

(kπ)2
max{|µ′(1) + µ′(0)|, |µ′(1)− µ′(0)|}.

Since 〈µ, ϕk〉 6= 0,∀k ∈ N, there exists c > 0 such that

|〈µ, ϕk〉| >
c

k2
∗
,∀k ∈ N.�
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