Inertial confinement fusion (ICF) with high magnetic fields

B. Grant Logan

BGLogan Scientific, Inc., Danville, CA, USA Visiting scientist at U.Orsay-Paris-Sud, CEA-DIF, Ecole Polytechnique Consultant for Lawrence Livermore National Laboratory Consultant for Sandia National Laboratory, Albuquerque

Seminar at CEA-ENS-Cachan 21 Mai, 2015

Critics of inertial fusion as well as magnetic fusion say fusion is too far into the future (irrelevant time scale for young scientists), and won't be needed anyway (new technology giving faster, cheaper oil and gas extraction). →My message today: NOW is the best time for international scientific discovery opportunity for fusion physics, particlularly with the application of high magnetic fields to ICF.

Acknowledgement: Ce travail a beneficie d'une aide Investissements d'Avenir du LabEx PALM (ANR-10-LABX-0039-PALM) Funding agency : Investissement d'Avenir LabEx PALM Grant number : ANR-10-LABX-0039

To convert fusion heat into electricity

What is inertial confinement fusion?

 Deliver laser or particle beams to a mm-radius capsule shell with DT fuel (~ 1 MJ in 3 ns ~ 300 TW).
 Outer capsule surface ablates, rocket force implodes DT fuel to pressures > 300 Gigabar.
 30X convergent compression heats fuel to ignition temperature (30 keV per D+T+e).

4. DT fuel ignites and burns in 0.1 ns before much expansion, giving 17,600 keV fusion energy/reaction.

It doesn't matter if we can't say if fusion will come in 20 or 50 years more: We must care for the future of 10¹⁰ +people forced to live on a hot planet!

From the CEA website: Le Laser Mégajoule (LMJ) est une installation majeure du programme Simulation. Il sert à étudier, à toute petite échelle, le comportement des matériaux dans des conditions extrêmes similaires à celles atteintes lors du fonctionnement nucléaire des armes. Le LMJ est dimensionné pour délivrer sur une cible de quelques millimètres, en quelques milliardièmes de seconde, une énergie lumineuse supérieure à un million de joules.Le LMJ a été mis en service fin 2014, avec une première campagne de physique des armes.

LMJ : near-term scientific opportunity-example: Recently a call for proposals to use the first groups of beams from LMJ for basic high energy density (HED) plasma science has already attracted interest in an international proposal (submitted) to study the effects of *laser-generated megagauss magnetic fields* to ICF-relevant HED plasma hydrodynamics.

Other existing facilities^{*} are available now for a broad array of experiments to explore the science of inertial fusion.

* All are developing capabilities for integrated fuel implosions with <u>high applied magnetic fields</u>.

NIF has made much progress, but unfortunately falls short...

...of meeting extreme requirements* on implosion velocity, symmetry, entropy, and mix required for ignition within laser limitations of 1.5 MJ energy and 500 TW peak power.

96 rectangular beam ports on bottom and 96 on the top of the 4 m radius
NIF chamber lead to final focus optics
@ 7 m radius from target center * 2D-MHD simulations (Perkins, et.al. Phys of Plasmas <u>20</u> 072708 (2013) show applied B_z of 40 T may relax these requirements! NIF hohlraum ~ 1 cm long x 3mm radius contains a ~2 mm dia. plastic DT-filled fuel capsule. Lasers enter thin plastic windows on top and bottom. <u>The NIF capsule:</u> (~2 mg of plastic ablator with ~200 µg of cryo DT annulus). 90 % of the plastic is ablated away to drive a spherical rocket which compresses the fuel ~ 30 X in radius, to a final ρ r product ~ 1 g/cm², pressure > 200 gigabars, 3-5 keV T_{ion}. Improved diagnostics show the DT hot spot gas (~4µg) still suffers from low mode hydro instabilities, *but 2-D MHD simulations show ignition is enabled at applied B_{zo} ~ 40 T.*

NIF provides an opportunity to study improved targets that may have relaxed ignition requirements (e.g., higher adibats, lower fuel convergence for improved stability with compressed B_z to confine alphas in lower ρ r hot spots).

50 µm dia hot spot image (DT shot N120716 @ Bang time)

2 mm

Prototype NIF hohlraum magnet tests reach 32T so far (Mark Rhodes, LLNL). Design expected to reach 50T (limit still TBD).

Magnetized targets are an old idea: why reconsider applied Bz to laser-driven hot spot gas ignition now?

• Recent faster implosions on Omega (2011) and on MagLIF (2014) show that applied seed fields $B_{zo} \sim 8$ T are compressed by 1000 X @ convergence 30, reaching measured fields > 80 MG. Flux compression $\rightarrow R_{g\alpha} < R_{hs}$ at ignition-scale. (Omega has higher T with B_z , but is too small for α coupling).

•Recent "high foot" pulse shapes now largely eliminate ablator carbon mix, (Omar Hurricane) \rightarrow less radiation loss + less heat conduction+ more alpha deposition \rightarrow higher temperatures from present 5 keV T \rightarrow 10 keV with B?

•Darwin Ho and John Perkins' recent 2-D MHD Lasnex runs using full-helical alpha orbits *show improved deposition more important to NIF ignition than e- heat conduction suppression alone*.

Omega [PRL <u>107</u>, 035006 (2011)]: 8 T applied B_{zo} , \rightarrow 80 MG compressed, enough for $\omega \tau_{ei} > 1$

SNL MagLIF (2014): 10T applied B_{zo} → 100 MG compressed, and, enough B_z·R_{hs} to confine DD tritons. 2-HYDRA sims (Sefkow) consistent with data.

Applied Bz physics common to MagNIF and MagLIF: reduced transverse heat conduction, improved confinement of charged fusion product ions.

Three critical components of the MagLIF concept: magnetization, laser heating, and compression. An axial current creates a $J_z \times B_{\Theta}$ force that implodes a gas-filled, premagnetized, cylindrical target. Near start of implosion, fuel is heated by the laser. The liner compresses and further heats fuel to fusion-relevant conditions.

Experimental Demonstration of Fusion-Relevant Conditions in Magnetized [PRL 113, 155003 (2014)] Liner Inertial Fusion

M. R. Gomez, S. A. Slutz, A. B. Sefkow, D. B. Sinars, K. D. Hahn, S. B. Hansen, E. C. Harding, P. F. Knapp,
P. F. Schmit, C. A. Jennings, T. J. Awe, M. Geissel, D. C. Rovang, G. A. Chandler, G. W. Cooper, M. E. Cuneo,
A. J. Harvey-Thompson, M. C. Herrmann, M. H. Hess, O. Johns, D. C. Lamppa, M. R. Martin, R. D. McBride,
K. J. Peterson, J. L. Porter, G. K. Robertson, G. A. Rochau, C. L. Ruiz, M. E. Savage, I. C. Smith,
W. A. Stygar, and R. A. Vesey
Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185, USA
(Received 18 June 2014; published 6 October 2014)

This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S. A. Slutz *et al.*, Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed 10 T axial magnetic field is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA, 100 ns rise time current on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with $T_e \approx T_i$, and produces up to 2×10^{12} thermonuclear deuterium-deuterium neutrons. X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μ m over a 6 mm height and lasting approximately 2 ns. Greater than 10^{10} secondary deuterium-tritium neutrons were observed, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm².

Levels of thresholds for applied B_{zo} affecting ICF implosions

In order of increasing applied B_{zo} to affect each physics level: [Compressed B_z~ (CR²~1000)xB_{zo}]:

- (1) <u>Affect hot spot mass and temperature:</u> Level needed~ 10 T. Does the total gas mass created by the heat wave front grow faster or slower when omega-tau ~>1 (when heat flux is non-sphericalless transverse but more parallel flux)?
- (2) <u>Affect alpha energy deposition vs hot spot ρR </u>: Level needed ~ 30-40T. How much does the fraction of alpha energy deposition within the gas increase with $R_{\alpha gyro} / R_{hotspot}$ as a function of ρR gas / 0.3 g/cm²-collisional-alpha-range?
- (3) <u>Affect stagnation shape P2 (pancaking)</u>: Level needed~ 50 to 100T. How much P2 is induced in the gas adiabat by ohmic heating from paramagnetic currents that flow near the hot spot gas equator to give flux compression during the early implosion phase when the plasma is resistive?
- (4) <u>Affect deceleration Rayleigh-Taylor instability growth:</u> Level needed 50 to 300T? Depends on stabilizing line bending energy (k_{ϕ}) increases for *short* ϕ -wavelengths. Need to consider 3D growth of maximum growth (high k_{θ} , finite k_z flute modes) with ballooning and alpha FLR effects.
- (5) <u>Affect anisotropy of propagating thermonuclear burn waves</u>. Level unknown, but likely ~level (4)→ Field pressure ~ stagnation pressure! Propagating burn starts by e-heat conduction and alphas, both reduced @ > 100 MG compressed B fields *transverse*. However, burn pressures >> 10 Terabars can propagate across B flux via detonation-level shocks.

→Each of these scientific questions deserve many 2D and 3D simulations prior to magnetized implosion experiments, and the results would be worth publishing!

Simulations indicate that RT-growth into the hotspot may be suppressed at higher B-fields (in 2-D at least)

Density contours in the r-z plane at ignition (T(0)=12keV) for imposed singlemode perturbation of amplitude 5µm on ice-gas interface at t=0

Suppression of RT instabilities is due to the field-line bending energy that must be expended (good curvature direction → stabilizing). Effect will be enhanced at higher mode numbers (smaller bend radii) but 3-D simulations will be required for full insight

John Perkins (Indirect drive-NIF) compares "high-foot" CH capsule performance with/without applied Bz using 2D-MHD

LLNL-PRES-663377

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

perturbation to	o approx. match	2D Perturbed. No B	2D Perturbed. B ₀ =70T	
N1400304 34 inflight + stag	-shock hi-foot gnation params	Density	Density	
Ablator CH (2% Si) 195μm DT fuel 68μm <u>N140304 Hydro Parms:</u> 442TW, 1.86MJ, 3-shock hi-foot V=3.7e7cm/s, α=2.42 2D clean fusion yield=9.2MJ N140304 Data		120 9269UNH	Por geaks Note T peaks off axis At ign. Ti	
Fusion yield	N _n =9.43e15, 26.6kJ	N _n =8.88e15, 25.1kJ	N _n -8.49016,	-> 240kJ
Ti_Brysk (keV)	5.55(Incl Doppler?)	3.62	9.50	
Ti(0) max (keV)	-	6.64	15.0	B-field effect on electron heat
$ ho R_{hs} / ho R_{shell}$	0.140/0.775	0.338/0.740	0.266/1.13	conduction and
P _{hs} (Gbar)	173	221	349	
Conv. ratio	33.5	33.0	37.1	B-field effect on
Yield–no α dep.	12.3kJ	11.6kJ	▶14.9kJ 🛑	electron heat conduction only

Application of the analytic magnetized implosion model to the CEA low aspect ratio A=3 direct drive design for LMJ [Brandon, Canaud, Temporal, Ramis, Nuclear Fusion 54 (2014) 083016] at below marginal ignition velocity 280 km/s, and with and without applied Bz = 10T

Figure 1. 300 μ g-DT Target design with a CH-mass of 208 μ g and 235 μ g for A = 3 (left) and A = 5 (right) respectively.

→ Model application (next slide): can modest applied $B_{zo} \sim 10$ T ignite *hot spot gas* at lower implosion velocities v_{imp} = 280 km/s and shell KE = (1/2)(300*10⁻⁹ kg)(2.8.10⁵)² = 12 kJ, than otherwise required without Bz? (*Seeking improved robustness to TPD and RTI growth at lower implosion velocity enabled at reduced heat conduction loss rates*). Caveat: model calculates only gas burn, neglecting fusion from dense DT shell. 2D MHD simulations needed to show propagating burn with Bz, likely if gas yield > ~ 50 kJ. Results of analytic magnetized implosion model for A=3 Direct Drive: a modest applied B_{zo} =10 T at sub-marginal implosion velocity 280 km/s restores hot spot ignition (>10keV) otherwise lost without B, and produces more fusion yield from gas burn (180 kJ*) and at reduced convergence ratio, compared to hydrodynamic ignition without B at 310 km/s.

Slide 16

Summary

- 2D MHD simulations of magnetized implosion data from Omega and Z facilities motivate application of magnet fields to enhance prospects for fusion ignition on NIF and LMJ, and for both direct and indirect drive. Engineering development towards higher field magnetized targets on NIF and on Z (MagLIF) has started, and likely to enable implosion experiments pre-magnetized to 30T within 2 more years or less.
- The availability of several major laser and pulsed power facilities capable of imploding fuel capsules with compression of high applied magnetic fields is a unprecedented near term opportunity for young scientists to explore novel fusion ignition physics.
- The CEA needs 2D and 3D radiation-magnetohydrodynamic codes to design and evaluate data for future magnetized experiments in laser driven HED and ICF using LMJ and other international facilities. The full set of magnetized plasma transport (MHD) equations [S. Braginskii, "Transport processes in a plasma" Reviews of Plasma Physics 1, (1965)] need a numerically robust solver for parameters (density, temperature and field) that must vary over a wide range of temporal and spatial scales.

The speaker would like to thank the LabEX PALM sponsors for the opportunity and support to work with LPGP, CEA-DIF, and Ecole Polytechnique collaborators on these technical studies for future experiments.

Backup slides

Slide 19

The Application of Imposed Magnetic Fields to Ignition and Thermonuclear Burn on the National Ignition Facility

For details contact the Principle Investigator -John Perkins perkins3@IInI.gov

L. J. Perkins, D. J. Strozzi, M. A. Rhodes, B. G. Logan, D. D. Ho, S. A. Hawkins

With thanks also to: J. Moody, J. Hammer, G. Zimmerman, J. Solberg, R. Plummer, J. Koning

Lawrence Livermore National Laboratory

56th Annual Meeting of the APS Division of Plasma Physics New Orleans, LA October 27, 2014

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

This work supported by LLNL Laboratory Directed Research and Development : LDRD 14-ER-028

*NIC designs reoptimized for B-field **Depending on mag of applied perturbations

John Perkins (LLNL) has compared "high-foot" CH capsule performance with/without applied Bz in 2D-MHD simulations

LLNL-PRES-663377 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

First, apply angle-dep. P4 rad flux perturbation to a clean-2D calc with no B-field to approx. match the inflight + stagnation parameters for N1400304 3-shock hi-foot

 $\phi(\theta) = \phi_0 [1 \pm a. Cos(P(\theta + 180 / P))],$ 1108µm Ablator CH (2% Si) P = 4, a = 0.21195*µ*ḿ DT fuel 68µm N140304 Hydro Parms: Hi foot 3-shock. Apply perturbation 442TW, 1.86MJ, 3-shock hi-foot from start of main rise $V = 3.7 \text{e7cm/s}, \alpha = 2.42$ 0.30 and detection to be added at the belief 2D clean fusion yield=9.2MJ 0.25 N140304 Data Lr source (keV) N_n=9.43e15, 26.6kJ Fusion yield 0.15 Hi T: Dm/ak/ka)/ E EE (Incl Donalor?) Foot 0.10

0.05

0.00

al el el el el el el el el el

10

Time (ns)

15

TI_DIYSK (KeV)	5.55 (Incl Doppler?)
Ti(0) max (keV)	-
$ ho \mathbf{R}_{hs} / ho \mathbf{R}_{shell}$	0.140/0.775
P _{hs} (Gbar)	173
Conv. ratio	33.5
Yield–no α dep.	12.3kJ

Low Foot X-Ray Drive (4-shock implosion)

<u>Beauty in Ugliness:</u> Magnetized targets can reach ICF ignition <u>even with ugly low mode hot spot distortions and spikes!</u>

From Fig. 4b,d in Perkins, Logan, Zimmerman and Werner PoP 20, 072708 July, 2013

Flux is well conserved in fast ICF implosions, enabling compressed flux lines to <u>bend around spikes and jets</u> from low modes, fill tubes, LEH holes, etc. Thus, electron-heat conduction suppression and improved alpha energy deposition in gas *-can still be expected to work...*

...<u>provided</u> ablator mix and "missing" shell kinetic energy (that which is not converted to pdV) are both managed to moderate levels.

NIE

Imposing an initial 40 T B-field turns a 3-shock low-

yield capsule into an igniting capsule (Darwin Ho, LLNL 6/8/2014)

B field (T)	surface roughness	yield (MJ)	hotspot ρR (g/cm²)	Hotspot radius (μm)	α-particle range/ (radius) (μm)	vol. ave. hotspot Ti (keV)	mass wt. hotspot density (g/cm ³)	vol. ave. hotspot pressure (Gbar)
			@ ignition: Ti(0, 0) = 12 keV					
0	0	8.4	0.43	37	152	7.3	116	768
0	1x	0.44	0.22	37	152	3.7	60	180
40	1x	5.6	0.2	37	(18)	4.9	56	211

density and magnetic flux contours

Summary of roles played by B-field in yield

enhancement (Slide kindly supplied by Darwin Ho, LLNL 6/8/2014)

• To study the various effects with the presence of B-field, we systematically turn on the switches in LASNEX for α -particle trapping and J×B force.

Seed B-field (T)	surface roughness	B-field effect on α-particles	J×B force	yield (MJ)	role played by B-field
0	nominal	N/A	N/A	0.44	N/A
50	nominal	off	off	0.9	electron trapping
50	nominal	off	on	0.65	Electron trapping, shape distortion
50	nominal	on	on	4.8	α -particle and electron trapping, shape distortion

positive effect

negative effect

 This table shows the α-particle trapping is the dominant contribution to yield enhancement.

 If we turn off burn beyond the hotspot, the yield enhancement by B-field is only 2.4, i.e. from 0.1 to 0.24 MJ (central Ti from 7.5 to > 12 keV). Increased hotspot Ti then triggers the propagated burn into the fuel and gives the > 10x in total yield enhancement. Several 2-D MHD simulations over the last 18 months at LLNL confirm the expectations of simple models that applied Bz ~ 40 T should benefit gas capsule alpha-heating via improved alpha-deposition as well as suppression of transverse heat conduction.

Slide 26

Shape with B_z: for sufficient B_{zo} and CR such that $\omega \tau_{ei} >>1$, the fraction of otherwise 4π heat conduction loss scales as ~ transverse hs area fraction (with no transverse loss) / area of B_z lines intercepting both polar caps

Progressively greater overall reductions of heat conduction with Bz by shape

Pancake \rightarrow smallest reduction (~1.5 X) of heat conduction by applied B_z (because equatorial transverse area perp. to B lines < polar caps area)

Round $\rightarrow \sim 2 X$ reduction of heat conduction by applied B_z (equatorial transverse area ~ polar caps area)

2:1 Sausage $\rightarrow ~ 4 X$ reduction of heat conduction by applied B_z (equatorial transverse area > polar caps area)

Sausage +P4 \rightarrow ~ 8 X reduction of heat conduction by applied B_z (polar caps area reduced further by P4 "magnetic mirrors") Slide 27

←more

like MagLIF

A simple analytic model for magnetized gas capule implosions (Logan) *closely matches 2D-MHD* gas capsule sims (Mar 2014) by reducing effective shell KE (CR) to account for 2D perturbations.

Analytic model parameters adjusted to give **same inputs** as used in 2D MHD simulations: nominal round shape, HDC ablator outer/inner 1080/992 μm, HDC mass initial/final 4.7/0.61 mg, v_{imp} 312 km/s, peak shell KE 29 kJ, 4.5 mg/cc DT fill (18.4 μg), T_{DTgas} 0.78 keV @ peak KE @ radius R_{DTgas}= 235 μm

Outputs*	2D sim, B _z =0	Analytic model, B _z =0	2D sim, 70 T	Analytic model, 70T
Fusion yield (kJ)	64	47	119	121
T _{DTgas-ave} (keV)	4.6	4.9	6.8	7.3
$ ho_{\text{DTgas-ave}}$ (g/cm ³)	47	42	36	33
hs pressure(Gb)	161	156	175	184
R _{DTgas} (μm)	45	47	46	51
ρR _{DTgas} (g/cm ²)	0.18	0.20	0.13	0.17
ρR _{shell} (g/cm²)	0.95	0.97	0.88	0.91
CR=R _{s-outer} /R _{gas}	24.3	22.9	23.7	21.1

*At time of peak pRT near stagnation *results apply <u>equally</u> to direct and indirect drive!*

Design of magnetized liner inertial fusion experiments using the Z facility

A. B. Sefkow,^{1,b)} S. A. Slutz,¹ J. M. Koning,² M. M. Marinak,² K. J. Peterson,¹ D. B. Sinars,¹ and R. A. Vesey¹

¹Sandia National Laboratories, Albuquerque, New Mexico 87185, USA

²Lawrence Livermore National Laboratory, Livermore, California 94550, USA

(Received 22 May 2014; accepted 2 July 2014; published online 24 July 2014)

The magnetized liner inertial fusion concept has been presented as a path toward obtaining substantial thermonuclear fusion yields using the Z accelerator [S. A. Slutz *et al.*, Phys. Plasmas **17**, 056303 (2010)]. We present the first integrated magnetohydrodynamic simulations of the inertial fusion targets, which self-consistently include laser preheating of the fuel, the presence of electrodes, and end loss effects. These numerical simulations provided the design for the first thermonuclear fusion neutron-producing experiments on Z using capabilities that presently exist: peak currents of $I_{max} = 18-20$ MA, pre-seeded axial magnetic fields of $B_z^0 = 10$ T, laser preheat energies of about $E_{las} = 2$ kJ delivered in 2 ns, *DD* fuel, and an aspect ratio 6 solid *Be* liner imploded to 70 km/s. Specific design details and observables for both near-term and future experiments are discussed, including sensitivity to laser timing and absorbed preheat energy. The initial experiments measured stagnation radii $r_{stag} < 75 \,\mu$ m, temperatures around 3 keV, and isotropic neutron yields up to $Y_n^{DD} = 2 \times 10^{12}$, with inferred alpha-particle magnetization parameters around $r_{stag}/r_L^{\alpha} = 1.7$

[Gomez, et.al. PRL 113, 155003 (2014)]

Initial integrated HYDRA simulations for mini-MagLIF on OMEGA First experiments planned on Omega

A. B. Sefkow, J. R. C. Davies, P.-Y. Chang, S. A. Slutz, in April 2015 (Riccardo Betti)

These initial runs were about establishing a robust model (zoning, ALE prescription, etc.), and not about being representative of a final design, modeling choice, prediction, etc.

- Cylindrical target shell: L = 2 mm, OD = 600 μ m, Δ_{shell} = 30 μ m (CH)
- Gas: D_{LEH} = 240 μ m, δz_{win} = 1.5 μ m, ρ_{gas} = 1.5 mg/cc (DD)
- B,⁰ = 15 T, QLMD (DD) and EHLM (CH) resistivities, anisotropic conduction, no Nernst term yet
- Compression: ~10 kJ of 3 ω in 2.5 ns (0.2 ns rise/fall) at f/6.65 with supergaussian FWHM~1.2 mm
 - single representative beam at 90° for now, can use cones and eventually go 3D
- Coupling: ~8 kJ total, ~1 kJ final K.E.shell
- Heater beam: ~80 J of 4 ω also in 2.5 ns with gaussian FWHM~60 μ m, delayed $\Delta t = 1.2$ ns

Material for this slide provided by Adam Sefkow, SNL