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Université Paris Sud
Ecole Polytechnique
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Species abundance monitoring

Different goals

Atlas of presence (where can we find
wolves in France?)

Abundance estimation (how many
wolves in Mercantour?)

Investigation of spatial and/or
temporal variations of abundance
(temporal evolution of wolves in
Mercantour compared to Savoie?)
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Abundance versus relative abundance

Notation

Nij = abundance of species i at time/location j

Relative abundance

For investigating spatio-temporal variations of abundance, we do not need
to estimate absolute abundances but only relative abundances Nij/Nij ′ .

Our goal

In the following, our goal is only to estimate relative abundances

Ñij = Nij/Ni1.

We do not try to estimate abundances.
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Data: institutional data

Institutional data

Data from scientists or environmental institution

universities

conservation programs, national parks

hunting management programs

Features

High-quality data ,
Standardized protocols ,
Small coverage /

−→ insufficient coverage for large scale relative abundance monitoring
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Data: citizen participative data

Citizen data

Many different programs collect data, most
of the time via a dedicated website. These
programs are very heterogeneous.

Two important families of data

Citizen science programs from some scientific institution

Opportunistic data collection program (pure crowdsourcing)
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Participative data: citizen science programs

Citizen science program

Institutional programs of data collection with usually:

a standardized protocol

some quality controls (of various nature)

Examples

STOC data (MNHN): common birds (check list), stratified random
sampling, 2 visits, 10 observation points of exactly 5 minutes within 4
hours after sunrise. Cooptation.

SPIPOL data (MHNH): pollinator survey, 20min, with pictures of
every insects (for identification), at any time. Open to anyone.
Online identification from pictures (with cross-validation).
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Participative data: citizen science programs
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Participative data: citizen science programs

Features

Quality controls ,
Standardized protocols ,
Medium coverage

−→ insufficient coverage for ecological investigations
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Participative data: opportunistic data

Opportunistic data

Data collections with usually:

no protocol, no complete check-list,

no quality controls,

open to anyone,

sometimes no scientific purpose (simply social sharing of
observations).

Examples

LPO (french ecological association for birds conservation): anyone
can record his own observations after a birding session.

eBird.org : similar in North America (mainly), with a temporal atlas
of migrations

Peau bleue : similar for divers
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Miracle or Mirage?

MIRACLE !!

We have all the information: don’t need to do stats anymore! a

Thousands of observers !

Millions of counts !

FREE !

a(a french biologist)
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Miracle or Mirage?

MIRAGE !!

no quality control

partial reporting

strong socio-geographic biases

heterogeneity of the observers

no information on the observational effort
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Participative data: opportunistic data

Features (summary)

Very heterogeneous /
No protocols /
Large coverage ,

−→ Can we do something with these data?

Im my point of view:

we can certainly get informations from these data (ask Google...)

but, can we draw scientific conclusions from these data?

May be yes, with a good knowledge of the data collection process.
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Overview

Contents
1 A rationale for exploiting opportunistic data

2 From rationale to practice

3 Example of possible application
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Basic modeling of observations

Modeling of a count

The count Xij for the species i at location j is

Xij =
∑
vj∈Vj

Nij∑
aij =1

Zaijvj , with Zaijvj ∼ B(paijvj ).

Approximative distribution

With Le Cam Inequality (hypotheses...)

law(Xij) ≈ Poisson
(

Nij

∑
vj∈Vj

p̄ivj

)
, with p̄ivj

=
1

Nij

Nij∑
aij =1

paijvj

≈ Poisson(NijOij).
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Observational bias

The observational bias
Oij =

∑
vj∈Vj

p̄ivj

reflects the observational process

Abundance

Species abundance
distribution

×

Effort

Observers distribution
Observational effort

distribution

×

Errors

Partial reporting
Misidentification

Misreporting

sampling−→
Data

Animal
counts
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Main Assumption

Main assumption

We have the decomposition

Oij ≈ EjPi .

Interpretation

Ej =function(prospecting effort in site j , weather conditions, etc)

Pi = detection/reporting probability for the species i

Validity?

Can be justified when the sites j have homogeneous habitat type
proportions.
If not? ... see later.
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Identifiability

Model

Count(species=i , site=j) ∼ Poisson(Nij Ej Pi )

where

Nij = abundance of species i at site j

Ej = prospecting effort at site j

Pi = detection/reporting probability of species i

Identifiability issue

prospecting effort Ej : unknown for opportunistic data, even in relative
scale Ej/Ej ′ .

−→ we cannot have access to relative abundances Nij/Nij ′ from the
distribution. /
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Rationale

What can we do?

Modeling Ej (too complex – too sensitive)

Combining opportunistic data with ”effort standardized data”

”Effort standardized data”= data where we know (or can estimate) the
ratios Ej/Ej ′

Notation

Dataset labelling:

k = 0 : ”effort standardized data”

k = 1 : opportunistic data
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Rationale

Combining data sets (basic model)

Count(species=i , site=j , data=k) ∼ Poisson(Nij Ejk Pik)

with

Ej0/Ej ′0 known (institutional), Ej1/Ej ′1 unknown (opportunistic)

Ej1 � Ej0 (in general)

, 2IJ observations for IJ + 2I + J unknown parameters

Identifiability requires I + 1 additional constraints
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A simple Generalized Linear Model

Generalized Linear Model

Count(species=i , site=j , data=k) ∼ Poisson(λijk)

with log(λijk) = nij + ejk + pik .

→ we can estimate the relative abundance for each species
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Does it make sense?

Gain of combining?

In theory?

In practice?
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Theoretical gain of combining

Reduction of variance

Single ”standardized” dataset: with Ej0 known

variance(N̂
(1)
ij ) =

Nij

Pi0Ej0

standardized+opportunistic datasets: with Ej1 � Ej0

variance(N̂
(2)
ij ) ≈

Nij

Pi0Ej0
×

Pi0Nij∑
l Pl0Nlj︸ ︷︷ ︸

reduction factor

Remark: Combining gain is limited.
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Theoretical gain of combining: explanation

A simple formula

If the ratios Pi0/Pi1 are the same for all i , we have

N̂ij =
Xij0 + Xij1∑
l(Xij0 + Xlj1)

×
∑

l Xlj0

Ej0
,

and when Xij1 � Xij0

N̂ij

Xij1�Xij0

≈
Xij1∑
l Xlj1

×
∑

l Xlj0

Ej0
.

Explanation
Roughly, dataset 1 provides a precise estimate of Nij/

∑
l Pl0Nlj and

dataset 0 is used to estimate
∑

l Pl0Nlj
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Another theoretical gain

Species not monitored in ”standardized dataset”

Correspond to Pi0 = 0

We can still estimate N̂ij

Theoretical performance

We have

var(N̂ij)
Ej1→∞∼

N2
ij∑

l Pl0NljEj0
.

so in particular

var(N̂ij)
Ej1→∞∼ var(N̂0,imaginary

ij )×
P imaginary

i0 Nij∑
l Pl0Nlj

.
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Numerical test

Dataset: birds in Aquitaine

Estimation:

(A) ACT dataset (from hunting management)

(B) LPO dataset (opportunistic)

Validation:

(C) STOC dataset (high-quality participative science)
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Predictive power

Full ACT dataset

Data ACT ACT+LPO

ρ 0.27 0.55

Subsampled ACT dataset (1/18)

Data ACT’ ACT’+LPO

ρ 0.06 0.54

−→ clear gain of combining...

... despite the fact that the basic assumption Oijk = EjkPik is not likely to
be met (due to heterogeneous habitat type repartition)

Christophe Giraud (Orsay) Crowdsourcing Data in Ecology Cornell 2015 28 / 45



Another example of application

Spatial distribution of Mustelidae

Data from a conservation institution
(professional)

proxy of the observational effort for
part of the data

but not for most of it
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Another version of the combining idea (Fithian, Elith,
Hastie & Keith, to appear in MEE)

Thinning model

Species distribution: IPP(λi ) with λi (s) = exp (αi + 〈βi , x(s)〉)

Observations: IPP(λibik) with
I bi0(s) = 1 at locations where survey data are available, 0 else
I bi1(s) = exp (γi + 〈δ, z(s)〉)

Thought different (effort modeling, thinning), similar idea of ”combining”
survey data with opportunistic data.

Christophe Giraud (Orsay) Crowdsourcing Data in Ecology Cornell 2015 30 / 45



A more realistic model

Stratification according to the habitat

Must take into account:

Habitat type specificity of species: Sih

Habitat type bias of the observer: qhk

−→ requires a more complex modeling

Xick ∼ Poisson

(
NijEckPik

∑
h∈c

qhk∑
h′∈c qh′k

αhSihVhc∑
h′ Sih′Vh′j

)
.

Results: promising preliminary results.
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Some opportunities for Ecology: an example

Delimiting synchronous populations

We want to identify areas where populations have the same temporal
evolution (due to climatic forces, food avalaibility, etc).

Formalization

Find regions R such that

Zst ∼ Poisson(exp(θs + f (xs , t))) with f (x , t) ≈
∑
R

ρR(t)1x∈R .
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A tentative estimation procedure

Penalized negative log-likelihood

(θ̂, f̂ ) ∈ argmin
θ,f

{LZ (θ, f ) + Ω(f )} ,

with Ω(f ) a convex penalty promoting solution with the shape

f̂ (x , t) =
J∑

j=1

ρ̂j(t)1R̂j
(x).

Which penalty Ω(f )?

Christophe Giraud (Orsay) Crowdsourcing Data in Ecology Cornell 2015 33 / 45



Total variation norm

For D an open domain in Rd and F : D → R.

TV(F ) norm

TV(F )

= sup
{
−
∫
D

F (x)Div(φ(x)) dx : φ ∈ C∞c (D,Rd) and ‖φ‖∞ ≤ 1
}

=

∫
D
‖∇F (x)‖ dx if F ∈ C 1.

Reminder: TV(1R) = perimeter (R)
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Example of use in image segmentation
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Synchronized Total Variation Norm

Our model

Zst ∼ Poisson(exp(θs + f (xs , t))) with f (x , t) ≈
∑
R

ρR(t)1x∈R .

Similar : at each time t the function x → f (x , t) is ”block-constant”

New : the blocks of x → f (x , t) must coincide at all time t.
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Synchronized Total Variation Norm

STV norm

STV(f ) = sup
φ(., t) ∈ C∞c (D,Rd )‚‚P

t ‖φ(., t)‖
‚‚
∞ ≤ 1

{
−
∑

t

∫
D

f (x , t)divx(φ(x , t)) dx
}

=

∫
D

max
t
‖∇x f (x , t)‖ dx , when f (., t) ∈ C 1 for all t.

Properties

f → STV(f ) is convex

Minimizers of LZ (θ, f ) + α STV(f ) have the shape

f̂ (x , t) =
∑

j

ρ̂bRj
(t)1

x∈bRj
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Discretization issue

For images

straightforward discretization on a grid (discrete gradient)

For monitoring program

The observations are not spread on a grid −→ the discretization is not
straightforward.

Choice

Discretization of ‖∇x f (x , t)‖ with

max
u∈V (s)

|f (xu, t)− f (xs , t)|

where V (s) is a neighborhood of s.
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Estimation procedure

Estimator

We estime θs and f (xs , t) by θ̂s and f̂st minimizing∑
s,t

[
eθs+fst − Zst(θs + fst)

]
+ α

∑
s

max
t

max
u∈V (s)

|fst − fut |

with fs1 = 0 for all s.

Optimization : with a primal-dual scheme (quite intensive)
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Example: blackcap

Data

STOC data (only):

high-quality ”effort-standardized” data

but many missing values

from 2001 to 2009

Blackcap: 361 sites with at least 7 years of
observations.
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Results: estimated regions
Blackcap
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Figure: Left: PCA of (f̂ ) and kmeans clustering. Right: regions selected by
kmeans.
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Results: temporal dynamics
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Results: discussion

The results fit the ecological knowledge ,
decline in mediterannean places

increase in cold places

But, I think that

insufficient coverage

a better estimation procedure?
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Perspective

Combining data

Combine standardized with opportunistic datasets

Zistk ∼ Poisson(exp(θisk + estk + f (xs , t))) with f (x , t) ≈
∑
R

ρR(t)1x∈R .

and est0 known up to (additive) constant.
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Conclusion

Opportunistic ecological data are massive but very heterogeneous.

They can be useful for relative abundance monitoring.

They could be crucial for investigating some fundamental questions in
Ecology.
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