High Dimensional Switched Systems: Control and Observation

Adrien Le Coënt ${ }^{1}$, Florian De Vuyst ${ }^{1}$, Christian Rey ${ }^{2}$, Ludovic Chamoin ${ }^{2}$, Laurent Fribourg ${ }^{3}$, Mario Sigalotti ${ }^{4}$

October 14, 2015

[^0]
Introduction

Framework

- Goal: control the evolution of an operating system with the help of actuators and sensors
- Framework of the switched control systems: one selects the working modes of the system over time, every mode is described by differential equations (ODEs or PDEs)
■ Application to medium/high dimensional systems:
- Model Order Reduction
- Error bounding
- State space bisection

Outline

1 Switched Systems

2 State Space Decomposition

3 Control of high dimensional switched systems

4 Observation of high dimensional switched systems

Outline

1 Switched Systems

2 State Space Decomposition

3 Control of high dimensional switched systems

4 Observation of high dimensional switched systems

Switched Systems

A switched system

$$
\dot{x}(t)=f_{\sigma(t)}(x(t))
$$

is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

Switched Systems

A switched system

$$
\dot{x}(t)=f_{\sigma(t)}(x(t))
$$

is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

- state $x \in \mathbb{R}^{n}$

Switched Systems

A switched system

$$
\dot{x}(t)=f_{\sigma(t)}(x(t))
$$

is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

- state $x \in \mathbb{R}^{n}$

■ switching signal $\sigma:[0, \infty) \rightarrow U$

Switched Systems

A switched system

$$
\dot{x}(t)=f_{\sigma(t)}(x(t))
$$

is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

- state $x \in \mathbb{R}^{n}$

■ switching signal $\sigma:[0, \infty) \rightarrow U$

■ $U=\{1, \ldots, N\}$ finite set of modes associated with the dynamics

$$
\dot{x}=f_{u}(x)
$$

Switched Systems

A switched system

$$
\dot{x}(t)=f_{\sigma(t)}(x(t))
$$

is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

- state $x \in \mathbb{R}^{n}$

■ switching signal $\sigma:[0, \infty) \rightarrow U$

■ $U=\{1, \ldots, N\}$ finite set of modes associated with the dynamics

$$
\dot{x}=A x+B u
$$

Switched Systems

A switched system

$$
\dot{x}(t)=f_{\sigma(t)}(x(t))
$$

is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

- state $x \in \mathbb{R}^{n}$

■ switching signal $\sigma:[0, \infty) \rightarrow U$

■ $U=\{1, \ldots, N\}$ finite set of modes associated with the dynamics

$$
\dot{x}=A x+B u
$$

We focus here on sampled switched systems: switching instants occur periodically every $\tau(\sim \sigma$ is constant on $[i \tau,(i+1) \tau))$

Controlled Switched Systems: Schematic View

Control Synthesis Problem

We consider the state-dependent control problem of synthesizing σ :

Control Synthesis Problem

We consider the state-dependent control problem of synthesizing σ :
At each τ, find the appropriate switched mode $u \in U$ according to the current value of x, in order to achieve some objectives:

Control Synthesis Problem

We consider the state-dependent control problem of synthesizing σ :
At each τ, find the appropriate switched mode $u \in U$ according to the current value of x, in order to achieve some objectives:

- stability (x should converge to and stay in the neighborhood R of a reference point Ω)

Control Synthesis Problem

We consider the state-dependent control problem of synthesizing σ :
At each τ, find the appropriate switched mode $u \in U$ according to the current value of x, in order to achieve some objectives:

- stability (x should converge to and stay in the neighborhood R of a reference point Ω)
- safety (x should never exit from a safe zone S)

Control Synthesis Problem

We consider the state-dependent control problem of synthesizing σ :
At each τ, find the appropriate switched mode $u \in U$ according to the current value of x, in order to achieve some objectives:

- stability (x should converge to and stay in the neighborhood R of a reference point Ω)
- safety (x should never exit from a safe zone S)

NB: classic stabilization impossible here (no common equilibrium pt) \leadsto practical stability

Example: Two-room apartment

$$
\binom{\dot{T}_{1}}{T_{2}}=\left(\begin{array}{cc}
-\alpha_{21}-\alpha_{e 1}-\alpha_{f} u & \alpha_{21} \\
\alpha_{12} & -\alpha_{12}-\alpha_{e 2}
\end{array}\right)\binom{T_{1}}{T_{2}}+\binom{\alpha_{e 1} T_{e}+\alpha_{f} T_{f} u}{\alpha_{e 2} T_{e}}
$$

Example: Two-room apartment

$$
\binom{\dot{T}_{1}}{T_{2}}=\left(\begin{array}{cc}
-\alpha_{21}-\alpha_{e 1}-\alpha_{f} u & \alpha_{21} \\
\alpha_{12} & -\alpha_{12}-\alpha_{e 2}
\end{array}\right)\binom{T_{1}}{T_{2}}+\binom{\alpha_{e 1} T_{e}+\alpha_{f} T_{f} u}{\alpha_{e 2} T_{e}}
$$

■ Modes: $u=0,1$; sampling period τ

Example: Two-room apartment

$$
\binom{\dot{T}_{1}}{T_{2}}=\left(\begin{array}{cc}
-\alpha_{21}-\alpha_{e 1}-\alpha_{f} u & \alpha_{21} \\
\alpha_{12} & -\alpha_{12}-\alpha_{e 2}
\end{array}\right)\binom{T_{1}}{T_{2}}+\binom{\alpha_{e 1} T_{e}+\alpha_{f} T_{f} u}{\alpha_{e 2} T_{e}}
$$

■ Modes: $u=0,1$; sampling period τ

- A pattern π is a finite sequence of modes (e.g. $(1 \cdot 0 \cdot 0 \cdot 0)$)

Example: Two-room apartment

$$
\binom{\dot{T}_{1}}{T_{2}}=\left(\begin{array}{cc}
-\alpha_{21}-\alpha_{e 1}-\alpha_{f} u & \alpha_{21} \\
\alpha_{12} & -\alpha_{12}-\alpha_{e 2}
\end{array}\right)\binom{T_{1}}{T_{2}}+\binom{\alpha_{e 1} T_{e}+\alpha_{f} T_{f} u}{\alpha_{e 2} T_{e}}
$$

■ Modes: $u=0,1$; sampling period τ

- A pattern π is a finite sequence of modes (e.g. ($1 \cdot 0 \cdot 0 \cdot 0$))
- A state dependent control consists in selecting at each τ a mode (or a pattern) according to the current value of the state.

Example: Two-room apartment

$$
\binom{\dot{T}_{1}}{T_{2}}=\left(\begin{array}{cc}
-\alpha_{21}-\alpha_{e 1}-\alpha_{f} u & \alpha_{21} \\
\alpha_{12} & -\alpha_{12}-\alpha_{e 2}
\end{array}\right)\binom{T_{1}}{T_{2}}+\binom{\alpha_{e 1} T_{e}+\alpha_{f} T_{f} u}{\alpha_{e 2} T_{e}}
$$

■ Modes: $u=0,1$; sampling period τ

- A pattern π is a finite sequence of modes (e.g. ($1 \cdot 0 \cdot 0 \cdot 0$))
- A state dependent control consists in selecting at each τ a mode (or a pattern) according to the current value of the state.
NB: Each mode has its basic proper equilibrium point; by appropriate switching, one can drive the system to a specific stability zone

Safety and Stability Properties for the two-room apartment

Safety and Stability Properties for the two-room apartment

■ Example of safety property to be checked: satisfactory temperature

$$
\forall t \geq 0: \quad T_{\min } \leq T_{i}(t) \leq T_{\max }
$$

Safety and Stability Properties for the two-room apartment

■ Example of safety property to be checked: satisfactory temperature

$$
\forall t \geq 0: \quad T_{\min } \leq T_{i}(t) \leq T_{\max }
$$

■ Example of stability property to be checked: temperature regulation

$$
\left|T_{i}(t)-T_{\text {reference }}\right| \leq \varepsilon \text { as } t \rightarrow \infty
$$

Outline

1 Switched Systems

2 State Space Decomposition

3 Control of high dimensional switched systems

4 Observation of high dimensional switched systems

Bisection Method

Bisection Method

Given a zone R (selected around a reference point Ω of the state-space)
■ Look for a pattern which maps R into R

Bisection Method

Given a zone R (selected around a reference point Ω of the state-space)

- Look for a pattern which maps R into R

■ If such a pattern exists, then uniform control over the whole R

Bisection Method

Given a zone R (selected around a reference point Ω of the state-space)
■ Look for a pattern which maps R into R

- If such a pattern exists, then uniform control over the whole R
- Otherwise,

Bisection Method

Given a zone R (selected around a reference point Ω of the state-space)

- Look for a pattern which maps R into R

■ If such a pattern exists, then uniform control over the whole R
■ Otherwise, bisect of R into subparts, and search for patterns mapping these subparts into R

Bisection Method

Given a zone R (selected around a reference point Ω of the state-space)

- Look for a pattern which maps R into R

■ If such a pattern exists, then uniform control over the whole R

- Otherwise, bisect of R into subparts, and search for patterns mapping these subparts into R
- In case of failure, iterate the bisection

Bisection Method

Given a zone R (selected around a reference point Ω of the state-space)
■ Look for a pattern which maps R into R
■ If such a pattern exists, then uniform control over the whole R

- Otherwise, bisect of R into subparts, and search for patterns mapping these subparts into R
- In case of failure, iterate the bisection

■ Extension for safety: the unfolding must stay in the safety set S.

Post Set Operators

definition

A decomposition Δ of R is a set of couples $\left\{\left(V_{i}, \pi_{i}\right)\right\}_{i \in I}$ such that:

definition

A decomposition Δ of R is a set of couples $\left\{\left(V_{i}, \pi_{i}\right)\right\}_{i \in I}$ such that:

- $\bigcup_{i \in I} V_{i}=R$

definition

A decomposition Δ of R is a set of couples $\left\{\left(V_{i}, \pi_{i}\right)\right\}_{i \in I}$ such that:

- $\bigcup_{i \in I} V_{i}=R$
- $\forall i \in I \operatorname{Post}_{\pi_{i}}\left(V_{i}\right) \subseteq R$

definition

A decomposition Δ of R is a set of couples $\left\{\left(V_{i}, \pi_{i}\right)\right\}_{i \in I}$ such that:

- $\bigcup_{i \in I} V_{i}=R$
- $\forall i \in I \operatorname{Post}_{\pi_{i}}\left(V_{i}\right) \subseteq R$
- (Extension for safety: and $\forall i \in I U n f_{\pi_{i}}\left(V_{i}\right) \subseteq S$).

definition

A decomposition Δ of R is a set of couples $\left\{\left(V_{i}, \pi_{i}\right)\right\}_{i \in I}$ such that:

- $\bigcup_{i \in I} V_{i}=R$
- $\forall i \in I \operatorname{Post}_{\pi_{i}}\left(V_{i}\right) \subseteq R$
- (Extension for safety: and $\forall i \in I U n f_{\pi_{i}}\left(V_{i}\right) \subseteq S$).

definition

A decomposition Δ of R is a set of couples $\left\{\left(V_{i}, \pi_{i}\right)\right\}_{i \in I}$ such that:

- $\bigcup_{i \in I} V_{i}=R$
- $\forall i \in I \operatorname{Post}_{\pi_{i}}\left(V_{i}\right) \subseteq R$
- (Extension for safety: and $\forall i \in I U n f_{\pi_{i}}\left(V_{i}\right) \subseteq S$).

definition and property
Let $\operatorname{Post}_{\Delta}(X)={ }_{d e f} \bigcup_{i \in I}$ Post $_{\pi_{i}}\left(X \cap V_{i}\right)$.

definition

A decomposition Δ of R is a set of couples $\left\{\left(V_{i}, \pi_{i}\right)\right\}_{i \in I}$ such that:

- $\bigcup_{i \in I} V_{i}=R$
- $\forall i \in I \operatorname{Post}_{\pi_{i}}\left(V_{i}\right) \subseteq R$
- (Extension for safety: and $\forall i \in I U n f_{\pi_{i}}\left(V_{i}\right) \subseteq S$).

definition and property
Let $\operatorname{Post}_{\Delta}(X)={ }_{d e f} \bigcup_{i \in I} \operatorname{Post}_{\pi_{i}}\left(X \cap V_{i}\right)$. We have:

$$
\operatorname{Post}_{\Delta}(R) \subseteq R
$$

definition

A decomposition Δ of R is a set of couples $\left\{\left(V_{i}, \pi_{i}\right)\right\}_{i \in I}$ such that:

- $\bigcup_{i \in I} V_{i}=R$
- $\forall i \in I \operatorname{Post}_{\pi_{i}}\left(V_{i}\right) \subseteq R$
- (Extension for safety: and $\forall i \in I U n f_{\pi_{i}}\left(V_{i}\right) \subseteq S$).

definition and property
Let $\operatorname{Post}_{\Delta}(X)={ }_{\text {def }} \bigcup_{i \in I}$ Post $_{\pi_{i}}\left(X \cap V_{i}\right)$. We have:

$$
\operatorname{Post}_{\Delta}(R) \subseteq R \quad\left(\text { and } \quad U n f_{\Delta}(R) \subseteq S\right)
$$

Control and Trajectories Induced by Δ

The decomposition $\Delta=\left\{\left(V_{i}, \pi_{i}\right)\right\}_{i \in I}$ induces a natural control:

Control and Trajectories Induced by Δ

The decomposition $\Delta=\left\{\left(V_{i}, \pi_{i}\right)\right\}_{i \in I}$ induces a natural control:
$\boldsymbol{1} x(t) \in R$, therefore $\exists i \in I$ such that $x(t) \in V_{i}$

Control and Trajectories Induced by Δ

The decomposition $\Delta=\left\{\left(V_{i}, \pi_{i}\right)\right\}_{i \in I}$ induces a natural control:
$\boldsymbol{\|} x(t) \in R$, therefore $\exists i \in I$ such that $x(t) \in V_{i}$
2 Apply pattern π_{i} to $x(t)$

Control and Trajectories Induced by Δ

The decomposition $\Delta=\left\{\left(V_{i}, \pi_{i}\right)\right\}_{i \in I}$ induces a natural control:
$\boldsymbol{\|} x(t) \in R$, therefore $\exists i \in I$ such that $x(t) \in V_{i}$
2 Apply pattern π_{i} to $x(t)$
3 At the end of $\pi_{i}, x\left(t^{\prime}\right) \in R$, iterate by going back to step (1)

Control and Trajectories Induced by Δ

The decomposition $\Delta=\left\{\left(V_{i}, \pi_{i}\right)\right\}_{i \in I}$ induces a natural control:
$\boldsymbol{\|}(t) \in R$, therefore $\exists i \in I$ such that $x(t) \in V_{i}$
2 Apply pattern π_{i} to $x(t)$
3 At the end of $\pi_{i}, x\left(t^{\prime}\right) \in R$, iterate by going back to step (1)

Property

Under the Δ-control,

- any trajectory $x_{0} \rightarrow_{\pi_{i_{1}}} x_{1} \rightarrow_{\pi_{i_{2}}} x_{2} \rightarrow_{\pi_{i_{3}}} \cdots$ always stays in R

Control and Trajectories Induced by Δ

The decomposition $\Delta=\left\{\left(V_{i}, \pi_{i}\right)\right\}_{i \in I}$ induces a natural control:
$\boldsymbol{\|}(t) \in R$, therefore $\exists i \in I$ such that $x(t) \in V_{i}$
2 Apply pattern π_{i} to $x(t)$
3 At the end of $\pi_{i}, x\left(t^{\prime}\right) \in R$, iterate by going back to step (1)

Property

Under the Δ-control,

- any trajectory $x_{0} \rightarrow_{\pi_{i_{1}}} x_{1} \rightarrow_{\pi_{i_{2}}} x_{2} \rightarrow_{\pi_{i_{3}}} \cdots$ always stays in R
- The unfolding of the trajectory always stays in S

Decomposition for the two-room apartment
For: $\alpha_{12}=5 \times 10^{-2}, \alpha_{21}=5 \times 10^{-2}, \alpha_{e 1}=5 \times 10^{-3}, \alpha_{e 2}=$ $3.3 \times 10^{-3}, \alpha_{f}=8.3 \times 10^{-3}, T_{e}=10, T_{f}=50$ and $\tau=5$.

Decomposition for the two-room apartment
For: $\alpha_{12}=5 \times 10^{-2}, \alpha_{21}=5 \times 10^{-2}, \alpha_{e 1}=5 \times 10^{-3}, \alpha_{e 2}=$ $3.3 \times 10^{-3}, \alpha_{f}=8.3 \times 10^{-3}, T_{e}=10, T_{f}=50$ and $\tau=5$. $\Omega=(21,21), R=[20.25,21.75] \times[20.25,21.75], S=[20,22] \times[20,22]$

Decomposition for the two-room apartment
For: $\alpha_{12}=5 \times 10^{-2}, \alpha_{21}=5 \times 10^{-2}, \alpha_{e 1}=5 \times 10^{-3}, \alpha_{e 2}=$ $3.3 \times 10^{-3}, \alpha_{f}=8.3 \times 10^{-3}, T_{e}=10, T_{f}=50$ and $\tau=5$. $\Omega=(21,21), R=[20.25,21.75] \times[20.25,21.75], S=[20,22] \times[20,22]$

Decomposition for the two-room apartment
For: $\alpha_{12}=5 \times 10^{-2}, \alpha_{21}=5 \times 10^{-2}, \alpha_{e 1}=5 \times 10^{-3}, \alpha_{e 2}=$ $3.3 \times 10^{-3}, \alpha_{f}=8.3 \times 10^{-3}, T_{e}=10, T_{f}=50$ and $\tau=5$. $\Omega=(21,21), R=[20.25,21.75] \times[20.25,21.75], S=[20,22] \times[20,22]$

Decomposition for the two-room apartment
For: $\alpha_{12}=5 \times 10^{-2}, \alpha_{21}=5 \times 10^{-2}, \alpha_{e 1}=5 \times 10^{-3}, \alpha_{e 2}=$ $3.3 \times 10^{-3}, \alpha_{f}=8.3 \times 10^{-3}, T_{e}=10, T_{f}=50$ and $\tau=5$. $\Omega=(21,21), R=[20.25,21.75] \times[20.25,21.75], S=[20,22] \times[20,22]$

Decomposition for the two-room apartment
For: $\alpha_{12}=5 \times 10^{-2}, \alpha_{21}=5 \times 10^{-2}, \alpha_{e 1}=5 \times 10^{-3}, \alpha_{e 2}=$ $3.3 \times 10^{-3}, \alpha_{f}=8.3 \times 10^{-3}, T_{e}=10, T_{f}=50$ and $\tau=5$. $\Omega=(21,21), R=[20.25,21.75] \times[20.25,21.75], S=[20,22] \times[20,22]$

Figure : Decomposition (left) ; unfolding (middle) ; unfolded trajectory (right) in plane (T_{1}, T_{2})

Decomposition for the two-room apartment
For: $\alpha_{12}=5 \times 10^{-2}, \alpha_{21}=5 \times 10^{-2}, \alpha_{e 1}=5 \times 10^{-3}, \alpha_{e 2}=$ $3.3 \times 10^{-3}, \alpha_{f}=8.3 \times 10^{-3}, T_{e}=10, T_{f}=50$ and $\tau=5$. $\Omega=(21,21), R=[20.25,21.75] \times[20.25,21.75], S=[20,22] \times[20,22]$

Figure : Decomposition (left) ; unfolding (middle) ; unfolded trajectory (right) in plane (T_{1}, T_{2})

Decomposition found for $k=4, d=3$.

A Switched System with Output

- Described by the differential equation:

$$
\begin{cases}\dot{x}(t) & =A x(t)+B u(t) \\ y(t) & =C x(t)\end{cases}
$$

A Switched System with Output

- Described by the differential equation:

$$
\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)
\end{array}\right.
$$

- $x \in \mathbb{R}^{n}$: state variable
- $y \in \mathbb{R}^{m}$: output

■ $u \in \mathbb{R}^{p}$: control input, takes a finite number of values (modes)

- A, B, C : matrices of appropriate dimensions

A Switched System with Output

- Described by the differential equation:

$$
\begin{cases}\dot{x}(t) & =A x(t)+B u(t) \\ y(t) & =C x(t)\end{cases}
$$

- $x \in \mathbb{R}^{n}$: state variable
- $y \in \mathbb{R}^{m}$: output

■ $u \in \mathbb{R}^{p}$: control input, takes a finite number of values (modes)

- A, B, C : matrices of appropriate dimensions

■ Idea: impose the right $u(t)$ such that x and y verify some properties (stability, reachability...)

A Switched System with Output

- Described by the differential equation:

$$
\left\{\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}\right.
$$

- $x \in \mathbb{R}^{n}$: state variable
- $y \in \mathbb{R}^{m}$: output
- $u \in \mathbb{R}^{p}$: control input, takes a finite number of values (modes)
- A, B, C : matrices of appropriate dimensions

■ Idea: impose the right $u(t)$ such that x and y verify some properties (stability, reachability...)

- Objectives:

1 x-stabilization: make all the state trajectories starting in a compact interest set $R_{x} \subset \mathbb{R}^{n}$ return to R_{x};
$2 y$-convergence: send the output of all the trajectories starting in R_{x} into an objective set $R_{y} \subset \mathbb{R}^{m}$;

A Switched System with Output

- Described by the differential equation:

$$
\left\{\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}\right.
$$

- $x \in \mathbb{R}^{n}$: state variable
- $y \in \mathbb{R}^{m}$: output
- $u \in \mathbb{R}^{p}$: control input, takes a finite number of values (modes)
- A, B, C : matrices of appropriate dimensions

■ Idea: impose the right $u(t)$ such that x and y verify some properties (stability, reachability...)

- Objectives:

1 x-stabilization: make all the state trajectories starting in a compact interest set $R_{x} \subset \mathbb{R}^{n}$ return to R_{x};
$2 y$-convergence: send the output of all the trajectories starting in R_{x} into an objective set $R_{y} \subset \mathbb{R}^{m}$;

- Constraint: x of "high" dimension.

A Sampled Switched System with Output

A distillation column

New Decomposition

definition

A decomposition Δ of R_{x} is a set of couples $\left\{\left(V_{i}, P a t_{i}\right)\right\}_{i \in I}$ such that:

New Decomposition

definition

A decomposition Δ of R_{x} is a set of couples $\left\{\left(V_{i}, P a t_{i}\right)\right\}_{i \in I}$ such that:

- $\bigcup_{i \in I} V_{i}=R_{x}$

New Decomposition

definition

A decomposition Δ of R_{x} is a set of couples $\left\{\left(V_{i}, P a t_{i}\right)\right\}_{i \in I}$ such that:

- $\bigcup_{i \in I} V_{i}=R_{x}$
- $\forall i \in I \operatorname{Post}_{\text {Pat }_{i}}\left(V_{i}\right) \subseteq R_{x}$ (x-stabilization)

New Decomposition

definition

A decomposition Δ of R_{x} is a set of couples $\left\{\left(V_{i}, P a t_{i}\right)\right\}_{i \in I}$ such that:

- $\bigcup_{i \in I} V_{i}=R_{x}$
- $\forall i \in I \operatorname{Post}_{\text {Pat }_{i}}\left(V_{i}\right) \subseteq R_{x}$ (x-stabilization)

■ $\forall i \in I$ Post $_{P_{\text {Pat }}^{i}, C}\left(V_{i}\right) \subseteq R_{y}(y$-convergence $)$

New Decomposition

definition

A decomposition Δ of R_{x} is a set of couples $\left\{\left(V_{i}, P a t_{i}\right)\right\}_{i \in I}$ such that:

- $\bigcup_{i \in I} V_{i}=R_{x}$
- $\forall i \in I \operatorname{Post}_{\text {Pat }_{i}}\left(V_{i}\right) \subseteq R_{x}(x$-stabilization $)$

■ $\forall i \in I$ Post $_{\text {Pat }_{i}, C}\left(V_{i}\right) \subseteq R_{y}$ (y-convergence)
definition and property
Let $\operatorname{Post}_{\Delta}(X)={ }_{d e f} \bigcup_{i \in I}$ Post $_{\pi_{i}}\left(X \cap V_{i}\right)$.

New Decomposition

definition

A decomposition Δ of R_{x} is a set of couples $\left\{\left(V_{i}, P a t_{i}\right)\right\}_{i \in I}$ such that:

- $\bigcup_{i \in I} V_{i}=R_{x}$
- $\forall i \in I \operatorname{Post}_{\text {Pat }_{i}}\left(V_{i}\right) \subseteq R_{x}(x$-stabilization $)$

■ $\forall i \in I$ Post $_{\text {Pat }_{i}, C}\left(V_{i}\right) \subseteq R_{y}$ (y-convergence)
definition and property
Let $\operatorname{Post}_{\Delta}(X)={ }_{d e f} \bigcup_{i \in I} \operatorname{Post}_{\pi_{i}}\left(X \cap V_{i}\right)$. We have:

$$
\operatorname{Post}_{\Delta}\left(R_{x}\right) \subseteq R_{x} \quad \text { and } \quad \text { Post }_{\Delta, C}\left(R_{x}\right) \subseteq R_{y}
$$

New Decomposition

definition

A decomposition Δ of R_{x} is a set of couples $\left\{\left(V_{i}, P a t_{i}\right)\right\}_{i \in I}$ such that:

- $\bigcup_{i \in I} V_{i}=R_{x}$
- $\forall i \in I \operatorname{Post}_{P_{a t}}\left(V_{i}\right) \subseteq R_{x}(x$-stabilization $)$

■ $\forall i \in I$ Post $_{\text {Pat }_{i}, C}\left(V_{i}\right) \subseteq R_{y}$ (y-convergence)
definition and property
Let $\operatorname{Post}_{\Delta}(X)={ }_{d e f} \bigcup_{i \in I} \operatorname{Post}_{\pi_{i}}\left(X \cap V_{i}\right)$. We have:

$$
\operatorname{Post}_{\Delta}\left(R_{x}\right) \subseteq R_{x} \quad \text { and } \quad \text { Post }_{\Delta, C}\left(R_{x}\right) \subseteq R_{y}
$$

Computational cost of decomposition: at most in $O\left(2^{n d} N^{k}\right)$.

Dealing with high dimensionality : model reduction

Dealing with high dimensionality : model reduction

Outline

1 Switched Systems

2 State Space Decomposition

3 Control of high dimensional switched systems

- Model Order Reduction
- Guaranteed offline control
- Guaranteed online control

Outline

1 Switched Systems
2 State Space Decomposition
3 Control of high dimensional switched systems

- Model Order Reduction
- Guaranteed offline control
- Guaranteed online control

4 Observation of high dimensional switched systems
■ Observation of switched systems
■ Numerical test of a reduced order observer

Model Order Reduction by Projection

Construction of a reduced order system $\hat{\Sigma}$ of order $n_{r}<n$:

$$
\hat{\Sigma}: \begin{cases}\dot{\hat{x}}(t) & =\hat{A} \hat{x}(t)+\hat{B} u(t) \\ y_{r}(t) & =\hat{C} \hat{x}(t)\end{cases}
$$

Model Order Reduction by Projection

Construction of a reduced order system $\hat{\Sigma}$ of order $n_{r}<n$:

$$
\hat{\Sigma}: \begin{cases}\dot{\hat{x}}(t) & =\hat{A} \hat{x}(t)+\hat{B} u(t) \\ y_{r}(t) & =\hat{C} \hat{x}(t)\end{cases}
$$

Reduction by a projection (constructed by balanced truncation) $\pi=\pi_{L} \pi_{R}, \pi_{L} \in \mathbb{R}^{n \times n_{r}}, \pi_{R} \in \mathbb{R}^{n_{r} \times n}:$

$$
\hat{A}=\pi_{R} A \pi_{L}, \quad \hat{B}=\pi_{R} B, \quad \hat{C}=C \pi_{L}
$$

Model Order Reduction by Projection

Construction of a reduced order system $\hat{\Sigma}$ of order $n_{r}<n$:

$$
\hat{\Sigma}: \begin{cases}\dot{\hat{x}}(t) & =\hat{A} \hat{x}(t)+\hat{B} u(t), \\ y_{r}(t) & =\hat{C} \hat{x}(t) .\end{cases}
$$

Reduction by a projection (constructed by balanced truncation) $\pi=\pi_{L} \pi_{R}, \pi_{L} \in \mathbb{R}^{n \times n_{r}}, \pi_{R} \in \mathbb{R}^{n_{r} \times n}:$

$$
\hat{A}=\pi_{R} A \pi_{L}, \quad \hat{B}=\pi_{R} B, \quad \hat{C}=C \pi_{L}
$$

Goal: design a controle rule $u(\cdot)$ at the low-order level and apply it at the full-order level.

Model Order Reduction by Projection

Construction of a reduced order system $\hat{\Sigma}$ of order $n_{r}<n$:

$$
\hat{\Sigma}:\left\{\begin{array}{l}
\dot{\hat{x}}(t)=\hat{A} \hat{x}(t)+\hat{B} u(t), \\
y_{r}(t)=\hat{C} \hat{x}(t) .
\end{array}\right.
$$

Reduction by a projection (constructed by balanced truncation) $\pi=\pi_{L} \pi_{R}, \pi_{L} \in \mathbb{R}^{n \times n_{r}}, \pi_{R} \in \mathbb{R}^{n_{r} \times n}:$

$$
\hat{A}=\pi_{R} A \pi_{L}, \quad \hat{B}=\pi_{R} B, \quad \hat{C}=C \pi_{L}
$$

Goal: design a controle rule $u(\cdot)$ at the low-order level and apply it at the full-order level.
Requirements:

- projection of the interest set $\hat{R}_{x}=\pi_{R} R_{x}$

Model Order Reduction by Projection

Construction of a reduced order system $\hat{\Sigma}$ of order $n_{r}<n$:

$$
\hat{\Sigma}:\left\{\begin{array}{l}
\dot{\hat{x}}(t)=\hat{A} \hat{x}(t)+\hat{B} u(t), \\
y_{r}(t)=\hat{C} \hat{x}(t) .
\end{array}\right.
$$

Reduction by a projection (constructed by balanced truncation) $\pi=\pi_{L} \pi_{R}, \pi_{L} \in \mathbb{R}^{n \times n_{r}}, \pi_{R} \in \mathbb{R}^{n_{r} \times n}:$

$$
\hat{A}=\pi_{R} A \pi_{L}, \quad \hat{B}=\pi_{R} B, \quad \hat{C}=C \pi_{L}
$$

Goal: design a controle rule $u(\cdot)$ at the low-order level and apply it at the full-order level.
Requirements:

- projection of the interest set $\hat{R}_{x}=\pi_{R} R_{x}$
- error bounding of the state and output trajectory

Output and state trajectory error [2]

After application of a pattern of length j

- the error between y and y_{r} is bounded by:

$$
\begin{aligned}
\varepsilon_{y}^{j}=\|u(\cdot)\| \|_{\infty}^{[0, j \tau]} & \int_{0}^{j \tau}\left\|\left[\begin{array}{ll}
C & -\hat{C}
\end{array}\right]\left[\begin{array}{ll}
e^{t A} & \\
& e^{t \hat{A}}
\end{array}\right]\left[\begin{array}{l}
B \\
\hat{B}
\end{array}\right]\right\| d t+ \\
& \sup _{x_{0} \in R_{x}}\left\|\left[\begin{array}{ll}
C & -\hat{C}
\end{array}\right]\left[\begin{array}{cc}
e^{j \tau A} & \\
& \\
& e^{j \tau \hat{A}}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
\pi_{R} x_{0}
\end{array}\right]\right\| .
\end{aligned}
$$

Output and state trajectory error [2]
After application of a pattern of length j

- the error between y and y_{r} is bounded by:

$$
\begin{aligned}
\varepsilon_{y}^{j}=\|u(\cdot)\|_{\infty}^{[0, j \tau]} & \int_{0}^{j \tau}\left\|\left[\begin{array}{ll}
C & -\hat{C}
\end{array}\right]\left[\begin{array}{ll}
e^{t A} & \\
& e^{t \hat{A}}
\end{array}\right]\left[\begin{array}{l}
B \\
\hat{B}
\end{array}\right]\right\| d t+ \\
& \sup _{x_{0} \in R_{x}}\left\|\left[\begin{array}{ll}
C & -\hat{C}
\end{array}\right]\left[\begin{array}{cc}
e^{j \tau A} & \\
& \\
& e^{j \tau \hat{A}}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
\pi_{R} x_{0}
\end{array}\right]\right\| .
\end{aligned}
$$

■ the error between $\pi_{R} x$ and \hat{x} is bounded by:

$$
\begin{array}{r}
\varepsilon_{x}^{j}=\|u(\cdot)\|_{\infty}^{[0, j \tau]} \int_{0}^{j \tau} \|\left[\begin{array}{ll}
\pi_{R} & \left.-I_{n_{r}}\right]\left[\begin{array}{ll}
e^{t A} & \\
& e^{t \hat{A}}
\end{array}\right]\left[\begin{array}{l}
B \\
\hat{B}
\end{array}\right] \| d t+ \\
\sup _{x_{0} \in R_{x}}\left\|\left[\begin{array}{ll}
\pi_{R} & -I_{n_{r}}
\end{array}\right]\left[\begin{array}{ll}
e^{j \tau A} & \\
& e^{j \tau \hat{A}}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
\pi_{R} x_{0}
\end{array}\right]\right\| .
\end{array} . . \begin{array}{ll}
&
\end{array} .\right.
\end{array}
$$

Reduced Order Control

Two systems:
■ Full-order system: Σ, R_{x}, R_{y}

$$
\Sigma:\left\{\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}\right.
$$

■ Reduced-order system: $\hat{\Sigma}, \hat{R}_{x}, R_{y}$

$$
\hat{\Sigma}: \begin{cases}\dot{\hat{x}}(t) & =\hat{A} \hat{x}(t)+\hat{B} u(t) \\ y_{r}(t) & =\hat{C} \hat{x}(t)\end{cases}
$$

Reduced Order Control

Two systems:
■ Full-order system: Σ, R_{x}, R_{y}

$$
\Sigma:\left\{\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}\right.
$$

■ Reduced-order system: $\hat{\Sigma}, \hat{R}_{x}, R_{y}$

$$
\hat{\Sigma}: \begin{cases}\dot{\hat{x}}(t) & =\hat{A} \hat{x}(t)+\hat{B} u(t) \\ y_{r}(t) & =\hat{C} \hat{x}(t)\end{cases}
$$

Control synthesis (decomposition) for the reduced-order system.

Reduced Order Control

Two systems:
■ Full-order system: Σ, R_{x}, R_{y}

$$
\Sigma:\left\{\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}\right.
$$

■ Reduced-order system: $\hat{\Sigma}, \hat{R}_{x}, R_{y}$

$$
\hat{\Sigma}: \begin{cases}\dot{\hat{x}}(t) & =\hat{A} \hat{x}(t)+\hat{B} u(t) \\ y_{r}(t) & =\hat{C} \hat{x}(t)\end{cases}
$$

Control synthesis (decomposition) for the reduced-order system. \Rightarrow reduced-order control

Reduced Order Control

Two systems:
■ Full-order system: Σ, R_{x}, R_{y}

$$
\Sigma:\left\{\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}\right.
$$

■ Reduced-order system: $\hat{\Sigma}, \hat{R}_{x}, R_{y}$

$$
\hat{\Sigma}: \begin{cases}\dot{\hat{x}}(t) & =\hat{A} \hat{x}(t)+\hat{B} u(t) \\ y_{r}(t) & =\hat{C} \hat{x}(t)\end{cases}
$$

Control synthesis (decomposition) for the reduced-order system. \Rightarrow reduced-order control
\Rightarrow application of the reduced-order control to the full-order system

Reduced Order Control

Two systems:
■ Full-order system: Σ, R_{x}, R_{y}

$$
\Sigma:\left\{\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}\right.
$$

■ Reduced-order system: $\hat{\Sigma}, \hat{R}_{x}, R_{y}$

$$
\hat{\Sigma}: \begin{cases}\dot{\hat{x}}(t) & =\hat{A} \hat{x}(t)+\hat{B} u(t) \\ y_{r}(t) & =\hat{C} \hat{x}(t)\end{cases}
$$

Control synthesis (decomposition) for the reduced-order system. \Rightarrow reduced-order control
\Rightarrow application of the reduced-order control to the full-order system Questions:

Reduced Order Control

Two systems:
■ Full-order system: Σ, R_{x}, R_{y}

$$
\Sigma:\left\{\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}\right.
$$

■ Reduced-order system: $\hat{\Sigma}, \hat{R}_{x}, R_{y}$

$$
\hat{\Sigma}: \begin{cases}\dot{\hat{x}}(t) & =\hat{A} \hat{x}(t)+\hat{B} u(t) \\ y_{r}(t) & =\hat{C} \hat{x}(t)\end{cases}
$$

Control synthesis (decomposition) for the reduced-order system. \Rightarrow reduced-order control
\Rightarrow application of the reduced-order control to the full-order system Questions:

- How is it applied?

Reduced Order Control

Two systems:
■ Full-order system: Σ, R_{x}, R_{y}

$$
\Sigma:\left\{\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}\right.
$$

- Reduced-order system: $\hat{\Sigma}, \hat{R}_{x}, R_{y}$

$$
\hat{\Sigma}: \begin{cases}\dot{\hat{x}}(t) & =\hat{A} \hat{x}(t)+\hat{B} u(t) \\ y_{r}(t) & =\hat{C} \hat{x}(t)\end{cases}
$$

Control synthesis (decomposition) for the reduced-order system. \Rightarrow reduced-order control
\Rightarrow application of the reduced-order control to the full-order system Questions:

- How is it applied?

■ Is the reduced-order control effective at the full-order level?

Outline

1 Switched Systems
2 State Space Decom osition
3 Control of high dimensional switched systems

- Model Order Reduction

- Guaranteed offline control
- Guaranteed online control

4 Observation of high dimensional switched systems

- Observation of switched systems
- Numerical test of a reduced order observer

Offline Procedure

Offline Procedure

1 Projection of the initial state x_{0}

Offline Procedure

1 Projection of the initial state x_{0}
2 Computation of a pattern sequence at the low-order level Pat $_{i_{0}}$, Pat $_{i_{1} \ldots}$ (steps (1),(2),(3))

Offline Procedure

1 Projection of the initial state x_{0}
2 Computation of a pattern sequence at the low-order level Pat $_{i_{0}}$, Pat $_{i_{1}} \ldots$ (steps (1),(2),(3))
3 Application of the pattern sequence at the full-order level (steps (4), (5), (6)).

Guaranteed Offline Control

Application of the same pattern sequence:

Guaranteed Offline Control

Application of the same pattern sequence:

$$
\Rightarrow \quad \forall t=j \tau>0, \quad\left\|y(t)-y_{r}(t)\right\| \leq \varepsilon_{y}^{j}
$$

Guaranteed Offline Control

Application of the same pattern sequence:

$$
\begin{gathered}
\Rightarrow \quad \forall t=j \tau>0, \quad\left\|y(t)-y_{r}(t)\right\| \leq \varepsilon_{y}^{j} \\
\Rightarrow \quad \forall t=j \tau>0, \quad\left\|y(t)-y_{r}(t)\right\| \leq \varepsilon_{y}^{\infty}=\sup _{j>0} \varepsilon_{y}^{j}
\end{gathered}
$$

Guaranteed Offline Control

Application of the same pattern sequence:

$$
\begin{gathered}
\Rightarrow \quad \forall t=j \tau>0, \quad\left\|y(t)-y_{r}(t)\right\| \leq \varepsilon_{y}^{j} \\
\Rightarrow \quad \forall t=j \tau>0, \quad\left\|y(t)-y_{r}(t)\right\| \leq \varepsilon_{y}^{\infty}=\sup _{j>0} \varepsilon_{y}^{j}
\end{gathered}
$$

Consequence: the output of the full order system is sent in $R_{y}+\varepsilon_{y}^{\infty}$.

Guaranteed Offline Control

Simulation on a linearized model of a distillation column: $n=11$ and $n_{r}=2$:

Outline

1 Switched Systems
2 State Space Decom osition
3 Control of high dimensional switched systems

- Model Order Reduction

- Guaranteed offline control
- Guaranteed online control

4 Observation of high dimensional switched systems
■ Observation of switched systems

- Numerical test of a reduced order observer

Online Procedure

Online Procedure

1 Projection of the initial state x_{0} (step (1))

Online Procedure

1 Projection of the initial state x_{0} (step (1))
2 Computation of the pattern $\mathrm{Pat}_{i_{0}}$ at the reduced-order level

Online Procedure

1 Projection of the initial state x_{0} (step (1))
2 Computation of the pattern Pati $_{i_{0}}$ at the reduced-order level
3 Application of the pattern $P a t_{i_{0}}$ at the full-order level, Σ is sent to a state $x_{1}(\operatorname{step}(2))$

Online Procedure

$\boxed{1}$ Projection of the initial state x_{0} (step (1))
■ Computation of the pattern Pat $_{i}$ at the reduced-order level
B Application of the pattern Pat $_{i_{0}}$ at the full-order level, Σ is sent to a state $x_{1}($ step (2))
$\boxed{4}$ Projection of the (new initial) state x_{1} (step (3))

Online Procedure

1 Projection of the initial state x_{0} (step (1))
2 Computation of the pattern Pati $_{i_{0}}$ at the reduced-order level
3 Application of the pattern $P a t_{i_{0}}$ at the full-order level, Σ is sent to a state $x_{1}(\operatorname{step}(2))$
4 Projection of the (new initial) state $x_{1}(\operatorname{step}(3))$
5 Computation of the pattern $\mathrm{Pat}_{i_{1}}$ at the reduced-order level

Online Procedure

$\boxed{1}$ Projection of the initial state x_{0} (step (1))
(2) Computation of the pattern Pat $_{i_{0}}$ at the reduced-order level
B Application of the pattern Pat $_{i_{0}}$ at the full-order level, Σ is sent to a state $x_{1}(\operatorname{step}(2))$
4 Projection of the (new initial) state x_{1} (step (3))
5 Computation of the pattern Pat $_{i_{1}}$ at the reduced-order level
6 Application of the pattern $\operatorname{Pat}_{i_{1}}$ at the full-order level, Σ is sent to a state $x_{2}(\operatorname{step}(4)) \ldots$

Guaranteed Online Control

Requirement to apply the online procedure:

Guaranteed Online Control

Requirement to apply the online procedure:

- Ensure that $\pi_{R} \operatorname{Post}_{P a t_{i}}(x) \in \hat{R}_{x}$ at every step.

Guaranteed Online Control

Requirement to apply the online procedure:

- Ensure that π_{R} Post $_{\text {Pat }_{i}}(x) \in \hat{R}_{x}$ at every step.

Solution: Compute an ε-decomposition

definition

A ε-decomposition Δ of R_{x} is a set of couples $\left\{\left(V_{i}, P a t_{i}\right)\right\}_{i \in I}$ such that:

- $\bigcup_{i \in I} V_{i}=R_{x}$
- $\forall i \in I \operatorname{Post}_{\text {Pat }_{i}}\left(V_{i}\right) \subseteq R_{x}-\varepsilon_{x}^{\mid \text {Pat }_{i} \mid}$
- $\forall i \in I$ Post $_{\text {Pat }_{i}, C}\left(V_{i}\right) \subseteq R_{y}$ (y-convergence)

Guaranteed Online Control

An ε-decomposition performed on $\hat{\Sigma}$ permits to iterate the online procedure:

Guaranteed Online Control

An ε-decomposition performed on $\hat{\Sigma}$ permits to iterate the online procedure:

- At a step $k, \pi_{R} x_{k}$ is sent in $\hat{R}_{x}-\varepsilon_{x}^{\left|P a t_{i_{k}}\right|}$

Guaranteed Online Control

An ε-decomposition performed on $\hat{\Sigma}$ permits to iterate the online procedure:

- At a step $k, \pi_{R} x_{k}$ is sent in $\hat{R}_{x}-\varepsilon_{x}^{\mid \text {Pat }_{i_{k}} \mid}$
- we have:

$$
\| \pi_{R} \text { Post }_{\text {Pat }}(x)-\operatorname{Post}_{\text {Pat }}\left(\pi_{R} x\right) \| \leq \varepsilon_{x}^{\left|\operatorname{Pat}_{i_{k}}\right|}
$$

Guaranteed Online Control

An ε-decomposition performed on $\hat{\Sigma}$ permits to iterate the online procedure:

- At a step $k, \pi_{R} x_{k}$ is sent in $\hat{R}_{x}-\varepsilon_{x}^{\mid \text {Pat }_{i_{k}} \mid}$
- we have:

$$
\| \pi_{R} \text { Post }_{\text {Pat }}(x)-\operatorname{Post}_{\text {Pat }}\left(\pi_{R} x\right) \| \leq \varepsilon_{x}^{\left|\operatorname{Pat}_{i_{k}}\right|}
$$

- thus, at every step k :

$$
\pi_{R} \text { Post }_{\text {Pat }_{i_{k}}}\left(x_{k}\right) \in \hat{R}_{x}
$$

Guaranteed Online Control

Simulation on a linearized model of a distillation column: $n=11$ and $n_{r}=2$:

Remark: Output trajectory error depending on the length of the applied pattern: much lower than the infinite bound ε_{y}^{∞}

Comparison of the Two Procedures

Other Applications

■ Control of the temperature of a square plate discretized by finite elements: offline and online control $n=897$

Other Applications

■ Control of the temperature of a square plate discretized by finite elements: offline and online control
$n=897$ and $n_{r}=2$

Other Applications

■ Control of the temperature of a square plate discretized by finite elements: offline and online control
$n=897$ and $n_{r}=3$

Other Applications

- Vibration (online) control of a cantilever beam:

$$
n=120 \text { and } n_{r}=4
$$

Other Applications

- Vibration (online) control of a cantilever beam:

$$
n=120 \text { and } n_{r}=4
$$

Other Applications

- Vibration (online) control of an aircraft panel: $n=57000$ and $n_{r}=6$

Other Applications

■ Vibration (online) control of an aircraft panel:
$n=57000$ and $n_{r}=6$

Outline

1 Switched Systems

2 State Space Decomposition

3 Control of high dimensional switched systems

4 Observation of high dimensional switched systems
■ Observation of switched systems

- Numerical test of a reduced order observer

Outline

1 Switched Systems
2 State Space Decomposition
3 Control of high dimensional switched systems

- Model Order Reduction
- Guaranteed offline control
- Guaranteed online control

4 Observation of high dimensional switched systems
■ Observation of switched systems

- Numerical test of a reduced order observer

Partial observation (without model reduction)

Partial observation (without model reduction)

Given the switched system:

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t), \\
y(t)=C x(t)
\end{array}\right.
$$

During a real online use, only $y(t)$ is known.

Partial observation (without model reduction)

Given the switched system:

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t), \\
y(t)=C x(t)
\end{array}\right.
$$

During a real online use, only $y(t)$ is known.
Question: how can we control Σ with the only information of y ?

Partial observation (without model reduction)

Given the switched system:

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t), \\
y(t)=C x(t)
\end{array}\right.
$$

During a real online use, only $y(t)$ is known. Question: how can we control Σ with the only information of y ? \Rightarrow An observer: intermediate system, provides an estimate \tilde{x} of the state x of Σ

Partial observation (without model reduction)

Partial observation (without model reduction)

Given the switched system:

$$
\Sigma:\left\{\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t), \\
y(t) & =C x(t)
\end{aligned}\right.
$$

During a real online use, only $y(t)$ is known.
Question: how can we control Σ with the only information of y ?
\Rightarrow An observer: intermediate system, provides an estimate \tilde{x} of the state x of Σ

Partial observation (without model reduction)

Given the switched system:

$$
\Sigma:\left\{\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t), \\
y(t) & =C x(t)
\end{aligned}\right.
$$

During a real online use, only $y(t)$ is known.
Question: how can we control Σ with the only information of y ?
\Rightarrow An observer: intermediate system, provides an estimate \tilde{x} of the state x of Σ
Question: which observer ?

Partial observation (without model reduction)

Given the switched system:

$$
\Sigma:\left\{\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t), \\
y(t) & =C x(t)
\end{aligned}\right.
$$

During a real online use, only $y(t)$ is known.
Question: how can we control Σ with the only information of y ?
\Rightarrow An observer: intermediate system, provides an estimate \tilde{x} of the state x of Σ
Question: which observer ?
\Rightarrow Kalman filter, High gain observer, Luenberger observer?

Why the Luenberger observer?

- Dynamics of the Luenberger observer:

$$
\dot{\tilde{x}}=A \tilde{x}-L(u)(C \tilde{x}-y)+B u, \quad L(u) \in \mathbb{R}^{n \times m}
$$

Why the Luenberger observer?

- Dynamics of the Luenberger observer:

$$
\dot{\tilde{x}}=A \tilde{x}-L(u)(C \tilde{x}-y)+B u, \quad L(u) \in \mathbb{R}^{n \times m}
$$

\Rightarrow Adapted to switched systems (because of $L(u)$)

Why the Luenberger observer?

- Dynamics of the Luenberger observer:

$$
\dot{\tilde{x}}=A \tilde{x}-L(u)(C \tilde{x}-y)+B u, \quad L(u) \in \mathbb{R}^{n \times m}
$$

\Rightarrow Adapted to switched systems (because of $L(u)$)
\Rightarrow Easy implementation

Why the Luenberger observer?

- Dynamics of the Luenberger observer:

$$
\dot{\tilde{x}}=A \tilde{x}-L(u)(C \tilde{x}-y)+B u, \quad L(u) \in \mathbb{R}^{n \times m}
$$

\Rightarrow Adapted to switched systems (because of $L(u)$)
\Rightarrow Easy implementation
\Rightarrow Many good properties...

Why the Luenberger observer?

■ Dynamics of the Luenberger observer:

$$
\dot{\tilde{x}}=A \tilde{x}-L(u)(C \tilde{x}-y)+B u, \quad L(u) \in \mathbb{R}^{n \times m}
$$

\Rightarrow Adapted to switched systems (because of $L(u)$)
\Rightarrow Easy implementation
\Rightarrow Many good properties...

■ Objective: find a strategy such that the observer converges: $\eta(t)=|\tilde{x}(t)-x(t)| \underset{t \rightarrow+\infty}{\longrightarrow} 0$

Properties of the Luenberger observer

Hypotheses:

- $\exists P>0, \quad$ s.t. $\quad P(A+L(u) C)+(A+L(u) C)^{\top} P \leq 0 \quad \forall u$.

■ (Dwell-time: $\tau>0$)

Properties of the Luenberger observer

Hypotheses:

- $\exists P>0$, s.t. $P(A+L(u) C)+(A+L(u) C)^{\top} P \leq 0 \quad \forall u$.
- (Dwell-time: $\tau>0$)

Theorem
 [Serres, Vivalda, Riedinger, IEEE Trans.Auto.Cont. 2011]

With an appropriate ${ }^{1}$ choice of patterns, the observer converges
${ }^{1}$ appropriate $=$ every pattern takes particular values given by the study of e.

Properties of the Luenberger observer

Hypotheses:

- $\exists P>0$, s.t. $P(A+L(u) C)+(A+L(u) C)^{\top} P \leq 0 \quad \forall u$.
- (Dwell-time: $\tau>0$)

Theorem
 [Serres, Vivalda, Riedinger, IEEE Trans.Auto.Cont. 2011]

With an appropriate ${ }^{1}$ choice of patterns, the observer converges monotonically.
${ }^{1}$ appropriate $=$ every pattern takes particular values given by the study of e.

Properties of the Luenberger observer

Hypotheses:
■ $\exists P>0$, s.t. $P(A+L(u) C)+(A+L(u) C)^{\top} P \leq 0 \quad \forall u$.
■ (Dwell-time: $\tau>0$)

Theorem
 [Serres, Vivalda, Riedinger, IEEE Trans.Auto.Cont. 2011]

With an appropriate ${ }^{1}$ choice of patterns, the observer converges monotonically.
i.e. $\eta(t) \underset{t \rightarrow+\infty}{\longrightarrow} 0$ and $\eta(t)$ decreases monotonically.
${ }^{1}$ appropriate $=$ every pattern takes particular values given by the study of e.

Properties of the Luenberger observer

Hypotheses:
■ $\exists P>0$, s.t. $P(A+L(u) C)+(A+L(u) C)^{\top} P \leq 0 \quad \forall u$.
■ (Dwell-time: $\tau>0$)

Theorem

[Serres, Vivalda, Riedinger, IEEE Trans.Auto.Cont. 2011]
With an appropriate ${ }^{1}$ choice of patterns, the observer converges monotonically.
i.e. $\eta(t) \underset{t \rightarrow+\infty}{\longrightarrow} 0$ and $\eta(t)$ decreases monotonically.

Proof based on the study of

$$
\dot{e}=(A-L(u) C) e
$$

where $e(t)=x(t)-\tilde{x}(t)$
${ }^{1}$ appropriate $=$ every pattern takes particular values given by the study of e.

Observer based decomposition

Supposing that the initial reconstruction error is inferior to η_{0}

definition

A observer based decomposition $\tilde{\Delta}$ of R_{x} is a set of couples $\left\{\left(V_{i}, P a t_{i}\right)\right\}_{i \in I}$ such that:

Observer based decomposition

Supposing that the initial reconstruction error is inferior to η_{0}

definition

A observer based decomposition $\tilde{\Delta}$ of R_{x} is a set of couples $\left\{\left(V_{i}, P a t_{i}\right)\right\}_{i \in I}$ such that:

- $\bigcup_{i \in I} V_{i}=R_{x}$

Observer based decomposition

Supposing that the initial reconstruction error is inferior to η_{0}

definition

A observer based decomposition $\tilde{\Delta}$ of R_{x} is a set of couples $\left\{\left(V_{i}, P a t_{i}\right)\right\}_{i \in I}$ such that:

- $\bigcup_{i \in I} V_{i}=R_{x}$

■ $\forall i \in I \operatorname{Post}_{P a t}\left(V_{i}+\eta_{0}\right) \subseteq R_{x}-\eta_{0}$ and $P a t_{i}$ takes particular value

Observer based decomposition

Supposing that the initial reconstruction error is inferior to η_{0}

definition

A observer based decomposition $\tilde{\Delta}$ of R_{x} is a set of couples $\left\{\left(V_{i}, P a t_{i}\right)\right\}_{i \in I}$ such that:

- $\bigcup_{i \in I} V_{i}=R_{x}$

■ $\forall i \in I \operatorname{Post}_{\text {Pat }_{i}}\left(V_{i}+\eta_{0}\right) \subseteq R_{x}-\eta_{0}$ and Pat $_{i}$ takes particular value

- $\forall i \in I$ Post $_{\text {Pat }_{i}, C}\left(V_{i}+\eta_{0}\right) \subseteq R_{y}$ and Pat $_{i}$ takes particular value

Observer based decomposition

Supposing that the initial reconstruction error is inferior to η_{0}

definition

A observer based decomposition $\tilde{\Delta}$ of R_{x} is a set of couples $\left\{\left(V_{i}, P_{i} t_{i}\right)\right\}_{i \in I}$ such that:

- $\bigcup_{i \in I} V_{i}=R_{x}$

■ $\forall i \in I \operatorname{Post}_{\text {Pat }_{i}}\left(V_{i}+\eta_{0}\right) \subseteq R_{x}-\eta_{0}$ and Pat $_{i}$ takes particular value

- $\forall i \in I$ Post $_{\text {Pat }_{i}, C}\left(V_{i}+\eta_{0}\right) \subseteq R_{y}$ and Pat $_{i}$ takes particular value
definition and property
Let $\operatorname{Post}_{\Delta}(X)={ }_{\text {def }} \bigcup_{i \in I}$ Post $_{\pi_{i}}\left(X \cap V_{i}\right)$.

Observer based decomposition

Supposing that the initial reconstruction error is inferior to η_{0}

definition

A observer based decomposition $\tilde{\Delta}$ of R_{x} is a set of couples $\left\{\left(V_{i}, P a t_{i}\right)\right\}_{i \in I}$ such that:

- $\bigcup_{i \in I} V_{i}=R_{x}$
- $\forall i \in I \operatorname{Post}_{\text {Pat }_{i}}\left(V_{i}+\eta_{0}\right) \subseteq R_{x}-\eta_{0}$ and Pat $_{i}$ takes particular value
- $\forall i \in I$ Post $_{\text {Pat }_{i}, C}\left(V_{i}+\eta_{0}\right) \subseteq R_{y}$ and Pat $_{i}$ takes particular value
definition and property
Let Post $_{\Delta}(X)={ }_{\text {def }} \bigcup_{i \in I}$ Post $_{\pi_{i}}\left(X \cap V_{i}\right)$. We have:

$$
\operatorname{Post}_{\bar{\Delta}}\left(R_{x}+\eta_{0}\right) \subseteq R_{x}-\eta_{0} \quad \text { and } \quad \operatorname{Post}_{\Delta, C}\left(R_{x}+\eta_{0}\right) \subseteq R_{y} .
$$

Outline

1 Switched Systems
2 State Space Decomposition
3 Control of high dimensional switched systems

- Model Order Reduction
- Guaranteed offline control
- Guaranteed online control

4 Observation of high dimensional switched systems

- Observation of switched systems
- Numerical test of a reduced order observer

Numerical implementation with model reduction

An ε-decomposition is performed.
Use of a reduced Luenberger observer:

$$
\dot{\hat{\tilde{x}}}=\hat{A} \tilde{\tilde{x}}-L(u)(\hat{C} \tilde{\hat{x}}-C x)+\hat{B} u, \quad L(u) \in \mathbb{R}^{n_{r} \times m}
$$

Numerical implementation with model reduction

An ε-decomposition is performed.
Use of a reduced Luenberger observer:

$$
\dot{\hat{x}}=\hat{A} \tilde{\hat{x}}-L(u)(\hat{C} \tilde{\hat{x}}-C x)+\hat{B} u, \quad L(u) \in \mathbb{R}^{n_{r} \times m}
$$

Simulation on the thermal plate problem:
Full-order system initialized at 0.06^{897}, observer initialized at 0^{897}

Numerical implementation with model reduction

An ε-decomposition is performed.
Use of a reduced Luenberger observer:

$$
\dot{\hat{x}}=\hat{A} \tilde{\hat{x}}-L(u)(\hat{C} \tilde{\hat{x}}-C x)+\hat{B} u, \quad L(u) \in \mathbb{R}^{n_{r} \times m}
$$

Simulation on the thermal plate problem:
Full-order system initialized at 0.06^{897}, observer initialized at 0^{897}

Conclusions

■ Guaranteed reduced order control

- Guaranteed observer based control
- Numerical simulations encouraging for reduced observer based control, but no proof of the efficiency yet (ingredient required: a bound of the error between $\pi_{R} x$ and $\tilde{\hat{x}}$, W.I.P.)

Conclusions

- Guaranteed reduced order control
- Guaranteed observer based control
- Numerical simulations encouraging for reduced observer based control, but no proof of the efficiency yet (ingredient required: a bound of the error between $\pi_{R} x$ and \hat{x}, W.I.P.)

Future work

- Decomposition using dimensionality reduction (projection on more adapted reduced spaces using post-process techniques)
- Improvement of model reduction techniques (adapted to hyperbolic and non-linear systems)
- Control of non-linear systems/PDEs

Some References

Laurent Fribourg, Ulrich Kühne, and Romain Soulat.
Minimator: a tool for controller synthesis and computation of minimal invariant sets for linear switched systems, March 2013.

Zhi Han and Bruce Krogh.
Reachability analysis of hybrid systems using reduced-order models.
In American Control Conference, pages 1183-1189. IEEE, 2004.

Adrien Le Coënt, Florian de Vusyt, Christian Rey, Ludovic Chamoin, and Laurent Fribourg.
Guaranteed control of switched control systems using model order reduction and state-space bisection.
Open Acces Series in Informatics, 2015.
Ulysse Serres, Jean-Claude Vivalda, and Pierre Riedinger.
On the convergence of linear switched systems.
IEEE Transactions on Automatic Control, 56(2):320-332, 2011.

Some References

Laurent Fribourg, Ulrich Kühne, and Romain Soulat.
Minimator: a tool for controller synthesis and computation of minimal invariant sets for linear switched systems, March 2013.

Zhi Han and Bruce Krogh.
Reachability analysis of hybrid systems using reduced-order models.
In American Control Conference, pages 1183-1189. IEEE, 2004.

Adrien Le Coënt, Florian de Vusyt, Christian Rey, Ludovic Chamoin, and Laurent Fribourg.
Guaranteed control of switched control systems using model order reduction and state-space bisection.
Open Acces Series in Informatics, 2015.

Ulysse Serres, Jean-Claude Vivalda, and Pierre Riedinger.
On the convergence of linear switched systems.
IEEE Transactions on Automatic Control, 56(2):320-332, 2011.
Thank you! Questions?

[^0]: ${ }^{1}$ CMLA Centre de Mathématiques et de Leurs Applications
 ${ }^{2}$ LMT-Cachan Laboratoire de Mécanique et Technologie
 ${ }^{3}$ LSV Laboratoire de Spécification et Vérification
 ${ }^{4}$ CMAP Centre de Mathématiques Appliquées

