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1CMLA Centre de Mathématiques et de Leurs Applications
2LMT-Cachan Laboratoire de Mécanique et Technologie
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Introduction
Framework

Goal: control the evolution of an operating system with the help
of actuators and sensors

Framework of the switched control systems: one selects the
working modes of the system over time, every mode is described
by differential equations (ODEs or PDEs)

Application to medium/high dimensional systems:

Model Order Reduction
Error bounding
State space bisection
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Switched Systems

Switched Systems

A switched system
ẋ(t) = fσ(t)(x(t))

is a family of continuous-time dynamical systems with a rule σ that
determines at each time which one is active

state x ∈ Rn

switching signal σ : [0,∞)→ U

We focus here on sampled switched systems: switching instants occur
periodically every τ

(; σ is constant on [iτ, (i+ 1)τ))
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Switched Systems

Controlled Switched Systems: Schematic View
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Switched Systems

Control Synthesis Problem

We consider the state-dependent control problem of synthesizing σ:

At each τ , find the appropriate switched mode u ∈ U according to the
current value of x, in order to achieve some objectives:

stability (x should converge to and stay in the neighborhood R of
a reference point Ω)

safety (x should never exit from a safe zone S)

NB: classic stabilization impossible here (no common equilibrium pt)
; practical stability
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Switched Systems

Example: Two-room apartment

˙(
T1

T2

)
=
(
−α21−αe1−αfu α21

α12 −α12−αe2

)(T1

T2

)
+
(
αe1Te+αfTfu

αe2Te

)
.

Modes: u = 0, 1 ; sampling period τ

A pattern π is a finite sequence of modes (e.g. (1 · 0 · 0 · 0))

A state dependent control consists in selecting at each τ a mode
(or a pattern) according to the current value of the state.

NB: Each mode has its basic proper equilibrium point; by appropriate
switching, one can drive the system to a specific stability zone
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Switched Systems

Safety and Stability Properties for the two-room
apartment

Example of safety property to be checked: satisfactory
temperature

∀t ≥ 0 : Tmin ≤ Ti(t) ≤ Tmax

Example of stability property to be checked: temperature
regulation

|Ti(t)− Treference| ≤ ε as t→∞
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State Space Decomposition

Bisection Method

Given a zone R (selected around a reference point Ω of the state-space)
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State Space Decomposition

Bisection Method
Given a zone R (selected around a reference point Ω of the state-space)

Look for a pattern which maps R into R

If such a pattern exists, then uniform control over the whole R

Otherwise, bisect of R into subparts, and search for patterns
mapping these subparts into R

In case of failure, iterate the bisection

Extension for safety: the unfolding must stay in the safety set S.
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State Space Decomposition

Post Set Operators
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State Space Decomposition

definition

A decomposition ∆ of R is a set of couples {(Vi, πi)}i∈I such that:

⋃
i∈I Vi = R

∀i ∈ I Postπi(Vi) ⊆ R
(Extension for safety: and ∀i ∈ I Unfπi(Vi) ⊆ S).

definition and property

Let Post∆(X) =def
⋃
i∈I Postπi(X ∩ Vi). We have:

Post∆(R) ⊆ R (and Unf∆(R) ⊆ S)

.
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A. Le Coënt, F. de Vuyst, L. Fribourg HD Switched Systems October 14, 2015 13 / 47



State Space Decomposition

definition

A decomposition ∆ of R is a set of couples {(Vi, πi)}i∈I such that:⋃
i∈I Vi = R

∀i ∈ I Postπi(Vi) ⊆ R
(Extension for safety: and ∀i ∈ I Unfπi(Vi) ⊆ S).

definition and property

Let Post∆(X) =def
⋃
i∈I Postπi(X ∩ Vi). We have:

Post∆(R) ⊆ R (and Unf∆(R) ⊆ S)

.
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State Space Decomposition

Control and Trajectories Induced by ∆

The decomposition ∆ = {(Vi, πi)}i∈I induces a natural control:

1 x(t) ∈ R, therefore ∃i ∈ I such that x(t) ∈ Vi
2 Apply pattern πi to x(t)

3 At the end of πi, x(t′) ∈ R, iterate by going back to step (1)

Property

Under the ∆-control,

any trajectory x0 →πi1
x1 →πi2

x2 →πi3
· · · always stays in R

The unfolding of the trajectory always stays in S
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State Space Decomposition

Decomposition for the two-room apartment
For: α12 = 5× 10−2, α21 = 5× 10−2, αe1 = 5× 10−3, αe2 =
3.3× 10−3, αf = 8.3× 10−3, Te = 10, Tf = 50 and τ = 5.

Ω = (21, 21), R = [20.25, 21.75]× [20.25, 21.75], S = [20, 22]× [20, 22]

Figure : Decomposition (left) ; unfolding (middle) ; unfolded trajectory
(right) in plane (T1, T2)

Decomposition found for k = 4, d = 3.
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Figure : Decomposition (left) ; unfolding (middle) ; unfolded trajectory
(right) in plane (T1, T2)

Decomposition found for k = 4, d = 3.
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State Space Decomposition

A Switched System with Output

Described by the differential equation:{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

x ∈ Rn: state variable
y ∈ Rm: output
u ∈ Rp: control input, takes a finite number of values (modes)
A,B,C: matrices of appropriate dimensions

Idea: impose the right u(t) such that x and y verify some
properties (stability, reachability...)
Objectives:

1 x-stabilization: make all the state trajectories starting in a compact
interest set Rx ⊂ Rn return to Rx;

2 y-convergence: send the output of all the trajectories starting in Rx

into an objective set Ry ⊂ Rm;

Constraint: x of “high” dimension.
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ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

x ∈ Rn: state variable
y ∈ Rm: output
u ∈ Rp: control input, takes a finite number of values (modes)
A,B,C: matrices of appropriate dimensions

Idea: impose the right u(t) such that x and y verify some
properties (stability, reachability...)
Objectives:

1 x-stabilization: make all the state trajectories starting in a compact
interest set Rx ⊂ Rn return to Rx;

2 y-convergence: send the output of all the trajectories starting in Rx

into an objective set Ry ⊂ Rm;

Constraint: x of “high” dimension.
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State Space Decomposition

A Sampled Switched System with Output

A distillation column
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State Space Decomposition

New Decomposition

definition

A decomposition ∆ of Rx is a set of couples {(Vi, Pati)}i∈I such that:

⋃
i∈I Vi = Rx

∀i ∈ I PostPati(Vi) ⊆ Rx (x-stabilization)

∀i ∈ I PostPati,C(Vi) ⊆ Ry (y-convergence)

definition and property

Let Post∆(X) =def
⋃
i∈I Postπi(X ∩ Vi). We have:

Post∆(Rx) ⊆ Rx and Post∆,C(Rx) ⊆ Ry.

Computational cost of decomposition: at most in O(2ndNk).
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State Space Decomposition

Dealing with high dimensionality : model reduction

  

{ẋ ( t ) = A x (t ) + Bu( t )
y (t ) = C x (t )

πR { ˙̂x (t) = Â x̂ (t ) + B̂ u (t)
yr( t) = Ĉ x̂ (t)

{ẋ ( t ) = A x (t ) + Bu( t )
y (t ) = C x (t )

Control synthesis
(decomposition)

x̂−dependent controller
u( x̂)(t )

y (t )
Reduced Luenberger Observer

~
x̂ (t)

u( t)

Offline

Online
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{ẋ ( t ) = A x (t ) + Bu( t )
y (t ) = C x (t )

Control synthesis
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Control of high dimensional switched systems

Outline

1 Switched Systems

2 State Space Decomposition

3 Control of high dimensional switched systems
Model Order Reduction
Guaranteed offline control
Guaranteed online control

4 Observation of high dimensional switched systems
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Control of high dimensional switched systems Model Order Reduction

Outline

1 Switched Systems
2 State Space Decomposition
3 Control of high dimensional switched systems

Model Order Reduction
Guaranteed offline control
Guaranteed online control

4 Observation of high dimensional switched systems
Observation of switched systems
Numerical test of a reduced order observer
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Control of high dimensional switched systems Model Order Reduction

Model Order Reduction by Projection

Construction of a reduced order system Σ̂ of order nr < n:

Σ̂ :

{
˙̂x(t) = Âx̂(t) + B̂u(t),

yr(t) = Ĉx̂(t).

Reduction by a projection (constructed by balanced truncation)
π = πLπR, πL ∈ Rn×nr , πR ∈ Rnr×n :

Â = πRAπL, B̂ = πRB, Ĉ = CπL.

Goal: design a controle rule u(·) at the low-order level and apply it at
the full-order level.
Requirements:

projection of the interest set R̂x = πRRx

error bounding of the state and output trajectory
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Â = πRAπL, B̂ = πRB, Ĉ = CπL.
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Control of high dimensional switched systems Model Order Reduction

Output and state trajectory error [2]
After application of a pattern of length j

the error between y and yr is bounded by:

εjy = ‖u(·)‖[0,jτ ]
∞

∫ jτ

0
‖
[
C −Ĉ

] [ etA

etÂ

] [
B

B̂

]
‖dt +

sup
x0∈Rx

‖
[
C −Ĉ

] [ ejτA

ejτÂ

] [
x0

πRx0

]
‖.

the error between πRx and x̂ is bounded by:

εjx = ‖u(·)‖[0,jτ ]
∞

∫ jτ

0
‖
[
πR −Inr

] [ etA

etÂ

] [
B

B̂

]
‖dt +

sup
x0∈Rx

‖
[
πR −Inr

] [ ejτA

ejτÂ

] [
x0

πRx0

]
‖.
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Control of high dimensional switched systems Model Order Reduction

Reduced Order Control
Two systems:

Full-order system: Σ, Rx, Ry

Σ :

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

Reduced-order system: Σ̂, R̂x, Ry

Σ̂ :

{
˙̂x(t) = Âx̂(t) + B̂u(t),

yr(t) = Ĉx̂(t).

Control synthesis (decomposition) for the reduced-order system.
⇒ reduced-order control
⇒ application of the reduced-order control to the full-order system
Questions:

How is it applied?

Is the reduced-order control effective at the full-order level?
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ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

Reduced-order system: Σ̂, R̂x, Ry

Σ̂ :

{
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A. Le Coënt, F. de Vuyst, L. Fribourg HD Switched Systems October 14, 2015 24 / 47



Control of high dimensional switched systems Model Order Reduction

Reduced Order Control
Two systems:

Full-order system: Σ, Rx, Ry

Σ :

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

Reduced-order system: Σ̂, R̂x, Ry

Σ̂ :

{
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Control of high dimensional switched systems Guaranteed offline control

Outline

1 Switched Systems
2 State Space Decomposition
3 Control of high dimensional switched systems

Model Order Reduction
Guaranteed offline control
Guaranteed online control

4 Observation of high dimensional switched systems
Observation of switched systems
Numerical test of a reduced order observer
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Control of high dimensional switched systems Guaranteed offline control

Offline Procedure

1 Projection of the initial state x0

2 Computation of a pattern
sequence at the low-order level
Pati0 , Pati1 ... (steps (1),(2),(3))

3 Application of the pattern
sequence at the full-order level
(steps (4),(5),(6)).
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A. Le Coënt, F. de Vuyst, L. Fribourg HD Switched Systems October 14, 2015 26 / 47



Control of high dimensional switched systems Guaranteed offline control

Offline Procedure

1 Projection of the initial state x0

2 Computation of a pattern
sequence at the low-order level
Pati0 , Pati1 ... (steps (1),(2),(3))

3 Application of the pattern
sequence at the full-order level
(steps (4),(5),(6)).
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Guaranteed Offline Control

Application of the same pattern sequence:

⇒ ∀t = jτ > 0, ‖y(t)− yr(t)‖ ≤ εjy

⇒ ∀t = jτ > 0, ‖y(t)− yr(t)‖ ≤ ε∞y = sup
j>0

εjy

Consequence: the output of the full order system is sent in Ry + ε∞y .
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A. Le Coënt, F. de Vuyst, L. Fribourg HD Switched Systems October 14, 2015 27 / 47



Control of high dimensional switched systems Guaranteed offline control

Guaranteed Offline Control

Application of the same pattern sequence:

⇒ ∀t = jτ > 0, ‖y(t)− yr(t)‖ ≤ εjy

⇒ ∀t = jτ > 0, ‖y(t)− yr(t)‖ ≤ ε∞y = sup
j>0

εjy

Consequence: the output of the full order system is sent in Ry + ε∞y .
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Control of high dimensional switched systems Guaranteed offline control

Guaranteed Offline Control

Simulation on a linearized model of a distillation column: n = 11 and
nr = 2:
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Control of high dimensional switched systems Guaranteed online control

Outline

1 Switched Systems
2 State Space Decomposition
3 Control of high dimensional switched systems

Model Order Reduction
Guaranteed offline control
Guaranteed online control

4 Observation of high dimensional switched systems
Observation of switched systems
Numerical test of a reduced order observer
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Control of high dimensional switched systems Guaranteed online control

Online Procedure

1 Projection of the initial state x0

(step (1))

2 Computation of the pattern Pati0
at the reduced-order level

3 Application of the pattern Pati0
at the full-order level, Σ is sent to
a state x1 (step (2))

4 Projection of the (new initial)
state x1 (step (3))

5 Computation of the pattern Pati1
at the reduced-order level

6 Application of the pattern Pati1
at the full-order level, Σ is sent to
a state x2 (step (4))...
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Control of high dimensional switched systems Guaranteed online control

Guaranteed Online Control

Requirement to apply the online procedure:

Ensure that πRPostPati(x) ∈ R̂x at every step.

Solution: Compute an ε-decomposition

definition

A ε-decomposition ∆ of Rx is a set of couples {(Vi, Pati)}i∈I such that:

⋃
i∈I Vi = Rx

∀i ∈ I PostPati(Vi) ⊆ Rx − ε
|Pati|
x

∀i ∈ I PostPati,C(Vi) ⊆ Ry (y-convergence)
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A. Le Coënt, F. de Vuyst, L. Fribourg HD Switched Systems October 14, 2015 31 / 47



Control of high dimensional switched systems Guaranteed online control

Guaranteed Online Control

An ε-decomposition performed on Σ̂ permits to iterate the online
procedure:

At a step k, πRxk is sent in R̂x − ε
|Patik |
x

we have:

‖πRPostPat(x)− PostPat(πRx)‖ ≤ ε|Patik |x

thus, at every step k:

πRPostPatik (xk) ∈ R̂x
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Control of high dimensional switched systems Guaranteed online control

Guaranteed Online Control

Simulation on a linearized model of a distillation column: n = 11 and
nr = 2:

Remark: Output trajectory error depending on the length of the
applied pattern: much lower than the infinite bound ε∞y
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Control of high dimensional switched systems Guaranteed online control

Comparison of the Two Procedures
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Control of high dimensional switched systems Guaranteed online control

Other Applications

Control of the temperature of a square plate discretized by finite
elements: offline and online control
n = 897
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Control of high dimensional switched systems Guaranteed online control

Other Applications

Control of the temperature of a square plate discretized by finite
elements: offline and online control
n = 897 and nr = 3
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Control of high dimensional switched systems Guaranteed online control

Other Applications

Vibration (online) control of a cantilever beam:
n = 120 and nr = 4
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Control of high dimensional switched systems Guaranteed online control

Other Applications

Vibration (online) control of an aircraft panel:
n = 57000 and nr = 6
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Observation of high dimensional switched systems

Outline

1 Switched Systems

2 State Space Decomposition

3 Control of high dimensional switched systems

4 Observation of high dimensional switched systems
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Observation of high dimensional switched systems Observation of switched systems

Partial observation (without model reduction)

Given the switched system:

Σ :

{
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t).

During a real online use, only y(t) is known.
Question: how can we control Σ with the only information of y ?
⇒ An observer: intermediate system, provides an estimate x̃ of the
state x of Σ

Given the switched system:

Σ :

{
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t).

During a real online use, only y(t) is known.
Question: how can we control Σ with the only information of y ?
⇒ An observer: intermediate system, provides an estimate x̃ of the
state x of Σ
Question: which observer ?
⇒ Kalman filter, High gain observer, Luenberger observer?
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A. Le Coënt, F. de Vuyst, L. Fribourg HD Switched Systems October 14, 2015 40 / 47



Observation of high dimensional switched systems Observation of switched systems

Partial observation (without model reduction)

Given the switched system:

Σ :

{
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t).

During a real online use, only y(t) is known.
Question: how can we control Σ with the only information of y ?
⇒ An observer: intermediate system, provides an estimate x̃ of the
state x of Σ

  

{ẋ ( t ) = A x (t ) + Bu( t )
y (t ) = C x (t )
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Observation of high dimensional switched systems Observation of switched systems

Why the Luenberger observer?

Dynamics of the Luenberger observer:

˙̃x = Ax̃− L(u)(Cx̃− y) +Bu, L(u) ∈ Rn×m

⇒ Adapted to switched systems (because of L(u))

⇒ Easy implementation

⇒ Many good properties...

Objective: find a strategy such that the observer converges:
η(t) = |x̃(t)− x(t)| −→

t→+∞
0
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Observation of high dimensional switched systems Observation of switched systems

Properties of the Luenberger observer
Hypotheses:

∃P > 0, s.t. P (A+ L(u)C) + (A+ L(u)C)>P ≤ 0 ∀u.
(Dwell-time: τ > 0)

Theorem
[Serres, Vivalda, Riedinger, IEEE Trans.Auto.Cont. 2011]

With an appropriate1 choice of patterns, the observer converges
monotonically.
i.e. η(t) −→

t→+∞
0 and η(t) decreases monotonically.

Proof based on the study of

ė = (A− L(u)C)e

where e(t) = x(t)− x̃(t)
1appropriate = every pattern takes particular values given by the study of e.
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ė = (A− L(u)C)e

where e(t) = x(t)− x̃(t)

1appropriate = every pattern takes particular values given by the study of e.
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Observer based decomposition
Supposing that the initial reconstruction error is inferior to η0

definition

A observer based decomposition ∆̃ of Rx is a set of couples
{(Vi, Pati)}i∈I such that:

⋃
i∈I Vi = Rx

∀i ∈ I PostPati(Vi + η0) ⊆ Rx − η0 and Pati takes particular value

∀i ∈ I PostPati,C(Vi + η0) ⊆ Ry and Pati takes particular value

definition and property

Let Post∆(X) =def
⋃
i∈I Postπi(X ∩ Vi). We have:

Post∆̃(Rx + η0) ⊆ Rx − η0 and Post∆,C(Rx + η0) ⊆ Ry.
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Numerical implementation with model reduction
An ε-decomposition is performed.
Use of a reduced Luenberger observer:

˙̃
x̂ = Â˜̂x− L(u)(Ĉ ˜̂x− Cx) + B̂u, L(u) ∈ Rnr×m

Simulation on the thermal plate problem:
Full-order system initialized at 0.06897, observer initialized at 0897
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Conclusions

Guaranteed reduced order control

Guaranteed observer based control

Numerical simulations encouraging for reduced observer based
control, but no proof of the efficiency yet (ingredient required: a
bound of the error between πRx and ˜̂x, W.I.P.)

Future work

Decomposition using dimensionality reduction (projection on more
adapted reduced spaces using post-process techniques)

Improvement of model reduction techniques (adapted to
hyperbolic and non-linear systems)

Control of non-linear systems/PDEs
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