
The Benefits and
Challenges of Massive
Behavioural Simulation
in the Engineering of Complex and Critical
Cyber-Physical & Human Systems

N. Thuy - EDF R&D
October 14-16, 2015
Sim@SL

2

Cyber-Physical & Human Systems (CPHS)

� A cyber-physical system integrates computation, networking and physical pro cesses

� Many such systems also have an important human aspe ct

� For operation and maintenance

� As a means to address unexpected situations, or situations too complex to be handled
only via automated means

� Large, complex systems often have important societa l implications

� Transportation, energy or communication systems, public service infrastuctures, …

� Need to ensure safety, dependability, performance, adaptability, …

� High cost, high risk, high profile, high pressure to meet deadlines

� They require an interdisciplinary approach governing the total
technical and managerial effort to transform a set of needs,
expectations, and constraints into a solution and
to support that solution throughout its life

� INCOSE, Systems Engineering

3

Need for Multi-disciplinary, Multi-team Approaches

Market and
Economic

Studies – Costs
Assessments

Socio
Organisational

& Human
Factors

Engineering Probabilistic
Reliability and
Risk Analysis

Operation &
Maintenance

Concepts

Process
Design &

Functional
Analysis

Safety &
Security
Analyses

Instrumentation
& Control

Thematic
Verifications

Disciplinary
methods, models

and tools

Multi-physics simulation,
Physics-I&C-Procedures simulation,

Probabilistic Safety Analyses,
Resilience analyses, FMECA,

Safety justification,
Security justification,

Human factors analyses,
Construction planning,

Cost and revenue analyses, ...

Buildings
Architectural

Design

Thermohydraulics,
Electricity,

Chemistry, ...

Cross-
Disciplinary

• Requirements &
Assumptions

• Design decisions
• Models

Procedures

4

System Behaviour

� Functions

� What to do, and what not to do

� Performance factors

� E.g., response time, accuracy

� Quality of Service (QoS)

� E.g., fault tolerance, limits to failure probabilities

� Behaviour in case of error or failure

� Taking into account assumptions made on system environment

� Possibly depending on operational states of the system and of its environment,
and on operational goals

� Modelling & simulation as a support to behaviour-re lated activities

5

Key Questions
� Are the specified behavioural requirements appropri ate for all situations?

� Will they, in some cases, lead to unacceptable consequences?

� Are the tradeoffs between conflicting stakeholders expectations, acceptable?

� Does system design comply with requirements?

� Including in the presence of component failures or human mistakes,
in all foreseen situations

� Application of failure analysis methods such as FMECA, STPA, …

� Do we have an optimal design solution?

� Need to evaluate (possibly many) design alternatives

� Does system implementation comply with specificatio n and requirements?

� Need to support testing, inspection, and possibly formal verification

� During operation, what is the best course of action for operators to bring the
system from its current state (e.g., an incident or accident state) to a desired state?

� Need to explore possible courses of action

� Is there adequate support for training, operation, maintenance, modification?

6

Behavioural Requirements Specification is not
Always Adequate

� True for all industrial sectors, even for highly de pendable systems

� Errors are revealed late during development, or worse, during operation

“Weaknesses in requirements are one of the most significant contributors to systems and
software failing to meet the intended goals. A better analysis is needed to understand the
software‘s interfaces with the rest of the system and discrepancies between the
documented requirements for a correct functioning system.”

[OECD COMPSIS Project Report – Nov 2011]

7

This Could Lead to Unacceptable Consequences

To prevent
spurious

deployment while
airborne, hydraulic
circuits of thrust

reversers are
required to be

de-energised when
wheels are not on

the ground

Small airport, No local control tower, Snowing, Poor visibility
(Real accident)

8

This Could Lead to Unacceptable Consequences

Wheels on the
ground ���� Thrust

reversers are
re-energised and

in operation

Small airport, No local control tower, Snowing, Poor visibility
(Real accident)

9

This Could Lead to Unacceptable Consequences

Pilots see a snow
plough on the airstrip
���� They disengage the
thrust reversers and

try to take-off

Small airport, No local control tower, Snowing, Poor visibility
(Real accident)

10

This Could Lead to Unacceptable Consequences

Wheels no longer on
the ground ���� Thrust

reversers are
de-energised.

Reverser on one side
is fully stowed, but not

on the other side

Small airport, No local control tower, Snowing, Poor visibility
(Real accident)

11

This Could Lead to Unacceptable Consequences

Aerodynamic pressure
reopens the thrust

reverser ���� Airplane is
thrown off balance,
pilots do not have

time to react

Small airport, No local control tower, Snowing, Poor visibility
(Real accident)

12

Validation of Specified Behavioural Requirements

� The system may have many internal states

� Covering installation and commissioning, normal operation (e.g., start-up, nominal
operation, shut-down), maintenance and routine inspection & tests, subsystems states,
deviations from nominal operation, failure states

� The system environment may be composed of multiple entities (each with its own
states) and may generate many possible events

� Including agressions (e.g., fire, flooding, seismic events) and malicious attacks

� Need to explicitly state the assumptions made regarding system environment

� The current operational goal may change in time, and may even change during a
course of action

� Operators and maintenance personnel usually follow specified procedures

� They also apply lessons learned during their training

13

Validation of Specified Behavioural Requirements

� Behavioural requirements are often different in dif ferent situations

� Many cases need to be considered before and during design

� Design decisions will lead to additional requiremen ts

� Including behavioural requirements

� E.g., for the control, monitoring and maintenance of designed-in equipment

�Fallacy of the cascading V-shaped lifecycle

� Also, need to convince stakeholders that the tradeo ffs made in requirements with
respect to their expectations are acceptable to the m

� Tradeoffs are necessary due to conflicting stakeholders expectations

14

Verification of Design and of Implementation

� Design errors should be detected as early as possib le in the engineering lifecycle

� Design verification against requirements at differe nt stages

� Overall design: decomposition into subsystems, and allocation of system requirements

� Detailed design: precise, deterministic description of subsystems behaviour

� Closed-loop testing of implemented items

� Modelling and simulation of the environment of the tested item

� Model-in-the-loop, Software-in-the-loop, Hardware-in-the-loop

� Testing at various stages of the development proces s

� Unit testing

� Integration testing

� System validation testing

� Factory acceptance testing, On-site acceptance testing

15

Looking for an Optimal Design

� Pressure from competition, budget constraints, plan ning constraints, multiple
suppliers solutions, …

� Need to innovate and thus to evaluate multiple desi gns

� Preferably at overall design stages

� Manually developed alternatives

� Possible application of genetic approaches

� Various assessment criteria

� Compliance with behavioural requirements

� Cost and profit during operation (including maintenance)

� Justification for safety and security

� Socio-human factors

� …

16

Support for System Operation

� Verify and validate operational procedures

� Training for operation

� Self-training (in the absence of a coach): cases generated on the fly (based on broadly
defined generic scenarios), with automatic assessment of
• Correct implementation of stated operational goals
• Satisfaction of required system invariants
• Compliance with specified operational procedures

� Coverage of training courses

� Diagnostics : help determine the cause of a deviation from nomi nal behaviour

� Possibly with the application of investigation procedures

� What-If analysis: helps determine an appropriate course of action in order to bring
the system into a certain state while avoiding othe r states

� Multiple assessment criteria

� Faster-than-real-time simulation

time

now

what if

diagnostics
backward
simulation

forward
simulation

17

Failure Analysis
� Example: FMECA (Failure Modes Effect and Criticalit y Analysis)

� Make sure that the consequences of component failures are acceptable

� Principle

� For each component in the design, for each possible failure mode of that component,

� For various situations (state of the system, state of its environment, operator objective,
timing of the failure),

� Evaluate system behaviour, and check that in each case, consequences are acceptable
• Need to take into account fault propagation

� Possible extensions

� Consideration of multiple component failures, as determined by probabilistic analyses

� Consideration of common-cause failures (due to errors in design, construction,
operation, maintenance)

� Currently, manual analysis

� (Tens of) thousands cases to consider, multi-thousand page reports, high risk of error,
difficult to keep up-to-date, done late in the design process just for confirmation, difficult
to use, extremely time consuming, extremely expensive (multi m€)

� Doable only for highly critical systems

18

For All Activities

� Behavioural modelling and simulation can be of grea t help, but most often, a very
large number of cases need to be considered

� Typically, several tens of thousands for one activity, and up to a few millions

� Need to simulate human actions

� Based on specified procedures

� Need also to perform simulation according to variou s sufficiency criteria

� Functional and / or structural coverage criteria

� Boundary and out-of-boundary testing

� Fault-injection

� Statistical testing, Monte Carlo testing

�Massive simulation

� Simulation runs are independent from one another and can all be executed in parallel

19

The Challenges of Massive Simulation

� Generation of a large number of test cases

� Results assessment for an equally large number of test cases

� Minimising the need for different models, languages and tools when addressing
different activities

� Modelling thriftiness
• E.g., FMECA with the same models as for overal design evaluation

� Models inter-operability

� Consistency with real design / system

� Ascertaining the correctness of models and simulation results

� Also (not addressed here)

� Perenniality of models and simulation infrastructure

� Assumption: computing power is not an issue

� High-Performance Computers (HPS) have typically ten or hundred thousand nodes

� One million runs could be performed in a matter of minutes

20

Generation of Large Numbers of Test Cases

� Use of an automatic test case generator

� But test cases should satisfy certain constraints

� Assumptions made regarding system initial conditions, system environment and
operators actions

� User-specified generic test scenarios

� Satisfaction of specified test
coverage objectives

� Generic test scenarios can be
specified in the form of
additional assumptions

� Such generators are now
commercially available

� Example: StimuLus (from ArgoSim)

Assumptions on
System

Environment &
Operation

System
Requirements

Random
Generator of
Conformant
Test Cases

Test
Scenarios

Coverage
Criteria

To records

21

Analysis of Large Numbers of Test Results

� Approach: formal modelling of the behavioural requi rements of a system (viewed
as a black box)

� Can be used to verify that requirements
specification is appropriate

� The approach also models the assumptions
made regarding the environment and the
operation of the system

� Can also be used to automatically check
that simulation results for other systems
engineering purposes are OK (or not)

� Including behavioural requirements
specification for subsystems Model(s) for some of the

Objects of
the Environment

System Overall Design

Assumptions on
Environment &

Operation

System
Requirements

Random
Generator of
Conformant
Test Cases

Test
Scenarios

Coverage
Criteria &

Objectives

To records

Assumptions
on Comp. A

Assumptions
on Comp. Z

Assumptions on
Comp. Interactions

22

Support for Gradual and Modular Design Approaches

� The overall design of a system identifies its compo nents

� … and specifies the assumptions made regarding their interactions and behaviours

� Allocation of system requirements to components

� Some of these components may be considered as (sub-)systems

� Once the overall design is verified, a sub-system can be viewed as a system of its own

� The assumptions made on it
become requirements

� And the process can be repeated

� For simple enough components
or sub-systems, detailed design
can specify precise behaviour

Contract
Client

Sub-system

Sub-system
under
study

Human
Operator

Contract

Assumptions

Requirements

Assumptions
Contract

Supplier
Sub-system

Requirements

Assumptions

Requirements

RequirementsAssumptions

23

Modelling Thriftiness

� Two main categories of behavioural models

� An imperative model completely specifies the behaviour of a system
• Given initial and boundary conditions, only one behaviour is possible

� A constraint-based model just specifies the constraints to be satisfied
• Usually, given initial and boundary conditions, many possible behaviours are allowed
• Techniques exist to detect over-constrained models (i.e., models that have no solution)

� Imperative models are used to describe detailed des igns and solutions

� Examples: MODELICA models, functional diagrams

� Constraint-based models are preferable for expressi ng high-level behavioural
requirements, to describe high-level overall design s or to specify generic scenarios

� Example: FORM-L (FOrmal Requirements Modelling Language) models

Imperative behavioural model Constraint-based behavioural model

24

Models Composability and Inter-Operability

� Different types of models are developed by teams fr om different disciplines and
with specific constraints

� Need to perform co-simulation without modifying any of these models

� Models may represent different parts of the system and its environment

� A part may be represented by multiple models, at different development stages

�‘Bindings’ between models

FORM-L

FORM-L

Requirements &
Assumptions

model

Behavioural
models

(Detailed
Design)

Architectural
models

(Overall Design)

FORM-L

Binding

FORM-L

Binding

FORM-L

Binding

25

MODELICA

� Modelica ® is a non-proprietary, object-oriented,
equation-based language to conveniently model
complex physical systems

� Containing, e.g., mechanical, electrical, electronic,
hydraulic, thermal, control, electric power or process-oriented components

� It is supported by several toolsets, some commercia l (like Dymola), others open-
source (like OpenModelica)

� Models have an internal textual representation, but most are developed graphically

� It is widely used in many industrial sectors

� Reusable components libraries facilitate models dev elopment

Echangeur à plaque 1

Echangeur à plaque 2

Pompe motorisée 1

Pompe motorisée 2

Pompe motorisée 3

Apport chaleur

CL 2CL 1

CL 3

CL 5

CL 6

CL 4

Capteur
température

Vanne série 1

Vanne série 2

Vanne bypass

Vanne fuite

Vanne utilisateurs

Bâche alimenta ireVanne TOR alimentation

Tube T2 Tube T1 Tube T5

Tu
b

e
T

6

Tube T4

T
ub

e
 T

8

state1
inertia1

J=10

state2

inertia2a

J=9

inertia2b

J=1

torque

tau

d=20

springDamper

c=5000 fixed

step

startTime=0

time > 0.5 ba
dt

d
J ττω +=⋅

a
a

a
dt

d
J τω =⋅

b
b

b
dt

d
J τω =⋅

Broken shaft

Normal shaft

26

Multi-Mode Modelling

� MODRIO is extending MODELICA to better support syst ems engineering

� One such extension is multi-mode modelling

� The nominal, downgraded or failure modes of a component can be represented by a
stochastic state automaton

� Each mode can be represented by a separate
model

� When a component fails and in which mode
is determined by the test case

� The simulation infrastructure automatically
switches between models

� Such modelling could be done once and
for all in components libraries

� Multi-mode modelling can also be used at system lev el

� E.g., to represent major state transition between a normal, mono-phasic state and an
incidental, di-phasic state

Nominal

Stuck open

Stuck closed

Stuck as is

Spurious open

Spurious closeMotor-operated Valve

27

FORM-L
� Also developed in the framework of MODRIO, to expre ss

� Behavioural requirements and assumptions

� Overall design decisions, such as allocation of requirements to components

class Pump
external Boolean failure;
external String location;
event eFails = when failure becomes true;
end Pump;

object coolingSystem
external Boolean inOperation;
external Pump { } pumps;

property prop1 =
forAll p in pumps suchThat p.location = "A"
during inOperation and duringAny 1*year
check count (p.eFails) ≤ 2;

requirement req1 =
probability (p1.violated becomes true) < 0.001;

end coolingSystem;

When the system is in operation, the
probability of any pump in room A failing more
than twice a year shall be less than 0.001

indicates pump failure
in which room the pump is

external means that the value is to be provided
by another model

all the pumps in the system

WHERE
WHEN
WHAT

HOW WELL

indicates when the cooling system is in operation

WHY and HOW are expressed by
the overall organisation of models

28

WHEN

� Time locators

� During time periods

� During "sliding time windows“ of fixed duration

� At particular instants

� Finite state automata and statecharts

� Time domains

� A single continuous time domain

� Optional, possibly multiple, discrete time domains
• Each such domain has its own clock
• Usually periodic, but could be quasi-periodic, intermittently periodic, multi-periodic or not periodic

at all

� Need to model time domain interfaces
• How an object in one time domain can perceive an event in another domain

time

Process
(continuous time)

Channel 1
(discrete

time)

Channel 2
(discrete

time)

Channel 3
(discrete

time)

Channel 4
(discrete

time)

duration

29

WHERE

� Specification of which parts or objects of the syst em are concerned with a property

� Sometimes, need to refer to objects not known indiv idually at requirements
specification time

� Notion of external set

class Component
external Boolean failed;
end Component;

external Component { } components;

Boolean tolerance =
card {e in components suchThat e.failed} ≤ 1;

external Boolean needed;
external Boolean active;

property prop4 = when not needed check not active;

requirement req4a =
during tolerance check not prop4.violated;

When there is no more than one failed
component, there shall be no spurious actuation

indicates component failure

all the components of the system

number of failed components

indicates when the system must be active
indicates whether the system is active or not

desirable property: no spurious actuation

This might not be
achievable

30

WHAT

� Specification of constraints to be satisfied or imp erative actions to be performed

� Constraints

� Boolean conditions

� Duration of Boolean conditions

� Events occurrences

� Elementary actions

� Checking of a constraint

� Assignment to a variable

� Raising of an event

� Control of the simulation

� Composite actions

� Sequential actions

� Parallel actions

� Iterative actions

� Conditional actions

31

WHAT - Example

Start DE

Wait for DE
Ready

Open MPS
Breaker

Wait for MPS
Breaker Open

Shed all Steps

Wait 1 s

Close DE
Breaker

Wait 5 s

Perform Reload
Sequence

when eMPSLoss then sequence
raise eStartDe;
wait eDeReady then raise eMpsBrkOpenCmd;
wait eMpsBrkOpen then raise eShedAllCmd;
simultaneous

wait 5*s then raise eReload:
wait 1*s then raise eDeBrkCloseCmd;
end;

end;

when MPS is lost

when eMPSLoss then sequence
within 100*ms check eStartDe;
within 5*s check eDeReady;
within 100*ms check eMpsBrkOpenCmd;
within 1*s check eMpsBrkOpen;
within 100*ms check eShedAllCmd;
simultaneous

wait 5*s then within 100*ms check eReload:
wait 1*s then within 100*ms check eDeBrkCloseCmd;
end;

end;

Constraints specification

Imperative actions (in a discrete time domain)

32

Models Correctness – 1/2

� Understandability and verifiability by application domain experts

� Modelling language with appropriate concepts, and clear textual / graphical syntax
• With support for natural language or diagramatic "boiler plates“

� Availability of suitable libraries (object templates, functions) and modelling patterns

� Simulation with adequate human interface to facilitate models understanding and
verification

� Modular organisation of complex models

� Separate verification of model modules

� Reuse of verified model modules

� Generic modelling patterns

� Modularity also facilitates models understanding and maintenance

� Static models analysis

� To detect intrinsic flaws (e.g., that a requirements model is too constrained and has no
solution, inconsistencies in the information flow, instrinsic incompleteness, ...)

� To identify aspects that need particular attention (complexity)

33

Models Correctness – 2/2

� "Debugging" means to help understand unexpected sim ulation results

� Taxonomy of errors that could lead to incorrect mod els or simulation results

� Transcription errors

� Forgetting to address certain situations

� Ignorance of situations that need to be addressed

� Inadequate treatment of certain situations

� Misunderstanding of certain modelling language / tool features

� Tools errors

� …

� Application of a rigorous modelling methodology add ressing each type of error

� Also, explicit justification in a structured assessment framework

� E.g., based on a Claim-Argument-Evidence (CAE) approach

34

Conclusion

� Massive behavioural simulation can be of great help

� And could ‘democratise’ expensive but useful techniques such as FMECA or STPA

� Work is on-going within the MODRIO project so that MODELICA infrastructures
provide a direct support for FORM-L

� Also support from FIGARO (probabilistic analyses) and StimuLus (test case generation)

� Work is also on-going to further facilitate the use of FORM-L

� Graphical FORM-L

� Boiler plate sentences and diagrams that appear as (any) natural language but that
represent well-formed FORM-L templates

� An ITEA3 project proposal is being prepared (SAFE-I NNOV)

� To better integrate behavioural modelling and simulation in systems engineering and
systems operation activities

� To address “systems of systems” and prospective analyses

35

