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The goal of this paper is the construction of measures μ on Rn

enjoying three conflicting but fortunately compatible properties:
(i) μ is a sum of weighted Dirac masses on a locally finite set,
(ii) the Fourier transform μ̂ of μ is also a sum of weighted Dirac masses
on a locally finite set, and (iii) μ is not a generalized Dirac comb. We
give surprisingly simple examples of such measures. These unex-
pected patterns strongly differ from quasicrystals, they provide us
with unusual Poisson’s formulas, and they might give us an uncon-
ventional insight into aperiodic order.

Poisson formula | spectrum | almost periodic

The Dirac mass at a∈Rn is denoted by δa or δaðxÞ. A purely
atomic measure is a linear combination μ=

P
λ∈ΛcðλÞδλ of

Dirac masses where the coefficients cðλÞ are real or complex
numbers and

P
jλj≤RjcðλÞj is finite for every R> 0. Then Λ is a

countable set of points of Rn. If Λ is closed and if cðλÞ≠ 0, ∀λ∈Λ,
then Λ is the support of μ. A subset Λ⊂Rn is locally finite if Λ∩B
is finite for every bounded set B. Equivalently Λ can be ordered
as a sequence fλj, j= 1,2, . . .g and

��λj�� tends to infinity with j. A
measure μ is a tempered distribution if it has a polynomial
growth at infinity in the sense given by Laurent Schwartz in ref. 1.
For instance, the measure

P∞
1 2

kδk is not a tempered distribution
whereas

P∞
1 k

3δk and
P∞

1 2
k½δðk+2−kÞ − δk� are tempered distribu-

tions. The Fourier transform Fðf Þ= f̂ of a function f is defined by
f̂ ðyÞ= R

Rnexpð−2π   ix · yÞf ðxÞdx. The distributional Fourier trans-
form μ̂ of μ is defined by the following condition: hμ̂,ϕi= hμ, ϕ̂i
shall hold for every test function ϕ belonging to the Schwartz
class SðRnÞ. The spectrum S of μ is the (closed) support of μ̂.

Definition 1: A purely atomic measure μ on Rn is a crystalline
measure if

i) the support Λ of μ is a locally finite set,
ii) μ is a tempered distribution, and
iii) the distributional Fourier transform μ̂ of μ is also a purely

atomic measure that is supported by a locally finite set S.

If μ is a crystalline measure, its Fourier transform is also a
crystalline measure.

Definition 2: A measure μ on R is odd if for every compactly
supported continuous function f we have

R
Sðf Þdμ=−

R
f   dμ, where

S  f ðxÞ= f ð−xÞ.
For every set E of real numbers, let E+ =E∩ fx> 0g and

E− =E∩ fx< 0g. Let us denote by Q the field of rational numbers.
Theorem 1 is proved in this article:

Theorem 1. There exists an odd crystalline measure μ on R such that
its support Λ and its spectrum S have the following properties:
(i) Each finite subset of Λ+ is linearly independent overQ and (ii) each
finite subset of S+ is linearly independent over Q.
The spectrum S of μ is an increasing sequence sk, k∈Z, of real

numbers such that (i) s−k =−sk, ∀k∈Z, and (ii) s1, s2, . . . , sN are
linearly independent over Q for each integer N. Theorem 1 im-
plies that

P∞
−∞bðkÞexpð2πiskxÞ is a sum of Dirac masses on a

locally finite set Λ. It is counterintuitive that these incoherent
waves bðkÞexpð2πiskxÞ can be piled up in harmony so that their
sum yields Dirac masses.
Theorem 1 is valid in any dimension as the following propo-

sition shows.

Theorem 2. There exists a crystalline measure μ on Rn such that

i) μ is odd in the last variable xn,
ii) the support Λ of μ is the union of Λ+ =Λ∩ fxn > 0g and

Λ− =Λ∩ fxn < 0g,
iii) each finite subset of Λ+ is linearly independent over Q and

similarly for Λ−,
iv) the spectrum S of μ is the union of S+ = S∩ fyn > 0g and

S− = S∩ fyn < 0g, and
v) each finite subset of S+ is linearly independent over Q and

similarly for S−.

This line of investigation began with the Riemann–Weil ex-
plicit formula in number theory (2). The Riemann–Weil explicit
formula can be written μ̂=ω+ σ, where μ is a series of Dirac
masses on the nontrivial zeros of the zeta function; σ is a series of
Dirac masses on logðpmÞ, p running over the set of prime num-
bers; m= 1,2, . . .; and ωðxÞ=−log π +ℜψð1=4+ ix=2Þ, ψ being
the logarithmic derivative of the Γ function. Moreover, an ex-
ponential decay is needed on the test function ϕ to give a
meaning to hω+ σ,ϕi. The Selberg trace formula has a similar
structure. Therefore, the measures μ studied by André Weil in
1952 (2) are not crystalline measures. André-Paul Guinand dis-
covered other summation formulas in 1959 (3). Guinand’s for-
mulas do not contain an integral term ω but are spoiled by a
derivative of the Dirac mass at 0. Using a completely distinct
approach, Nir Lev and Alexander Olevskii (4) proved the exis-
tence of crystalline measures μ that are not generalized Dirac
combs (Definition 2 below). This theorem could have been de-
duced from Guinand’s work, as is shown below. The Lev–Olevskii
measures do not have closed-form expressions. To analyze Lev–
Olevskii measures let us consider Rn as a vector space over
the field Q and let us denote by EQ the linear span of a set
E⊂Rn. If Λ is the support of a Lev–Olevskii measure μ, then ΛQ

is necessarily finite dimensional and the same is true for SQ,
where S is the spectrum of μ (Theorem 8). Mihalis Kolountzakis
improved on the Lev–Olevskii theorem in ref. 5. He built a
crystalline measure for which both the dimension of ΛQ and the
dimension of SQ are infinite. Kolountzakis’ theorem is also implicit
in Guinand’s work and the support of Kolountzakis’ measure
cannot be linearly independent over Q.

Significance

An important problem in harmonic analysis is solved in this
article: Is the Poisson summation formula unique or does it
belong to a wider class? The latter is true. The method that is
used to prove this statement is surprising. Our new Poisson’s
formulas were hidden inside an old and almost forgotten pa-
per published in 1959 by A. P. Guinand. The role of number
theory in this issue is fascinating.
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This article is organized as follows. Are crystalline measures
almost periodic? This is answered in Almost Periodic Measures.
In Guinand’s Distribution Guinand’s seminal work is described
and used to prove Lev–Olevskii’s theorem and Kolountzakis’
theorem. In Proof of Theorem 1, Theorem 1 is proved by an ap-
proach that extends and completes Guinand’s work. A second
proof of Kolountzakis’ theorem is given in Kolountzakis’ Theorem.
In The Crystalline Measures of Lev and Olevskii the proof of the
Lev–Olevskii theorem is sketched. The Geometry of Crystalline
Measures is devoted to open problems.
Let Γ⊂Rn be a lattice. The distributional Fourier transform of

the Dirac comb μ= volðΓÞPγ∈Γδγ is the Dirac comb
P

y∈Γpδy on
the dual lattice Γp. We have

volðΓÞ
X
γ∈Γ

f ðγÞ=
X
y∈Γp

f̂ ðyÞ. [1]

Poisson’s formula [1] is valid for at least all test functions f
belonging to the Schwartz class SðRnÞ. In fact [1] is valid for a
much larger class of functions (6, 7). A corollary of Poisson’s
formula that is used in the proof of Theorem 5 is the following:

Lemma 1. For every α, β∈Rn and f ∈SðRnÞ we have

volðΓÞ
X
γ∈Γ+α

e2πiβ·γ f̂ ðγÞ= e2πiα·β
X

y∈Γp+β

e−2πiα·yf ðyÞ.

Definition 3: Let σj be a Dirac comb supported by a coset xj +Γj
of a lattice Γj ⊂Rn, 1≤ j≤N. Let Fj ⊂Rn be a finite set and
gjðxÞ=

P
y∈Fj

cjðyÞexpð2πiy · xÞ be a trigonometric sum. Let μj = gjσj.
Then μ= μ1 +⋯+ μN will be called a generalized Dirac comb.
The Fourier transform of a generalized Dirac comb is a gen-

eralized Dirac comb. Therefore, a generalized Dirac comb is a
crystalline measure. When Λ is the support of a generalized
Dirac comb μ, the dimension of ΛQ is finite. The same property
holds for the spectrum of μ. The crystalline measures of Theorem
1 strongly differ from generalized Dirac combs.
Let μ be a crystalline measure. We then have μ=

P
λ∈ΛaðλÞδλ

and μ̂=
P

y∈SbðyÞδy, where ðaðλÞÞλ∈Λ and ðbðyÞÞy∈S satisfy

aðλÞ≠ 0, λ∈Λ, bðyÞ≠ 0, y∈ S, [2]

and Λ, S are two locally finite sets. Then for every test function
f ∈SðRnÞ the following generalized Poisson’s formula holds:

X
λ∈Λ

aðλÞf̂ ðλÞ=
X
y∈S

bðyÞf ðyÞ. [3]

It implies
X
λ∈Λ

aðλÞf̂ ðλÞexpð2πiλ · xÞ=
X
y∈S

bðyÞf ðx+ yÞ.

With the terminology of signal processing, sampling f̂ on Λ yields
an alias ~f ðxÞ=P

y∈SbðyÞf ðx+ yÞ of the function f .
A locally finite set Λ is uniformly discrete if

inf
fλ, λ′∈Λ;   λ≠λ′g

jλ− λ′j= β> 0. [4]

Lev and Olevskii (8, 9) proved the following:

Theorem 3. In one dimension if both the support Λ of a crystalline
measure μ and the support S of its Fourier transform are uniformly
discrete sets, then μ is a generalized Dirac comb.
In ref. 9 Lev and Olevskii answered a problem raised by

Jeffrey Lagarias in ref. 10. They proved Theorem 2 in dimension

n≥ 2 under the assumption that the measure μ is nonnegative.
The problem is still open in the general case of a complex
measure μ.

Almost Periodic Measures
Let μ be a crystalline measure. We have

X
λ∈Λ

aðλÞδλðxÞ=
X
y∈S

bðyÞexpð2πix · yÞ. [5]

This raises the following issue: Is the right-hand side of [5] an
almost periodic measure?
A complex valued continuous function f defined on Rn is al-

most periodic in the sense of Bohr if for every positive e one
can find a finite subset F ⊂Rn and a trigonometric sum gðxÞ=P

y∈FaðyÞexpð2πix · yÞ such that kf−gk∞ = supx∈Rn jf ðxÞ− gðxÞj≤ e.
Laurent Schwartz defined almost periodic distributions as
follows (1):

Definition 4: A tempered distribution S∈S′ðRnÞ is an almost
periodic distribution if for every test function ϕ∈SðRnÞ the
convolution product S⋆ϕ is an almost periodic function in the
sense of Bohr.
This is less demanding than the definition of an almost peri-

odic measure.
Definition 5: A Borel measure μ on Rn is an almost periodic

measure if for every compactly supported continuous function ϕ
the convolution product μ⋆ϕ is an almost periodic function in the
sense of Bohr.
A generalized Dirac comb is an almost periodic measure.

Lemma 2. Every crystalline measure μ is an almost periodic
distribution.
Indeed gðxÞ= μ⋆ϕðxÞ=P

y∈SbðyÞϕ̂ðyÞexpð2πix · yÞ is a finite
trigonometric sum if ϕ∈SðRnÞ has a compactly supported
Fourier transform. Such test functions ϕ are dense in the
Schwartz class that implies Lemma 2.
Surprisingly most crystalline measures are not almost periodic

measures (Theorems 4 and 5). Are crystalline measures connected
with quasicrystals? Today we know that model sets defined by
the cut and projection scheme are modeling quasicrystals (11,
12). If Λ is a model set, the measure σΛ =

P
λ∈Λδλ is never a

crystalline measure. Indeed σΛ is not even an almost periodic
distribution. It is a generalized almost periodic measure (13). It
means that for every e> 0, one can find two almost periodic
measures μe and νe such that μe ≤ σ ≤ νe and Mðνe − μeÞ≤ e,
where MðμÞ= limT→∞ðjμjð½−T,T�Þ=2TÞ.

Definition 6: Let us denote by P the Banach space of all Borel
measures μ such that

i) μ is an almost periodic measure, and
ii) the distributional Fourier transform of μ is also an almost

periodic measure.

The norm in the Banach space P is

kμkP = sup
x∈Rn

jμjðx+UÞ+ sup
ξ∈Rn

jμ̂jðξ+UÞ, [6]

where U is the unit ball. Every μ∈P is a purely atomic measure
and its Fourier transform μ̂ is also a purely atomic measure.
We do not know whether there exists a crystalline measureP
λ∈ΛcðλÞδλ carried by a model set Λ. In ref. 12 we constructed

some almost periodic measures μ that are supported by model
sets (see proof of Theorem 8). They belong to P but they are not
crystalline measures. In the construction of μ a test function ϕ
supported by a compact set (the window of the model set) is
being used. But the Fourier transform ϕ̂ of this function ϕ cannot
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be compactly supported, which implies that the support of μ̂ is
dense in Rn.

Guinand’s Distribution
By Legendre’s theorem, an integer n≥ 0 can be written as a sum
of three squares (02 being admitted) if and only if n is not of the
form 4jð8k+ 7Þ. For instance, 0, 1, 2, 3, 4, 5, 6 are sums of three
squares but 7 is not. Let r3ðnÞ be the number of decompositions
of the integer n≥ 1 into a sum of three squares [with r3ðnÞ= 0 if
n is not a sum of three squares]. More precisely r3ðnÞ is the num-
ber of points k∈Z3 such that jkj2 = n. We have r3ð4nÞ= r3ðnÞ,
∀n∈N,  r3ð0Þ= 1,  r3ð1Þ= 6,  r3ð2Þ= 12, . . .. Then r3ð2jÞ= 6 if j is
even and 12 if j is odd. The behavior of r3ðnÞ as n→∞ is erratic.
The mean behavior is more regular because (14)

X
0≤n≤x

r3ðnÞ= 4
3
πx3=2 +O

�
x3=4+e

�

holds for every positive e. Guinand began his seminal work (3)
with Lemma 3:

Lemma 3. For all x> 0 we have

1+
X∞
1

r3ðnÞexpð−πnxÞ= x−3=2 + x−3=2
X∞
1

r3ðnÞexpð−πn=xÞ. [7]

The functional equation satisfied by the Jacobi theta function

X∞
−∞

exp
�
−πk2x

�
= x−1=2

X∞
−∞

exp
�
−πk2

�
x
�

[8]

raised to the cubic power yields [7].
Let fxðtÞ= t  expð−πxt2Þ,  t∈R,  x> 0. Then fx is odd and its

Fourier transform is f̂ xðyÞ=−i  x−3=2y  expð−πy2=xÞ. Now [7] can
be written

dfx
dt

ð0Þ+
X∞
1

r3ðnÞn−1=2fx
� ffiffiffi

n
p �

= i
df̂ x
dt

ð0Þ+ i
X∞
1

r3ðnÞn−1=2 f̂ x
� ffiffiffi

n
p �

.

[9]

Guinand introduced the odd distribution

σ =−2
d
dt
δ0 +

X∞
1

r3ðnÞn−1=2
�
δ ffiffi

n
p − δ− ffiffi

n
p �

, [10]

which will be named Guinand’s distribution. We havePN
0 r3ðnÞn−1=2 ∼ 2πN,  N→∞, which implies that σ is a tempered

distribution. Guinand proved the following:

Lemma 4. The distributional Fourier transform of σ is −iσ.
We need to prove hσ, ϕ̂i=−ihσ,ϕi for every test function ϕ.

But [9] can be written as hσ, fxi= ihσ, f̂ xi or hσ, fxi= ihσ̂, fxi. The
collection of odd functions fx,   x> 0, is total in the subspace of
odd functions of the Schwartz class. For even functions ϕ the
identity hσ, ϕ̂i=−ihσ,ϕi is trivial because σ is odd and hσ, ϕ̂i=
−ihσ,ϕi= 0. Lemma 4 is proved.
A variant on Guinand’s distribution σ is the measure ~σ =

−4πt+
P∞

1 r3ðnÞn−1=2ðδ ffiffi
n

p − δ− ffiffi
n

p Þ. Because Fððd=dtÞδ0 − 2πtÞ=
−iððd=dtÞδ0 − 2πtÞ, we also have

Fð~σÞ=−i~σ.

We now move one small step beyond Guinand’s work and
prove both Kolountzakis’ theorem and Lev–Olevskii’s theorem.
Let α∈ ð0,1Þ and set

ταðtÞ=
�
α2 +

1
α

�
σðtÞ− ασðαtÞ− σðt=αÞ. [11]

Then the derivative of the Dirac mass at 0 disappears from this
linear combination. On the Fourier transform side

τ̂αðyÞ=
�
α2 +

1
α

�
σ̂ðyÞ− σ̂ðy=αÞ− ασ̂ðαyÞ=−iτα.

Fix α= 1=2 in the preceding construction, let τ= τ1=2, and de-
fine χðnÞ=−1=2 if n∈N∖4 N,     χðnÞ= 4 if n∈ 4 N∖16 N, and
χðnÞ= 0 if n∈ 16 N. Then we have the following:

Theorem 4. The Fourier transform of the measure

τ=
X∞
1

χðnÞr3ðnÞn−1=2
	
δ ffiffi

n
p

=2 − δ− ffiffi
n

p
=2



[12]

is −iτ.
Another proof of Theorem 4 is given in the next section. Let us

observe that
PN

1 r3ðnÞn−1=2 = 2πN +OðN1=2Þ,    N→∞, whereas we
have

���PN
1 χðnÞr3ðnÞn−1=2

���=OðN1=2Þ. If χ was erased from [12],

τ would no longer be a crystalline measure. The cancellations
provided by χ are playing a key role.
The support Λ of τ is the set of ±

ffiffiffi
n

p
=2,  n∈E, where E⊂N is

defined by the two conditions r3ðnÞ≠ 0,     χðnÞ≠ 0. It amounts to
n≠ 4jð8k+ 7Þ,     j= 0,1, and n∉ 16N. There are infinitely many
primes p that are not congruent to 7 modulo 8 and the square
roots of these primes are linearly independent over Q. There-
fore, the dimension of the span over Q of the support of τ is
infinite, which yields Kolountzakis’ theorem. The positive half of
the support of τ is not linearly independent over Q. Theorem 4
does not imply Theorem 1. The measure τ is not an almost pe-
riodic measure. Indeed jτjð½x, x+ 1�Þ→∞,   x→∞. It is, however,
an almost periodic distribution.
Here is our second example. Let us observe that for every

function f the Fourier transform of cosðπxÞ½f ðx− 1=2Þ− f ðx+ 1=2Þ�
is i  cosðπyÞ½̂f ðy− 1=2Þ− f̂ ðy+ 1=2Þ�. This simple observation leads
to a variant on the measure τ of Theorem 4. Let σ be the Guinand
distribution and consider the measure ρ= cosðπxÞ½σðx− 1=2Þ−
σðx+ 1=2Þ�. The derivative of the Dirac mass at 0 is moved to 1=2
or −1=2 and then transformed into Dirac masses after being
multiplied by cosðπxÞ. On the Fourier transform side the derivative
of the Dirac mass at 0 is transformed into a Dirac mass after
multiplication by sinðπyÞ and then the resulting measure is trans-
lated by ±1=2. Finally the Fourier transform of ρ is ρ. We have ρ=

2πδ1=2 + 2πδ−1=2 +
X∞
1

sin
�
π

ffiffiffi
n

p �
r3ðnÞn−1=2

×
	
δð ffiffi

n
p

+1=2Þ + δð ffiffi
n

p
−1=2Þ + δð− ffiffi

n
p

+1=2Þ + δð− ffiffi
n

p
−1=2Þ



.

One is tempted to replace 1=2 by 0 in the definition of ρ. But
~ρ= 2πδ0 +

P∞
1 sinðπ

ffiffiffi
n

p Þr3ðnÞn−1=2ðδ ffiffi
n

p + δ− ffiffi
n

p Þ is not a crystalline
measure: A derivative of the Dirac mass at ±1=2 peeps out from
the Fourier transform of ~ρ.
Here is another variant on Guinand’s construction. Let

χðkÞ= 0 if k∈ 4Z,     χðkÞ= 2 if k∈ 4Z+ 2, and χðkÞ=−1 if
k∈ 4Z± 1. Then the Fourier transform of σ =

P∞
−∞χðkÞδk=2 is σ.

Following Guinand’s approach, it implies
P∞

∞χðkÞexpð−πðk2=4ÞxÞ=
ð1= ffiffi

x
p ÞP∞

−∞χðkÞexpð−πðk2=4xÞÞ for x> 0. This identity is now
raised to the third power. We obtain

P∞
1 ρ3ðnÞexpð−πðn=4ÞxÞ=

ð1=x3=2ÞP∞
1 ρ3ðnÞexpð−πðn=4xÞÞ, where
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ρ3ðnÞ=
X

k21+k
2
2+k

2
3=n

χðk1Þχðk2Þχðk3Þ.

Finally we consider the odd measure

θ=
X∞
1

ρ3ðnÞffiffiffi
n

p
	
δ ffiffi

n
p

=2 − δ− ffiffi
n

p
=2




and conclude that the Fourier transform of θ is −iθ. In this
construction we did not face the issue of a derivative of the Dirac
mass at the origin. This issue was solved by the cancellation
provided by χ. This measure θ is distinct from the measure τ of
Theorem 4.
Kolountzakis’ theorem holds in any dimension. The tensor

product μ= μ1 ⊗ μ2 ⊗⋯⊗ μn between n copies of the measure of
Theorem 3 is a crystalline measure with the required properties.
The obvious identity

X∞
1

r3ðnÞn−1=2
	
δ ffiffi

n
p − δ− ffiffi

n
p



=

X
k∈Z3, k≠0

1
jkj

�
δjkj − δ−jkj

�

paves the road to the examples of the next section.

Proof of Theorem 1
The proof of Theorem 1 is based on Theorem 5:

Theorem 5. Let α= ðα1, α2, α3Þ∉Z3 and β= ðβ1, β2, β3Þ∉Z3. Then
the distributional Fourier transform of the measure

σðα, βÞ =
X
k∈Z3

expð2πik · βÞ
jk+ αj

�
δjk+αj − δ−jk+αj

�

is

F�
σðα, βÞ

�
=−i  expð−2πiα · βÞσðβ,−αÞ.

The proof of Theorem 5 is postponed to make room for a few
comments and for the proof of Theorem 1. Let us observe that
σðα, βÞ is an odd measure. We have σðα, βÞ = σð−α,−βÞ and σðα,−βÞ =
σðα, βÞ. Moreover σðα, βÞ is Z3 periodic in β and expð2πiα · βÞσðα, βÞ is
Z3 periodic in α. What happens if β= 0? The Fourier transform
of the measure

σðα, 0Þ =
X
k∈Z3

1
jk+ αj

�
δjk+αj − δ−jk+αj

�

is not a measure and the cancellations that are introduced in
σðα, βÞ by the phase factor expð2πik · βÞ are playing a seminal role.
If 1, β1, β2, β3 are linearly independent over Q, then for k≠ l,
k, l∈Z3,     jk+ βj≠ jl+ βj. It implies

R x+1
x d

��σðα, βÞ��ðtÞ ’ x, x→∞,
and this estimate is optimal. Therefore, σðα, βÞ is a tempered
measure that is not an almost periodic measure. The fourth con-
struction will yield an almost periodic crystalline measure.
The support of σðα, βÞ is the set Λ= f±jk+ αj; k∈Z3g. Then

every finite subset of Λ∩ ð0,∞Þ is linearly independent over Q for
every α in a residual set in the sense of Baire’s category. Similarly
let S denote the spectrum of σðα, βÞ. Then every finite subset of
S∩ ð0,∞Þ is linearly independent over Q for every β in a residual
set. Theorem 5 and these two observations imply Theorem 1.
Lemma 5 shows that an odd crystalline measure μ=

P
λ∈ΛaðλÞδλ

whose spectrum S is linearly independent over Q cannot be an
almost periodic measure.

Lemma 5. With the preceding notations let us assume that μ is an
odd crystalline measure and that S∩ ð0,∞Þ is Q‐linearly indepen-
dent. Then μ is not an almost periodic measure.

We argue by contradiction and suppose that for every com-
pactly supported continuous function ϕ the convolution product
f ðxÞ= μ⋆ϕ=

P
λ∈ΛaðλÞϕðx− λÞ is an almost periodic function in

the sense of Bohr. We are assuming now that ϕ is even, is real
valued, is supported by a small interval ½−η, η� (specified below),
and does not belong to the Wiener algebra AðRÞ. The
Wiener algebra (15) is the algebra consisting of Fourier
transforms of functions in L1ðRÞ. Using [5] we have f ðxÞ=P

s∈SbðsÞϕ̂ðsÞexpð2πisxÞ. Let zs ∈C be any sequence of ±i such
that z−s = zs, s∈ S. Then there exists a sequence xk tending to in-
finity such that expð2πixksÞ→ zs, s∈ S, as k tends to infinity. This
implies f ðxkÞ→

P
s∈SzsbðsÞϕ̂ðsÞ and

���Ps∈S,  s>0bðsÞϕ̂ðsÞðzs − zsÞ
���≤

kfk∞. By an appropriate choice of zs =±i, s∈ S, we obtainP
s∈S,s>0

��bðsÞϕ̂ðsÞ��≤ 2kfk∞. Therefore, f ðxÞ locally belongs to the
Wiener algebra. It means that f   g∈AðRÞ for every compactly
supported test function g. If aðλ0Þ≠ 0 and if the support of the
continuous function ϕ is contained in ½−η, η� where η is small
enough, then f ðxÞ coincides with aðλ0Þϕðx− λ0Þ on ½λ0 − η, λ0 + η�.
This implies that ϕ belongs to the Wiener algebra. We reach
a contradiction.
Returning to Theorem 5 it is interesting to let α and β tend to

0. Then the limit σð0,0Þ of σðα, βÞ is the Guinand distribution

−2
d
dt
δ0 +

X
k∈Z3; k≠0

1
jkj

�
δjkj − δ−jkj

�
.

Therefore, Theorem 5 gives another proof of Lemma 4: The
Fourier transform of the Guinand distribution σð0,0Þ is −iσð0,0Þ.
Are there n-dimensional crystalline measures that are not

constructed as a tensor product between one-dimensional
crystalline measures? Here is the answer. Let Γ⊂Rn−1 ×R3 be
an oblique lattice. It means that the two coordinate maps
p1 :Rn−1 ×R3↦Rn−1,     p2 :Rn−1 ×R3↦R3, once restricted to Γ,
are injective with a dense range. Let Γp be the dual lattice and
let us assume that volðΓÞ= 1. Then we have the following:

Theorem 6. Let α∉Γ and β∉Γp. Then the atomic measure σ½α, β�Γ
defined on Rn =Rn−1 ×R1 by

X
γ∈Γ+α

expð2πiβ · γÞ
jp2ðγÞj

�
δðp1ðγÞ, jp2ðγÞjÞ − δðp1ðγÞ,−jp2ðγÞjÞ

�

is crystalline and its Fourier transform is

F
	
σ½α, β�Γ



=−i  expð2πiα · βÞ  σ½β,−α�Γ p .

We return to the proof of Theorem 5. Theorem 5 is a corollary
of a more general statement:

Theorem 7. Let μ be a crystalline measure on R3. We then have
μ=

P
λ∈ΛaðλÞδλ and μ̂=

P
y∈SbðyÞδy. Let us assume that 0∉Λ,

0∉ S, and consider the one-dimensional measure

σΛ =
X
λ∈Λ

aðλÞ
jλj

�
δjλj − δ−jλj

�
. [13]

Then σΛ is a crystalline measure and the distributional Fourier
transform of σΛ is −iσS, where σS =

P
y∈SðbðyÞ=jyjÞðδjyj − δ−jyjÞ.

We prove Theorem 7. The measures σΛ and σS are odd. To
check the identity �

σΛ, ϕ̂
�
=−ihσS,ϕi [14]

for every test function ϕ it suffices to do it for every odd ϕ. Let
ω= ϕ̂ be the 1D Fourier transform of ϕ. Then ω is also an odd
function in the Schwartz class SðRÞ and the left-hand side of [14] is
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sðωÞ= 2
X
λ∈Λ

aðλÞωðjλjÞjλj . [15]

We introduce the radial function ΦðxÞ=ωðjxjÞ=jxj, which belongs
to SðR3Þ. Then

sðωÞ= 2
X
λ∈Λ

aðλÞΦðλÞ. [16]

We have for every test function F

X
λ∈Λ

aðλÞF̂ðλÞ= �
μ, F̂

�
= hμ̂,Fi=

X
y∈S

bðyÞFðyÞ. [17]

Lemma 6. The 3D Fourier transform of the radial function FðyÞ=
−iϕðjyjÞ=jyj is F̂ðxÞ=ΦðxÞ.
Indeed the 3D Fourier transform F̂ of a radial function

F ∈L1ðR3Þ is given by

F̂ðxÞ= 4π
Z∞

0

FðrÞ sinð2πjxjrÞ
2πjxjr r2   dr. [18]

We apply this to FðyÞ=−iðϕðjyjÞ=jyjÞ. Then we are left with
F̂ðxÞ= ð−2i=jxjÞ R∞

0 ϕðrÞsinð2πjxjrÞdr. Because ϕ is an odd func-
tion in SðRÞ, this integral is the 1D Fourier transform of ϕ, which
is precisely ω. We have proved the identity

−iF
�
ϕðj·jÞ
j·j

�
=
ωðj·jÞ
j·j , [19]

which is Lemma 6.
Then [16], [17], and Lemma 6 yield

sðωÞ=−2i
X
y∈S

bðyÞϕðjyjÞjyj .

This is −ihσS,ϕi, which ends the proof.
Theorem 5 is a corollary of Theorem 7. Indeed by Lemma 1

the Fourier transform of
P

k∈Z3expð2πik · βÞδk+α is expð−2πiβ · αÞP
k∈Z3expð−2πik · αÞδk+β.
This gives a new proof of Theorem 4. One starts with

~χ :Z3↦f−1=2, 0,4g defined by ~χðkÞ= 0 if k∈ 4Z3, ~χðkÞ= 4 if
k∈ 2Z3∖4Z3, and ~χðkÞ=−1=2 if k∈Z3∖2Z3. Then the 3D Fourier
transform of μ=

P
k∈Z3~χðkÞδk=2 is identical to μ. It suffices to use

Theorem 7 to conclude.
Theorem 5 will be proved if we can show that

sðϕÞ=
D
σ½α, β�Γ , ϕ̂

E
=−i  expð2πiα · βÞ

D
σ½β,−α�Γ* ,ϕ

E
[20]

holds for every test function ϕ=ϕðu, vÞ,   u∈Rn−1, v∈R. It suf-
fices to do it when ϕðu, vÞ=ϕ1ðuÞϕ2ðvÞ because this collection is
total in the space of test functions. The measures σ½α, β�Γ and σ½β,−α�Γp
are odd in the second variable v and we can restrict the proof of
[20] to odd test functions ϕ2. We apply the ordinary Poisson
formula to the coset Γp+ β of the lattice Γp and to the func-
tion FðxÞ= expð2πix · βÞϕ1ðx1Þðϕ2ðjx2jÞ=jx2jÞ, where x= ðx1, x2Þ,
x1 ∈Rn−1, x2 ∈R3. Then the proof of [20] is identical to the proof
of Theorem 4.
We now return to Theorem 2. Let Λ be the support of σ½α, β�Γ . For

almost every α the set Λ∩ fxn > 0g= fðp1ðγÞ, jp2ðγ + αÞjÞ;   γ ∈Γg is
linearly independent over Q and the same holds for the spec-
trum of σ½α, β�Γ . This ends the proof.

Kolountzakis’ Theorem
The construction that is detailed below was discovered in-
dependently by the author and by Kolountzakis (5). It is nothing
but the 2-adic analog of the approach by Lev and Olevskii in (4).
The crystalline measure σ is given by a series

σ =
X∞
0

ejσj, [21]

where

i) The atomic measure σj is 2j periodic and its support is con-
tained in Mj = 2−j−1 +Λj, where Λj = 2−jZ∖½−2j−3, 2j−3�. More
precisely, this support is the union ∪k∈Zð2−jZ∩ IkÞ, where Ik
is the interval centered at 2−j−1 + ðk+ 1=2Þ2j with length 2j−2.

ii) The support of the Fourier transform σ̂j of σj is contained in Λj.
iii) The choice of ej > 0 ensures the convergence of the series

σ =
P∞

0 ej


σj

P.

Let us observe that the sets Mj,   j≥ 0, are pairwise disjoint in
such a way that σ is not a generalized Dirac comb. Moreover,
∪∞
0 Mj is a locally finite set. The support Λ of σ is contained inQ. In

ref. 5 Kolountzakis used another construction of σ for which the
dimension of the linear span of Λ over the field Q is infinite.
How does one construct these σj? It suffices to use Lemma 7:

Lemma 7. Let α∈ ð0, 1=6Þ. For every integer N ≥Nα there exists an
N-periodic atomic measure σ = σN that is a sum of Dirac masses on
ΛN =N−1Z∖½−αN, αN� and whose Fourier transform is also sup-
ported by ΛN. Moreover, the support of σ is ~ΛN =∪k∈ZIk, where Ik is
the interval centered at ðk+ 1=2ÞN with length ð1− 2αÞN.
Let us prove Lemma 7. If σ is N periodic, we have

σ = τ ⋆ ν, [22]

where ν is the Dirac comb
P

k∈ZδkN and

τ=
XN2−1

0

ckδk=N .

It implies

σ̂ =N−1
X
m∈Z

PðmÞδm=N [23]

with

PðyÞ=
XN2−1

0

ck   exp
�
−2πikyN−2�. [24]

Finally N-periodic measures on N−1Z are in a 1−1 corre-
spondence with trigonometric polynomials given by [24]. We now
use Lemma 8:

Lemma 8. Let M ∈N,  M ≥ 2, and let E,F ⊂Z=MZ be two sets of
cardinality jEj, jFj. If jEj+ jFj<M, there exists a nontrivial trigo-
nometric polynomial

PðyÞ=
XM−1

0

ck   expð2πiky=MÞ [25]

such that

ck = 0,     k∈E,     PðyÞ= 0,   y∈F. [26]

Moreover, if E and F are two intervals and jEj+ 2jFj<M, we can
impose ck ≠ 0 for every k∉E.
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A simple dimension-counting argument implies the first
statement. The proof of the second statement runs by contra-
diction. Assuming that the linear space G defined by [26] does
not intersect the open set defined by ck ≠ 0,   ∀k∉E, it implies
that for some k0 ∉E the linear space G is contained in the hy-
perplane defined by ck0 = 0. By linear algebra it implies that co-
efficients ak,   k∈E, bl, l∈F, exist such that for every trigonometric
polynomial PðyÞ=PM−1

0 ck   expð2πiky=MÞ we have

ck0 =
X
k∈E

akck +
X
l∈F

blPðlÞ. [27]

It implies
X
l∈F

bl   expð2πik0l=MÞ= 1 [28]

X
l∈F

bl   expð2πikl=MÞ= 0, k∈
�
E∪ fk0g

�c
. [29]

Because M > jEj+ 2jFj, the set ðE∪ fk0gÞc contains an interval J
of length equal to jFj and the matrix

ððexpð2πikl=MÞÞÞk∈J,l∈F
is an invertible Vandermonde matrix. Therefore, [29] implies
bl = 0,   ∀l∈F, which contradicts [28].
We now conclude the proof of Lemma 7. Our first demand is that

σ be an N-periodic measure carried by N−1Z∖ðNZ+ ½−αN, αN�Þ.
The restriction of this measure σ to ½0,NÞ is τN =

P
k∈TN

cðk,NÞδkN−1,
where TN =Z∩ ðαN2, ð1− αÞN2Þ. Then [23] yields

σ̂ =N−1
X∞
−∞

PðlÞδlN−1 , [30]

where

PðyÞ= τ̂NðyÞ=
X
k∈TN

cðk,NÞexp�−2πikN−2y
�
. [31]

We have ð1− 2αÞN2 − 1≤ jTN j≤ ð1− 2αÞN2 + 1. Lemma 8 with
EN = ½0,N2 − 1�∖TN and FN = ð½0, αN2�∪ ½ð1− αÞN2,N2�Þ∩Z yields
nontrivial coefficients cðk, jÞ such that PjðlÞ= 0 when jlj≤ αN2,
which ends the proof. It works if jEN j+ 2jFN j<N2, which reads
α< 1=6. We set α= 1=8 in the construction of σj.

The Crystalline Measures of Lev and Olevskii
Let Γ⊂Rn ×R be an oblique lattice. As introduced earlier it
means that the two projections p1 :Rn ×R↦Rn,   p2 :Rn ×R↦R,
once restricted to Γ, are injective with a dense range. Let
I = ½−a, a�. The model set ΛI is defined by the standard cut and
projection scheme (11, 13, 16). Then

ΛI = fλ= p1ðγÞ; γ ∈Γ, p2ðγÞ∈ Ig. [32]

Let 0< h1 < h2 < . . . be an increasing sequence of positive
numbers tending to infinity. We set I1 = ½−h1, h1�⊂ I2 =
½−h2, h2�⊂ . . . and we have ∪∞

1 Ik =R. The corresponding se-
quence of model sets is Λk,   k∈N. We have

Λ1 ⊂Λ2 ⊂ . . . ⊂Λk ⊂ . . . [33]

and ∪∞
1 Λk = p1ðΓÞ is dense in Rn.

Enriched model sets are defined by Lev and Olevskii as
follows:

Definition 7: Let a0 = 0< a1 < a2 < . . . be an increasing sequence
of positive numbers tending to infinity. An enriched model set is
defined by

~Λ= ∪∞
1
~Λk, [34]

where

~Λk = fλ∈Λk; jλj≥ ak−1g. [35]

Lemma 9. Let E= fk+m
ffiffiffi
2

p
; ðk,mÞ∈N2g. Then Λ=E∪ ð−EÞ is an

enriched model set.
For proving Lemma 9 it suffices to use Definition 7 with

Γ=
n	

k+m
ffiffiffi
2

p
, k−m

ffiffiffi
2

p 

; k,m∈Z

o
, hk = ak = k.

An enriched model set is locally finite. A model set is never an
enriched model set. The density of a model set is finite whereas
the density of an enriched model set is infinite. Lev and Olevskii
proved the following:

Theorem 8. Every enriched model set ~Λ contains the support of a
measure μ such that

i) μ is not a generalized Dirac comb, and
ii) the Fourier transform μ̂ of μ is also supported by an enriched

model set S.

Let us sketch the construction of this measure μ.
We have R2 =A∪B,   A∩B=Ø, where

A= ∪∞
1
fðx, yÞ; jxj≥ an−1, jyj≤ hng [36]

B= ∪∞
1
fðx, yÞ; jxj< an, jyj> hng. [37]

A similar partition into Ap and Bp is provided by two other
sequences apn,   hn

*,   n∈N. The three sequences an, hn, a*n,   n∈N,
are arbitrary but the last one hpn is the result of a subtle induction.
The enriched model set defined by A is

Λ= fp1ðγÞ; γ ∈Γ∩Ag. [38]

Similarly

Q= fp2ðγÞ; γ ∈Γ∩Bg [39]

S=
n
p*1ðγpÞ; γp ∈Γp ∩   Ap

o
[40]

Z=
n
p*1ðγpÞ; γp ∈Γp ∩   Bp

o
. [41]

Lemma 10 is seminal in the proof.

Lemma 10. There exist a sequence hpn and a nontrivial function
ϕ∈SðRÞ such that

ϕ= 0  on  Z,   ϕ̂= 0  on Q. [42]

Then μ is defined by

μ=
X

ðx, yÞ∈Γ
ϕ̂ðyÞδx =

X
ðx, yÞ∈Γ∩A

ϕ̂ðyÞδx =
X
λ∈Λ

ϕ̂
�
λ
�
δλ [43]

with ðλ, λÞ∈Γ. It implies
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μ̂=
X

ðu, vÞ∈Γp
ϕðvÞδu =

X
ðu, vÞ∈Γp∩Ap

ϕðvÞδu =
X
u∈S

ϕðuÞδu. [44]

Theorem 9. If ϕ is defined by Lemma 10, then the measure μ defined
by [43] is carried by the locally finite set Λ defined in [38] and its
Fourier transform μ̂ is carried by the locally finite set S defined by [40].
These properties follow from the construction of μ and the

reader is referred to ref. 4 for the proof of Lemma 10. Our fourth
approach was inspired by this construction.

The Geometry of Crystalline Measures
The structure of crystalline measures is still unclear. Some crys-
talline measures are almost periodic measures and others are
not. What can be said about the geometrical properties of the
support of a crystalline measure? Let us denote by L the col-
lection of these supports. Is it possible to characterize this col-
lection L by additive properties? On the one hand there exists a
locally finite set T ⊂ ð0,∞Þ that is linearly independent over Q

and such that Λ=T ∪ ð−TÞ∈L. This is Theorem 1. But there are
infinitely many locally finite sets T ⊂ ð0,∞Þ that are linearly in-
dependent over Q and such that Λ=T ∪ ð−TÞ∉L. On the
other hand Λ=Z belongs to L. Sitting in between, the support

of the crystalline measure discovered by Kolountzakis is con-
tained in Q.
Do there exist uniformly discrete sets Λ∈L? A trivial answer

is given by Dirac combs. Are there other examples? Theorem 3
implies that in one dimension the spectrum of such a measure μ
cannot be a uniformly discrete set.
Moving a single point in a set Λ∈L can be destructive as the

following example shows. We start from Z and move 0 to 1=2.
Then the resulting set does not belong to L.
Lemma 11. The set Λ= f1=2g∪Z∖f0g does not belong to L.
We argue by contradiction. If Λwas the support of a crystalline

measure μ, we would have μ̂ðyÞ= c  expðπiyÞ+FðyÞ, where FðyÞ
is 1 periodic and c is a constant. Therefore, μ̂ðy+ 1Þ− μ̂ðyÞ=
−2c expðπiyÞ would coincide with a purely atomic measure. It
implies c= 0, μðf1=2gÞ= 0, and Λ is not the support of μ. Let us
observe that Z∖f0g belongs to L. Indeed if σ is the Dirac comb on
Z, we set μ=Pσ,PðxÞ= sinð2π ffiffiffi

2
p

xÞ. Then μ is a generalized Dirac
comb whose support is Z∖f0g.
Excepting Dirac combs, do there exist nonnegative crystalline

measures?
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