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The goal of this paper is the construction of measures y on R"
enjoying three conflicting but fortunately compatible properties:
(i) u is a sum of weighted Dirac masses on a locally finite set,
(ii) the Fourier transform j of p is also a sum of weighted Dirac masses
on a locally finite set, and (iii) u is not a generalized Dirac comb. We
give surprisingly simple examples of such measures. These unex-
pected patterns strongly differ from quasicrystals, they provide us
with unusual Poisson’s formulas, and they might give us an uncon-
ventional insight into aperiodic order.

Poisson formula | spectrum | almost periodic

he Dirac mass at a € R" is denoted by &, or §,(x). A purely
atomic measure is a linear combination u=3_, ,c(1)6; of
Dirac masses where the coefficients ¢(4) are real or complex
numbers and }; glc(4)] is finite for every R>0. Then A is a
countable set of points of R”. If A is closed and if ¢(1) #0,VA€ A,
then A is the support of u. A subset A CR” is locally finite if AnB
is finite for every bounded set B. Equivalently A can be ordered
as a sequence {4;,j=1,2, ...} and || tends to infinity with j. A
measure p is a tempered distribution if it has a polynomial
growth at infinity in the sense given by Laurent Schwartz in ref. 1.
For instance, the measure T’Zkék is not a tempered distribution
whereas Y 7°k*6; and 3 1°2[5440+) — 8] are tempered distribu-
tions. The Fourier transform F (f) =f of a function fis defined by
f) = [prexp(—2x ix-y)f(x)dx. The distributional Fourier trans-
form i of y is defined by the following condition: (i, ¢) = (u, ¢)
shall hold for every test function ¢ belonging to the Schwartz
class S(R"). The spectrum S of y is the (closed) support of ji.
Definition 1: A purely atomic measure p on R” is a crystalline
measure if

i) the support A of y is a locally finite set,
ii) p is a tempered distribution, and
iit) the distributional Fourier transform g of u is also a purely
atomic measure that is supported by a locally finite set S.

If u is a crystalline measure, its Fourier transform is also a
crystalline measure.

Definition 2: A measure y on R is odd if for every compactly
supported continuous function fwe have [ S(f)du=— [f du, where
S Flx)=f ().

For every set E of real numbers, let E;=En{x>0} and
E_=En{x<0}. Let us denote by Q the field of rational numbers.
Theorem 1 is proved in this article:

Theorem 1. There exists an odd crystalline measure y on R such that
its support A and its spectrum S have the following properties:
(i) Each finite subset of A is linearly independent over Q and (i) each
finite subset of S, is linearly independent over Q.

The spectrum § of y is an increasing sequence sy, k € Z, of real
numbers such that (i) s_x = —sx, Vk € Z, and (ii) 51,52, . ..,Sn are
linearly independent over Q for each integer N. Theorem 1 im-
plies that > > b(k)exp(2nisix) is a sum of Dirac masses on a
locally finite set A. It is counterintuitive that these incoherent
waves b(k)exp(2zisix) can be piled up in harmony so that their
sum yields Dirac masses.

Theorem 1 is valid in any dimension as the following propo-
sition shows.

www.pnas.org/cgi/doi/10.1073/pnas.1600685113

Theorem 2. There exists a crystalline measure u on R" such that

i) wis odd in the last variable x,,,

ii) the support A of u is the union of Ay=An{x,>0} and
A_=An{x, <0},

iii) each finite subset of A, is linearly independent over Q and
similarly for A_,

iv) the spectrum S of p is the union of Sy=Sn{y,>0} and
S_=S5n{y, <0}, and

v) each finite subset of S, is linearly independent over Q and
similarly for S_.

This line of investigation began with the Riemann-Weil ex-
plicit formula in number theory (2). The Riemann-Weil explicit
formula can be written ji=® + 0, where p is a series of Dirac
masses on the nontrivial zeros of the zeta function; o is a series of
Dirac masses on log(p”™), p running over the set of prime num-
bers; m=1,2, ..; and w(x)=-logz+Ry(1/4+ix/2), v being
the logarithmic derivative of the I' function. Moreover, an ex-
ponential decay is needed on the test function ¢ to give a
meaning to (w+ o, ). The Selberg trace formula has a similar
structure. Therefore, the measures y studied by André Weil in
1952 (2) are not crystalline measures. André-Paul Guinand dis-
covered other summation formulas in 1959 (3). Guinand’s for-
mulas do not contain an integral term w but are spoiled by a
derivative of the Dirac mass at 0. Using a completely distinct
approach, Nir Lev and Alexander Olevskii (4) proved the exis-
tence of crystalline measures p that are not generalized Dirac
combs (Definition 2 below). This theorem could have been de-
duced from Guinand’s work, as is shown below. The Lev-Olevskii
measures do not have closed-form expressions. To analyze Lev—
Olevskii measures let us consider R" as a vector space over
the field Q and let us denote by Eg the linear span of a set
E cR" If Ais the support of a Lev—Olevskii measure u, then Ag
is necessarily finite dimensional and the same is true for Sg,
where § is the spectrum of y (Theorem 8). Mihalis Kolountzakis
improved on the Lev-Olevskii theorem in ref. 5. He built a
crystalline measure for which both the dimension of Ag and the
dimension of Sg are infinite. Kolountzakis’ theorem is also implicit
in Guinand’s work and the support of Kolountzakis’ measure
cannot be linearly independent over Q.

Significance

An important problem in harmonic analysis is solved in this
article: Is the Poisson summation formula unique or does it
belong to a wider class? The latter is true. The method that is
used to prove this statement is surprising. Our new Poisson’s
formulas were hidden inside an old and almost forgotten pa-
per published in 1959 by A. P. Guinand. The role of number
theory in this issue is fascinating.
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This article is organized as follows. Are crystalline measures
almost periodic? This is answered in Almost Periodic Measures.
In Guinand’s Distribution Guinand’s seminal work is described
and used to prove Lev—Olevskii’s theorem and Kolountzakis’
theorem. In Proof of Theorem 1, Theorem 1 is proved by an ap-
proach that extends and completes Guinand’s work. A second
proof of Kolountzakis’ theorem is given in Kolountzakis’ Theorem.
In The Crystalline Measures of Lev and Olevskii the proof of the
Lev-Olevskii theorem is sketched. The Geometry of Crystalline
Measures is devoted to open problems.

Let I'cR” be a lattice. The distributional Fourier transform of
the Dirac comb u=vol(I')}_ 6, is the Dirac comb -8, on
the dual lattice I'*. We have

vol(T) > f(r)= D ). [1]

yer’ yer*

Poisson’s formula [1] is valid for at least all test functions f
belonging to the Schwartz class S(R"). In fact [1] is valid for a
much larger class of functions (6, 7). A corollary of Poisson’s
formula that is used in the proof of Theorem 5 is the following:

Lemma 1. For every a, f€R" and f € S(R") we have

vol(T Z 2T PTf () = 2P Z eIf (y).

r€l'+a yer*+p

Definition 3: Let o; be a Dirac comb supported by a coset x; +T
of a lattice I;CR",1<j<N. Let F;cRR" be a finite set and
&) =3 yer, c](y exp(Zmy x)bea trlgonometnc sum. Let y; =gjo;.
Then p=p; + -+ uy will be called a generalized Dirac comb.

The Fourier transform of a generalized Dirac comb is a gen-
eralized Dirac comb. Therefore, a generalized Dirac comb is a
crystalline measure. When A is the support of a generalized
Dirac comb g, the dimension of Ag is finite. The same property
holds for the spectrum of . The crystalline measures of Theorem
1 strongly differ from generalized Dirac combs.

Let u be a crystalline measure. We then have p=3%",_,a(1)8,

and fi=3_,.cb(y)y, where (a(4)),cs and (b(y)),cs satisty
a(d) #0,4€A,b(y) #0,y €S, [2]

and A, S are two locally finite sets. Then for every test function
f € S(R") the following generalized Poisson’s formula holds:

Y _a@f() = b)r). 31
A€A yeSs
It implies
Za(/l)A( Jexp(27il - x) Zb(y (x+y).
AEA yes

With the terminology of signal processing, sampling f on Avyields
an alias f(x) = Zyesb ()f (x+y) of the function f.
A locally finite set A is uniformly discrete if

= 4
{ue/\ A#}M #1=$>0. 4]

Lev and Olevskii (8, 9) proved the following:

Theorem 3. In one dimension if both the support A of a crystalline
measure y and the support S of its Fourier transform are uniformly
discrete sets, then u is a generalized Dirac comb.

In ref. 9 Lev and Olevskii answered a problem raised by
Jeffrey Lagarias in ref. 10. They proved Theorem 2 in dimension
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n>2 under the assumption that the measure x is nonnegative.
The problem is still open in the general case of a complex
measure .

Almost Periodic Measures
Let u be a crystalline measure. We have

D a8 )= > b(y)exp(2nix-y). [5]

AEA yes

This raises the following issue: Is the right-hand side of [5] an
almost periodic measure?

A complex valued continuous function f defined on R” is al-
most periodic in the sense of Bohr if for every positive € one
can find a finite subset F CR" and a trigonometric sum g(x) =
5, epa(y)exp(2rix-y) such that [[f~g]|,, = Supep [f(x) ~g(x)| <e.
Laurent Schwartz defined almost periodic distributions as
follows (1):

Definition 4: A tempered distribution S € S'(R") is an almost
periodic distribution if for every test function ¢ € S(R") the
convolution product Sx¢ is an almost periodic function in the
sense of Bohr.

This is less demanding than the definition of an almost peri-
odic measure.

Definition 5: A Borel measure x4 on R” is an almost periodic
measure if for every compactly supported continuous function ¢
the convolution product y*¢ is an almost periodic function in the
sense of Bohr.

A generalized Dirac comb is an almost periodic measure.

Lemma 2. Every crystalline measure u is an almost periodic
distribution. .

Indeed g(x) =pxp(x) =3 cb(y)p(y)exp(2aix-y) is a finite
trigonometric sum if ¢€S(R") has a compactly supported
Fourier transform. Such test functions ¢ are dense in the
Schwartz class that implies Lemma 2.

Surprisingly most crystalline measures are not almost periodic
measures (Theorems 4 and 5). Are crystalline measures connected
with quasicrystals? Today we know that model sets defined by
the cut and projection scheme are modeling quasicrystals (11,
12). If A is a model set, the measure o, =) _,.,6; is never a
crystalline measure. Indeed o, is not even an almost periodic
distribution. It is a generalized almost periodic measure (13). It
means that for every €>0, one can find two almost periodic
measures u, and v, such that p,<o<v. and M(ve—pu,)<e
where M (u) =limr_(|u|([-T,T])/2T).

Definition 6: Let us denote by P the Banach space of all Borel
measures u such that

i) p is an almost periodic measure, and
ii) the distributional Fourier transform of y is also an almost
periodic measure.

The norm in the Banach space P is

llllp = sup |u|(x+U) + sup |a|({+U), (6]
x€R” EeR"

where U is the unit ball. Every y € P is a purely atomic measure
and its Fourier transform j is also a purely atomic measure.
We do not know whether there exists a crystalline measure
> senc(4)6; carried by a model set A. In ref. 12 we constructed
some almost periodic measures p that are supported by model
sets (see proof of Theorem 8). They belong to P but they are not
crystalline measures. In the construction of u a test function ¢
supported by a compact set (the window of the model set) is
being used. But the Fourier transform ¢ of this function ¢ cannot
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be compactly supported, which implies that the support of j is
dense in R".

Guinand'’s Distribution

By Legendre’s theorem, an integer n >0 can be written as a sum
of three squares (0% being admitted) if and only if 7 is not of the
form 4/(8k + 7). For instance, 0, 1, 2, 3, 4, 5, 6 are sums of three
squares but 7 is not. Let r3(n) be the number of decompositions
of the integer n > 1 into a sum of three squares [with r3(n) =0 if
n is not a sum of three squares]. More precisely r3(n) is the num-
ber of points k € Z* such that |k|>=n. We have r3(4n) =r3(n )

vrneN, r3(0)=1, r3(1)=6, r;(2)=12, .... Then r3(2) =6 if j is
even and 12 if j is odd. The behavior of r3 (n) as n — oo is erratic.
The mean behavior is more regular because (14)

Z 3 (I’l) =gn,x3/2 +0(x3/4+e)

O<n<zx

holds for every positive e. Guinand began his seminal work (3)
with Lemma 3:

Lemma 3. For all x>0 we have

0

1+ Zm(n)exp(—n' nx) =x

1

o 3/22r3

The functional equation satisfied by the Jacobi theta function

Z exp(—ak’x) =x~1/2 Z exp(—

raised to the cubic power yields [7].

Let fi(1)=t exp(-mxt?), t€R, x>0. Then f, is odd and its
Fourier transform is f,(y) = lx‘3/ y exp(—ny° /x). Now [7] can
be written

Yexp(—zn/x). [7]

7k? /x) 8]

dfy -1/2 df x n-1/2
dt( )+ ;rs(”)n Pf(Vn) =i = +zZr3 f. (Vn).
[9]
Guinand introduced the odd distribution
a=-2i50+ irg,(n)n_]/z(é —-5_ /) [10]
dt - Vi =)

which will be named Guinand’s distribution. We have
S Vr3(n)n~12 ~ 22N, N — o, which implies that o is a tempered
distribution. Guinand proved the following:

Lemma 4. The distributional Fourier transform of ¢ is —ic.

We need to prove (o, ¢)=—i(o,¢) for every test function ¢.
But [9] can be written as (o,f;) =i{o,f,) or (c,f;)=i(6,f;). The
collection of odd functions f;, x>0, is total in the subspace of
odd functions of the Schwartz class. For even functions ¢ the
identity (5, ¢)=—i(c ¢> is trivial because ¢ is odd and (o, ¢) =
—i(0,¢) =0. Lemma 4 is proved.

A variant on Guinand’s distribution ¢ is the measure 6=
—4nt+ 3 Frs(n)n~V2(8 7 —6_ ). Because F((d/dr)dy—2nat) =
—i((d/dt)6y — 2xt), we also have

F(6)=—io.
We now move one small step beyond Guinand’s work and

prove both Kolountzakis’ theorem and Lev—Olevskii’s theorem.
Let a€ (0,1) and set

Meyer

7,(t) = ((xz + %) o(t)—ac(at) —o(t/a). [11]

Then the derivative of the Dirac mass at 0 disappears from this
linear combination. On the Fourier transform side

T.(y) = (a2

Fix @=1/2 in the preceding construction, let z=7y/,, and de-
fine y(n)=-1/2 if neNUN, y(n)=4 if n€4N\1I6 N, and
x(m)=0if n €16 N. Then we have the following:

+2)o0) =03/ = () =i

Theorem 4. The Fourier transform of the measure

0

e= 31 rs(n)

S CYPET IV [12]
1

is —it.

Another proof of Theorem 4 is given in the next section. Let us
observe that 3" Vr;(n)n="/2 = 22N + O(N'/?), N — oo, whereas we
have |\ x(n)rs(n)n ‘1/2‘ =O(N'/?). If y was erased from [12],

7 would no longer be a crystalline measure. The cancellations
provided by y are playing a key role.

The support A of 7 is the set of +v/n/2, n€E, where ECN s
defined by the two conditions r3(n) #0, y(n)#0. It amounts to
n#4(8k+7), j=0,1, and n¢16N. There are infinitely many
primes p that are not congruent to 7 modulo 8 and the square
roots of these primes are linearly independent over Q. There-
fore, the dimension of the span over Q of the support of 7 is
infinite, which yields Kolountzakis’ theorem. The positive half of
the support of 7 is not linearly independent over Q. Theorem 4
does not imply Theorem 1. The measure 7 is not an almost pe-
riodic measure. Indeed |7|([r,x + 1]) = o0, x — o0. It is, however,
an almost periodic distribution.

Here is our second example. Let us observe that for every
function f the Fourier transform of cos(zx)[f (x — 1/2) = f (x + 1/2)]
is i cos(zy)[f(y —1/2) —f(y +1/2)]. This simple observation leads
to a variant on the measure ¢ of Theorem 4. Let ¢ be the Guinand
distribution and consider the measure p=cos(zx)[c(x—1/2)—
o(x+1/2)]. The derivative of the Dirac mass at 0 is moved to 1/2
or —1/2 and then transformed into Dirac masses after being
multiplied by cos(zx). On the Fourier transform side the derivative
of the Dirac mass at 0 is transformed into a Dirac mass after
multiplication by sin(zy) and then the resulting measure is trans-
lated by +1/2. Finally the Fourier transform of p is p. We have p =

27615+ 276_1 5 + Z sin(zy/n)rs(n)n="/?
1

X <5<ﬁ+1/2) +0(i-1/2) + (- yr1/2) +5(—ﬁ—1/2>)-

One is tempted to replace 1/2 by 0 in the definition of p. But
p=2n60+ > {sin(z/n)rs(n)n=2(5 sz +5_ ) is not a crystalline
measure: A derivative of the Dirac mass at +1/2 peeps out from
the Fourier transform of p.

Here is another variant on Guinand’s construction. Let
x(k)=0 if kedZ, y(k)=2 if k€dZ+2, and y(k)=-1 if
ke€4Z+1. Then the Fourier transform of 6 =3"%_y (k)5 is o.
Following Guinand’s approach, it implies >~ (k)exp(—z(k? /4)x) =
(1/vx)>% _y(k)exp(—n(k*/4x)) for x>0. This identity is now
raised to the third power. We obtain Y {°p;(n)exp(—z(n/4)x) =
(1/%/2) 3253 (n)exp(=(n /4x)), where

PNAS Early Edition | 3 of 7
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psm) = > xlk)xlka)y(ks).

21 K22
ki+k3+ks=n

Finally we consider the odd measure

9= im(
1

\/Z) (8,32 =6-i2)

and conclude that the Fourier transform of 6 is —if. In this
construction we did not face the issue of a derivative of the Dirac
mass at the origin. This issue was solved by the cancellation
provided by y. This measure 0 is distinct from the measure 7 of
Theorem 4.

Kolountzakis’ theorem holds in any dimension. The tensor
product y=p; @y, ® *** ® u,, between n copies of the measure of
Theorem 3 is a crystalline measure with the required properties.

The obvious identity

e 1
Zra 2 (55 -8-5) = > T et = 3-)

keZ?,k#0
paves the road to the examples of the next section.

Proof of Theorem 1
The proof of Theorem 1 is based on Theorem 5:

Theorem 5. Let a= (a1, ay,a3) € Z* and f=(p,,$,, ;) € Z>. Then
the distributional Fourier transform of the measure

exp(2xik - )
Cah=D el

lk+al (Sera) = O—jkcral)

keZ?
is
.7:((7(0,’/})) =—i 6Xp(—27ti(l »ﬂ)a(ﬂ, —a)-

The proof of Theorem 5 is postponed to make room for a few
comments and for the proof of Theorem 1. Let us observe that
O(a.f) is an odd measure. We have O(a,p) =0 (-a,—p) and o, _p) =
G(a, p)- MOTEOVET G4, ) iS 73 periodic in # and exp(2zia - ﬂ) (a,p) 1
77 periodic in a. What happens if #=0? The Fourier transform

of the measure

O (a,0) Z |k+ (l‘ 5\k+a\ - 57|k+(1|)
kez?

is not a measure and the cancellations that are introduced in

a ﬂ y by the phase factor exp(2zik - §) are playing a seminal role.

f 1,p,,5,,p; are linearly 1ndependent over Q, then for k#1,

k le??, lk+pB|#[l+p|. 1t implies L d|aaﬂ |(f) ~x, x> o0,

and this estimate is optimal. Therefore, 6(,p) is a tempered

measure that is not an almost periodic measure. The fourth con-
struction will yield an almost periodic crystalline measure.

The support of o, g is the set A={x|k+al; ke?Z?}. Then
every finite subset of AN (0, o) is linearly independent over Q for
every « in a residual set in the sense of Baire’s category. Similarly
let S denote the spectrum of 6, 4. Then every finite subset of
SN (0, o) is linearly independent over Q for every § in a residual
set. Theorem 5 and these two observations imply Theorem 1.

Lemma 5 shows that an odd crystalline measure y=>",_,a(4);
whose spectrum § is linearly independent over Q cannot be an
almost periodic measure.

Lemma 5. With the preceding notations let us assume that u is an

odd crystalline measure and that SN (0, ) is Q-inearly indepen-
dent. Then u is not an almost periodic measure.

4 of 7 | www.pnas.org/cgi/doi/10.1073/pnas.1600685113

We argue by contradiction and suppose that for every com-
pactly supported continuous function ¢ the convolution product
fx)=px¢p=>",,a(A)p(x — 1) is an almost periodic function in
the sense of Bohr. We are assuming now that ¢ is even, is real
valued, is supported by a small interval [—7, 5] (specified below),
and does not belong to the Wiener algebra A(R). The
Wiener algebra (15) is the algebra consisting of Fourier
transforms of functions in L'(R). Using [5] we have f(x)=
> sesb(s)p(s)exp(2risx). Let z; € C be any sequence of +i such
that z_; =Z;,s €S. Then there exists a sequence x; tending to in-
finity such that exp(2zixs) = zs,s €S, as k tends to infinity. This
implies f(5) —» 3",cszsb(s)s) and [S,cs b ()b(s) (2 ~2)| <
Ifllo- By an appropriate choice of z;=z+i,s€S, we obtain
D ses s>0|b V(s 5)| <2||f |- Therefore, f(x) locally belongs to the
Wiener algebra. It means that f g€A(R) for every compactly
supported test function g. If a(4y) #0 and if the support of the
continuous function ¢ is contained in [-#,7] where 5 is small
enough, then f(x) coincides with a(4g)¢(x — o) on [dg —n, 40 +7].
This implies that ¢ belongs to the Wiener algebra. We reach
a contradiction.

Returning to Theorem 5 it is interesting to let @ and g tend to
0. Then the limit o) of 6(4 ) is the Guinand distribution

d 1
-2— E — —0O_ik)-
dt5()+ - Ik| (5V€\ o Ik\)
keZ’;k#0

Therefore, Theorem 5 gives another proof of Lemma 4: The
Fourier transform of the Guinand distribution o o) is —ic (o).

Are there n-dimensional crystalline measures that are not
constructed as a tensor product between one-dimensional
crystalline measures? Here is the answer. Let TCR"™! x R3 be
an oblique lattice. It means that the two coordinate maps
pLRTIXRISRY, py iR xR3-R3, once restricted to T,
are injective with a dense range. Let I'* be the dual lattice and
let us assume that vol(I") = 1. Then we have the following:

Theorem 6. Let a T and p&T*. Then the atomic measure a? o#l
defined on R" =R"! xR! by

5 exp(2aif )

p2(0)] _6@1(7)»—%("/)”)

(Bort), o2 tr))

yelta

is crystalline and its Fourier transform is
f(a[r‘”/’]) =—i exp(2zia-p) o

We return to the proof of Theorem 5. Theorem 5 is a corollary
of a more general statement:

Theorem 7. Let u be a crystalline measure on R3. We then have
H=2 1epa(A)8; and =3, b(y)d,. Let us assume that 0& A,
0¢S, and consider the one-dimensional measure

o= Za‘(j) (81 = 5-p)- [13]

AEA

Then oy is a crystalline measure and the distributional Fourier

transform of oy is —ics, where o5 =3,c5(b()/[y[)(8y —-p)).
We prove Theorem 7. The measures 65 and og are odd. T

check the identity
<O-A7 43> =

for every test function ¢ it suffices to do it for every odd ¢. Let
@ = ¢ be the 1D Fourier transform of ¢. Then w is also an odd
function in the Schwartz class S(R) and the left-hand side of [14] is

—i{og, ) [14]

Meyer
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(1)
=2 Z | /1\ [15]

AEA

We introduce the radial function ®(x)

=w(|x|)/}x|, which belongs
to S(R*). Then

(@)=2) a()®(d). [16]

AEA

We have for every test function F

> aF@A)=(u,F)= (@, F)=>_by)F(y). [17]

VISIN yes

Lemma 6. The 3D Fourier transform of the radial function F(y) =
—ip(1)/ | is F(x) =D(x).

Indeed the 3D Fourier transform F of a radial function
FeL'(R®) is given by

4/F

We apply this to F (y) —i(¢(y])/ly]). Then we are left with

F(x)=(=2i/x[) Jy° ¢(r)sin(2zx|r)dr. Because ¢ is an odd func-
tion in S (R), this mtegral is the 1D Fourier transform of ¢, which
is precisely w. We have proved the identity

A .

2
Sn@alr) 5 [18]
2rlx|r

which is Lemma 6.
Then [16], [17], and Lemma 6 yield

=—2th(y

yes

This is —i{os, ¢), which ends the proof.

Theorem 5 is a corollary of Theorem 7. Indeed by Lemma 1
the Fourier transform of ), _,3exp(27ik - §)6y4q is exp(—27if - a)
> kez3 eXp(—27ik - @)Sisp.

This gives a new proof of Theorem 4. One starts with
7:73-{=1/2,0,4} defined by y(k)=0 if ke4dZ? y(k)=4 if
ke27°\47°, and y(k)=—1/2 if k € Z*\27Z>. Then the 3D Fourier
transform of u =73, ;5 7(k)dy > is identical to u. It suffices to use
Theorem 7 to conclude.

Theorem 5 will be proved if we can show that

s@)=(o*", ¢ ) =i exp(2ria-p) (ol 0) 1200
holds for every test function ¢=¢(u,v), u R, veR. It suf-
fices to do it when ¢(u,v) = ¢, (1), (v) because this collection is
total in the space of test functions. The measures o~ and a[rﬁ,; -
are odd in the second variable v and we can restrict the proof of
[20] to odd test functions ¢,. We apply the ordinary Poisson
formula to the coset I'*+/ of the lattice I'™* and to the func-
tionF(x) = exp(2aix- f)dh (1) (¢ () b ), where x=(x1,x2),
x1 €R"1, x, € R3. Then the proof of [20] is identical to the proof
of Theorem 4.

We now return to Theorem 2. Let A be the support of o'l- l. For
almost every a the set AN {x, >0} ={(p1(7), [p2(y +@)|); y€Tl'}is
linearly 1ndependent over Q and the same holds for the spec-
trum of Ur I. This ends the proof.

Meyer

Kolountzakis' Theorem

The construction that is detailed below was discovered in-
dependently by the author and by Kolountzakis (5). It is nothing
but the 2-adic analog of the approach by Lev and Olevskii in (4).
The crystalline measure o is given by a series

0

o= &oj, [21]

0

where

i) The atomic measure o; is 2/ periodic and its support is con-
tained in M;=27""+ A;, where A;=27Z\-273,27%]. More
premsely, th1s support is the union Uz (277 nlk) where [
is the interval centered at 27~ + (k + 1/2)2 with length 22,

it) The support of the Fourier transform 6; of ¢; is contained in A;.

iii) The choice of €;>0 ensures the convergence of the serles

o= EJH"JHP

Let us observe that the sets M;, j>0, are pairwise disjoint in
such a way that ¢ is not a generalized Dirac comb. Moreover,
Ui M; is a locally finite set. The support A of ¢ is contained in Q. In
ref. 5 Kolountzakis used another construction of ¢ for which the
dimension of the linear span of A over the field Q is infinite.

How does one construct these ¢;? It suffices to use Lemma 7:

Lemma 7. Let a € (0,1/6). For every integer N > N, there exists an
N-periodic atomic measure ¢ = oy that is a sum of Dirac masses on
An =N"'Z\-aN,aN) and whose Fourier transform is also sup-
ported by Ay. Moreover, the support of ¢ is Ax = Urezly, where I is
the interval centered at (k+1/2)N with length (1—2a)N.

Let us prove Lemma 7. If o is N periodic, we have

c=TxU, [22]

where v is the Dirac comb ), _, 6 and

N*-1
T= Z Ckﬁk/N-
0

It implies
G=N"">" P(m)oun [23]
mez
with
N2-1
=Y ¢ exp(—2aikyN ). [24]
0

Finally N-periodic measures on N~'Z are in a 1-1 corre-
spondence with trigonometric polynomials given by [24]. We now
use Lemma 8:

Lemma 8. Let M €N, M >2, and let E,F CZ/MZ be two sets of
cardinality |\E|,|F|. If |E|+ |F| <M, there exists a nontrivial trigo-
nometric polynomial

M-1
=" cx exp(2iky/M) [25]
0
such that
=0, keE, P(y)=0, yeF. [26]

Moreover, if E and F are two intervals and |E|+2|F| <M, we can
impose cx #0 for every k ¢ E.
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A simple dimension-counting argument implies the first
statement. The proof of the second statement runs by contra-
diction. Assuming that the linear space G defined by [26] does
not intersect the open set defined by cx #0, Vk ¢ E, it implies
that for some ko ¢ E the linear space G is contained in the hy-
perplane defined by ¢, =0. By linear algebra it implies that co-
efficients ay, k € E,b;,l € F, exist such that for every trigonometric
polynomial P(y) = Zg’l_lck exp(2riky /M) we have

=Y arck+ Y _biP(l). [27]
keE leF
It implies
> by exp(2mikol /M) =1 [28]
leF
> by exp(2ikl/M) =0,k € (EU {ko})" [29]

leF

Because M > |E| +2|F|, the set (EU {ko}) contains an interval J
of length equal to |F| and the matrix

((CXP(Zﬁikl/M)))kef,leF

is an invertible Vandermonde matrix. Therefore, [29] implies
b;=0, VI €F, which contradicts [28].

‘We now conclude the proof of Lemma 7. Our first demand is that
o be an N-periodic measure carried by N™'Z\(NZ + [-aN, aN]).
The restriction of this measure o to [0, N) is 7y = Y 3y 7, ¢ (k, N ) Spy-1,
where Ty =Zn (aN?, (1 —a)N?). Then [23] yields

6=N"Y"P)sp-, [30]
where
Py)=ty(y)= > clk,N)exp(—27ikN?y). [31]
keTy

We have (1-2a)N? —1<|Ty|< (1 -2a)N?+ 1. Lemma 8 with
En=[0,N*—1\Ty and Fy = ([0,aN?] U [(1 — a)N?,N?]) n Z yields
nontrivial coefficients c(k,j) such that P;(/)=0 when |/| <aN?,
which ends the proof. It works if |Ey|+2|Fy| <N? which reads
a<1/6. We set a=1/8 in the construction of ;.

The Crystalline Measures of Lev and Olevskii

Let TCR"XR be an oblique lattice. As introduced earlier it
means that the two projections p; :R" XxR~R", pr:R" xR~ R,
once restricted to I, are injective with a dense range. Let
I =[-a,a]. The model set A; is defined by the standard cut and
projection scheme (11, 13, 16). Then

Ar={A=pi(y);y€l,p2(y) €1} [32]

Let 0<hy<hy< ... be an increasing sequence of positive
numbers tending to infinity. We set Iy =[-h,h|Ccl=
[<h2,h2] C ... and we have U =R. The corresponding se-
quence of model sets is Ay, k€N. We have

AMCAC...CANC... [33]
and U A =p;(T) is dense in R".

Enriched model sets are defined by Lev and Olevskii as
follows:

6 of 7 | www.pnas.org/cgi/doi/10.1073/pnas.1600685113

Definition 7: Let ap=0<a; <a, < ...be an increasing sequence
of positive numbers tending to infinity. An enriched model set is
defined by

A:

~Cs

Ak, [34]

where

A={reM; A >ar1}. [351

Lemma 9. Let E = {k+m+/2; (k,m) eN*}. Then A=E U (=E)is an
enriched model set.
For proving Lemma 9 it suffices to use Definition 7 with

F={<k+m\/§,k—m\/§);k,mez}, By =ay =k.

An enriched model set is locally finite. A model set is never an
enriched model set. The density of a model set is finite whereas
the density of an enriched model set is infinite. Lev and Olevskii
proved the following:

Theorem 8. Every enriched model set A contains the support of a
measure u such that

i) uis not a generalized Dirac comb, and
ii) the Fourier transform ji of p is also supported by an enriched
model set S.

Let us sketch the construction of this measure p.
We have R2=AUB, AnB=0, where

A= CJ{(x,y); | > a1, ly| <hp} [36]

B= LlJ{(x,y); | <ap, [y| >} [37]

A similar partition into A* and B* is provided by two other
sequences a;,, hy, n€N. The three sequences an,hy,a,, n€N,
are arbitrary but the last one %, is the result of a subtle induction.
The enriched model set defined by A4 is

A={pi(y);y€elnA}. [38]
Similarly
Q={p2(r);y€r'nB} [39]
S= {pT(V*);V* er*n A*} [40]
Z= {p?(}/*);y* er+n B*}. [41]

Lemma 10 is seminal in the proof.

Lemma 10. There exist a sequence h, and a nontrivial function
¢ € S(R) such that

$p=00onZ, ¢=0o0nQ. [42]

Then p is defined by

p= Y d0E= Y &= ¢R)5  [43]

(x,y)er’ (x,y)ern4 AEA

with (4,2) €T It implies

Meyer
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> b0s=) @, [44]

(u,v)el"*nA* ues

Theorem 9. If ¢ is defined by Lemma 10, then the measure y defined
by [43] is carried by the locally finite set A defined in [38] and its
Fourier transform jiis carried by the locally finite set S defined by [40].

These properties follow from the construction of x4 and the
reader is referred to ref. 4 for the proof of Lemma 10. Our fourth
approach was inspired by this construction.

The Geometry of Crystalline Measures

The structure of crystalline measures is still unclear. Some crys-
talline measures are almost periodic measures and others are
not. What can be said about the geometrical properties of the
support of a crystalline measure? Let us denote by £ the col-
lection of these supports. Is it possible to characterize this col-
lection £ by additive properties? On the one hand there exists a
locally finite set 7'C (0, ) that is linearly independent over Q
and such that A=T U (-T) € L. This is Theorem 1. But there are
infinitely many locally finite sets T C (0, o) that are linearly in-
dependent over Q and such that A=Tu(-T)¢&L. On the
other hand A =7 belongs to L. Sitting in between, the support
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of the crystalline measure discovered by Kolountzakis is con-
tained in Q.

Do there exist uniformly discrete sets A € £? A trivial answer
is given by Dirac combs. Are there other examples? Theorem 3
implies that in one dimension the spectrum of such a measure y
cannot be a uniformly discrete set.

Moving a single point in a set A € £ can be destructive as the
following example shows. We start from Z and move 0 to 1/2.
Then the resulting set does not belong to L.

Lemma 11. The set A={1/2} UZ\{0} does not belong to L.

We argue by contradiction. If A was the support of a crystalline
measure y, we would have ji(y) =c exp(ziy) + F(y), where F(y)
is 1 periodic and c¢ is a constant. Therefore, a(y+1)—ja(y) =
—2c exp(ziy) would coincide with a purely atomic measure. It
implies ¢ =0, #({1/2})=0, and A is not the support of u. Let us
observe that Z\{0} belongs to £. Indeed if ¢ is the Dirac comb on
7, we set yu=Po, P(x) =sin(2z+/2x). Then u is a generalized Dirac
comb whose support is Z\{0}.

Excepting Dirac combs, do there exist nonnegative crystalline
measures?
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