DE LA RECHERCHE À L'INDUSTRIE

AJUSTEMENT DE LOIS DE COMPORTEMENT ELASTOPLASTIQUE

Encadrement : Gabriel Seisson

www.cea.fr

Marie Maligot

CONTENTS

1. Introduction

2. Quelques notions de mécanique

Qu'est-ce qu'une loi de comportement?

Parties sphérique et déviatorique de $\underline{\sigma}$ Contrainte scalaire

3. Traitement des données expérimentales

Courbe contrainte-déformation Influence de T et ἐ Base de données vs informations à extrapoler

4. Calage d'un modèle élastoplastique

Modèle de Preston Tonks Wallace Méthodologie Instabilités de Rayleigh Taylor CaLiXt

5. Conclusion

- Modéliser le comportement élasto-plastique du matériau dans un domaine observable et simple
- Données expérimentales disponibles pour des essais quasi-statiques et faiblement dynamiques

- Etre capable de l'extrapoler dans un domaine qui n'est pas observable et complexe car dans des conditions extrêmes de pression, température, déformation et vitesse de déformation
- ⇒ Nécessite d'être prédictif

CONTENTS

1. Introduction

2. Quelques notions de mécanique

Qu'est-ce qu'une loi de comportement?

Parties sphérique et déviatorique de $\underline{\sigma}$ Contrainte scalaire

3. Traitement des données expérimentales

Courbe contrainte-déformation Influence de T et ɛ́ Base de données vs informations à extrapoler

4. Calage d'un modèle élastoplastique

Modèle de Preston Tonks Wallace Méthodologie Instabilités de Rayleigh Taylor CaLiXt

5. Conclusion

- 2 solides soumis aux mêmes efforts extérieurs ne se déforment pas de manière identique : dépend des matériaux considérés : loi de comportement
- Tenseur des contraintes $\underline{\sigma}$ (en MPa)

$$\underline{\sigma} = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{xy} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{xz} & \sigma_{yz} & \sigma_{zz} \end{pmatrix}$$

- Conservation du moment dynamique ⇒ symétrie de $\underline{\sigma}$ ⇒ 6 dimensions, et matrice diagonalisable dans un « repère principal »
- Si contraintes principales identiques = état de contrainte « sphérique », cas du solide au repos
- Sinon, cisaillement = partie déviatorique, cas d'un écoulement

PARTIES SPHERIQUE ET DEVIATORIQUE DU TENSEUR DES CONTRAINTES

 $\underline{\sigma} = partie \ sphérique + partie \ déviatorique$

$$\underline{\underline{\sigma}} = -p \cdot \underline{\underline{I}} + \underline{\underline{\sigma}}^{\underline{D}}$$

où $p = -\frac{1}{3} Tr(\underline{\underline{\sigma}})$

Partie sphérique :

• équation d'état (EOS) :
$$f(P, V, E)$$

Partie déviatorique :

loi de comportement élasto-plastique : $f(\dot{\varepsilon}, \varepsilon, T, P)$

CONTRAINTE SCALAIRE

- Tenseur des contraintes $\underline{\sigma} \rightarrow$ scalaire « contrainte équivalente » σ_e
- Contrainte de Von Mises:

Exprimée dans le repère principal	Exprimée en fonction du déviateur
$\sigma_e = \sqrt{\frac{1}{2} \cdot \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_1 - \sigma_3)^2 \right]}$	$\sigma_e = \sqrt{\frac{3}{2} \cdot s_{ij} s_{ij}}$

- Loi phénoménologique : essais
- Cas particulier de la contrainte uniaxiale : la contrainte équivalente EST la contrainte

$$\underline{\sigma} = \begin{pmatrix} \sigma & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \underbrace{\begin{pmatrix} \sigma/3 & 0 & 0 \\ 0 & \sigma/3 & 0 \\ 0 & 0 & \sigma/3 \end{pmatrix}}_{-p \cdot \underline{I}} + \underbrace{\begin{pmatrix} 2\sigma/3 & 0 & 0 \\ 0 & -\sigma/3 & 0 \\ 0 & 0 & \sigma/3 \end{pmatrix}}_{\underline{\sigma^{D}}}$$
$$\sigma_{e} = \sqrt{\frac{3}{2} \cdot (\frac{4}{9}\sigma^{2} + \frac{1}{9}\sigma^{2} + \frac{1}{9}\sigma^{2})} = \sigma$$

Généralisation au cas 3D

CONTENTS

1. Introduction

2. Quelques notions de mécanique

Qu'est-ce qu'une loi de comportement?

Parties sphérique et déviatorique de $\underline{\sigma}$ Contrainte scalaire

▶

3. Traitement des données expérimentales

Courbe contrainte-déformation Influence de T et $\dot{\epsilon}$ Base de données vs informations à extrapoler

4. Calage d'un modèle élastoplastique

Modèle de Preston Tonks Wallace Méthodologie Instabilités de Rayleigh Taylor CaLiXt

5. Conclusion

COURBE CONTRAINTE-DEFORMATION

- Contrainte : effort normalisé à la surface (homogène à une pression)
- Déformation : allongement relatif

- Matériau = ressort \Rightarrow « élasticité » (// loi de Hooke)
- Au-delà d'un certain niveau de déformation, irréversibilité : « plasticité »
- Finit par casser

- La température adoucit le matériau
- La vitesse de déformation durcit le matériau

 \Rightarrow Compétition entre *T* et $\dot{\varepsilon}$

- Equivalence temps-température : essais froids pour simuler de grandes vitesses de déformation
- Essais de calage:
 - Quasi-statiques : petit échantillon comprimé à faible vitesse constante, mesure de l'allongement relatif en fonction de la charge appliquée
 - **—** Faiblement dynamiques (barres d'Hopkinson) :

	$\boldsymbol{\varepsilon}_{max}\left(- ight)$	$\dot{\epsilon}(s^{-1})$	T (K)	Р
Essai quasistatique	20% → 50%	$1.10^{-4} - 2$	293 - 673	
Barres d'Hopkinson	$10\% \rightarrow 25\%$	443 - 3500	77 - 700	
Extrapolation à	> 100%	> 10 ⁴	400 - 800	qq 10GPa

ESSAIS QUASI-STATIQUES

DE LA RECHERCHE À L'INDUSTRIE

BARRES D'HOPKINSON

CONTENTS

1. Introduction

2. Quelques notions de mécanique

Qu'est-ce qu'une loi de comportement?

Parties sphérique et déviatorique de $\underline{\sigma}$ Contrainte scalaire

3. Traitement des données expérimentales

Courbe contrainte-déformation Influence de T et ċ Base de données vs informations à extrapoler

4. Calage d'un modèle élastoplastique

Modèle de Preston Tonks Wallace Méthodologie Instabilités de Rayleigh Taylor CaLiXt

5. Conclusion

MODÈLE ÉLASTOPLASTIQUE : PRESTON TONKS WALLACE

- Modèle semi-empirique
 - Repose sur des données expérimentales
 - Se base sur des considérations physiques (structure cristalline, mécanismes microscopiques de déformation plastique)
 - Permet d'extrapoler vers la contrainte de saturation
 - Présupposés PTW
 - Existence d'un palier athermique : à T suffisamment élevée, σ ne dépend plus ni de T ni de *ἐ*
 - Mécanisme thermiquement activé aux vitesses de déformation moyennes : influence conjointe de T et $\dot{\epsilon}$
 - Trainage visqueux : aux temps très courts, augmentation accrue de σ avec $\dot{\varepsilon}$ sans influence de T
 - $\sigma = f(\dot{\varepsilon}, \varepsilon, T, P)$
 - 4 variables : (έ, ε, Τ, Ρ)
 - = 10 paramètres à ajuster : $(s_0, s_{\infty}, y_0, y_{\infty}, \theta, \gamma, \tau_G, p, \beta, z_1)$

DE LA RECHERCHE À L'INDUSTRIE

PALIER ATHERMIQUE

DE LA RECHERCHE À L'INDUSTRIE

ZONE THERMIQUEMENT ACTIVEE

TRAINAGE VISQUEUX

MODÈLE ÉLASTOPLASTIQUE : PRESTON TONKS WALLACE

Modèle semi-empirique

- Repose sur des données expérimentales
- Se base sur des considérations physiques (structure cristalline, mécanismes microscopiques de déformation plastique)
- Permet d'extrapoler vers la contrainte de saturation

Présupposés PTW

- Existence d'un palier athermique : à T suffisamment élevée, σ ne dépend plus ni de T ni de έ
- Mécanisme thermiquement activé aux vitesses de déformation moyennes : influence conjointe de T et é
- Trainage visqueux : aux temps très courts, augmentation accrue de σ avec έ sans influence de T

 $\sigma = f(\dot{\varepsilon}, \varepsilon, T, P)$

- 4 variables : $(\dot{\varepsilon}, \varepsilon, T, P)$
- = 10 paramètres à ajuster : $(s_0, s_{\infty}, y_0, y_{\infty}, \theta, \gamma, \tau_G, p, \beta, z_1)$

- Détermination des paramètres en tenant compte des incertitudes liées au traitement (hypothèses posées, extrapolation, …)
 - Obtention d'un point d'initialisation
- Comparaison à la littérature et encadrement des paramètres
 - Cas d'optimisation à paramètres bornés
 - Problème : plusieurs jeux de paramètres fournissent des écarts non significatifs à faible déformation et faible vitesse mais divergent fortement dans le domaine non observable
 - Besoin de données supplémentaires pour choisir : Rayleigh-Taylor (IRT)

Utilisation d'un résultat d'expérience plus complexe pour contraindre l'extrapolation

Optimisation (=minimisation d'erreur) sous contrainte d'égalité

DE LA RECHERCHE À L'INDUSTR

IMPACT DES JEUX DE PARAMETRES

Détermination des paramètres en tenant compte des incertitudes liées au traitement (hypothèses posées, extrapolation, ...)

Obtention d'un point d'initialisation

Comparaison à la littérature et encadrement des paramètres

- Cas borné
- Problème : plusieurs jeux de paramètres fournissent des écarts non significatifs à faible déformation et faible vitesse mais divergent fortement dans le domaine non observable
- Besoin de données supplémentaires pour choisir : Rayleigh-Taylor (IRT)

Utilisation d'un résultat d'expérience plus complexe pour contraindre l'extrapolation

Optimisation (=minimisation d'erreur) sous contrainte d'égalité

DE LA RECHERCHE À L'INDUSTR

INSTABILITES DE RAYLEIGH-TAYLOR : DISPOSITIF

- Sous le choc, l'explosif détonne et l'échantillon est soumis à une forte pression (sans être choqué)
- Croissance du défaut : « instabilité »

RÉSULTATS EXPÉRIMENTAUX

Reformulation du problème : trouver un jeu de paramètres qui fitte l'expérience aux petites déformations, mais qui diminue la contrainte d'écoulement sur la fin du chemin thermodynamique pour « remonter » les PTW

Traitement de la partie déviatorique du tenseur des contraintes implémenté

- Pour (loi de comportement, loi de fusion, équation d'état) donné, simulation d'un essai quasistatique ou dynamique dans les conditions de T et *\varepsilon* souhaitées
- Suivi du chemin thermodynamique d'un échantillon
- Développement en cours de la partie amont
 - Gestion d'une base de données
 - Assistance de l'utilisateur dans la détermination d'un jeu de paramètres PTW
 - Optimisation contrainte autour de ce point

CONTENTS

1. Introduction

2. Quelques notions de mécanique

Qu'est-ce qu'une loi de comportement?

Parties sphérique et déviatorique de $\underline{\sigma}$ Contrainte scalaire

3. Traitement des données expérimentales

Courbe contrainte-déformation Influence de T et ἐ Base de données vs informations à extrapoler

4. Calage d'un modèle élastoplastique

Modèle de Preston Tonks Wallace Méthodologie Instabilités de Rayleigh Taylor CaLiXt

5. Conclusion

- Données expérimentales insuffisantes pour couvrir le domaine que l'on veut maîtriser
- Modèle élastoplastique PTW permet d'être prédictif s'il est bien ajusté
- Il n'y a pas UN bon jeu de paramètres : l'outil de calibration va de pair avec l'évaluation de biais
- ⇒ Tout ne peut pas être automatisé : il faut faire des choix dans le traitement des données

MERCI DE VOTRE ATTENTION !

DES QUESTIONS ?

DE LA RECHERCHE À L'INDUSTRIE

PRESTON TONKS WALLACE MODEL (PTW)

$$\tau = \tau_{s} + \frac{1}{p} \cdot \left(s_{0} - \tau_{y}\right) \cdot \ln\left(1 - \left[1 - \exp\left(-p\frac{\tau_{s} - \tau_{y}}{s_{0} - \tau_{y}}\right)\right] \cdot \exp\left(-\frac{p\theta\varepsilon}{\left(s_{0} - \tau_{y}\right)\left[\exp\left(p\frac{\tau_{s} - \tau_{y}}{s_{0} - \tau_{y}}\right) - 1\right]\right)\right)$$

$$o\tilde{u} \begin{cases} \tau_{s} = \begin{cases} s_{0} - \left(s_{0} - s_{\infty}\right) \cdot \operatorname{erf}\left(\frac{T}{\tau_{G}} \cdot \frac{T_{fus0}}{T_{fus}} \cdot \ln\left(\frac{\gamma\xi}{\varepsilon}\right)\right) \\ s_{0}\left(\frac{\gamma\xi}{\varepsilon}\right)^{\beta} \text{ en trainage visqueux} \end{cases} \quad \tau = \frac{\sigma}{2G(T, P)}$$

$$\tau_{y} = \begin{cases} y_{0} - \left(y_{0} - y_{\infty}\right) \cdot \operatorname{erf}\left(\frac{T}{\tau_{G}} \cdot \frac{T_{fus0}}{T_{fus}} \cdot \ln\left(\frac{\gamma\xi}{\varepsilon}\right)\right) \\ y_{0}\left(\frac{\gamma\xi}{\varepsilon}\right)^{z_{1}} \text{ en trainage visqueux} \end{cases}$$

$$G(T,P) = G_0 \left[1 + \left(\frac{G'_p}{G_0}\right) \frac{P}{\eta^{\frac{1}{3}}} + \left(\frac{G'_T}{G_0}\right) (T - 300) \right] \quad d'après \ Steinberg, Cochran, Guinan$$

10 PARAMETRES

- s_0 : contrainte de saturation ($\varepsilon \rightarrow \infty$) pour $T \rightarrow 0K$
- s_{∞} : contrainte de saturation sur le palier athermique (essai quasistatique à *T* suffisamment élevée)
- y_0 : limite d'élasticité ($\varepsilon \rightarrow 0$) pour $T \rightarrow 0K$
- y_{∞} : limite d'élasticité sur le palier athermique
- θ : taux d'écrouissage initial : (pente de la courbe en $\varepsilon \sim 0$)
- γ : transition vers le trainage visqueux pour έ > γ ξ
- au_G : terme d'ajustement quelque soit la loi de fusion
- *p* : constante du matériau (0 si structure cristallographique cubique centrée)
- β : loi puissance en trainage visqueux (saturation)
- z_1 : loi puissance en trainage visqueux (élasticité)