Ondes de Choc dans les Mousses (Blast Waves in Aqueous Foams)

Presentation : John Redford¹

Sylvain Faure², Jean-Michel Ghidaglia¹ and Christophe Labourdette¹

Demi-journée scientifique du LRC MESO ENS de Cachan 1st June 2016

1 CMLA, ENS de Cachan 2 Laboratoire de Mathématiques d'Orsay, Université Paris-Sud

Introduction

- Blast waves in aqueous foams
 - Strong suppression of blast wave
 - Containment of materials
- Simulation
 - Detonation model
 - Modelling of flow in foam
 - Interface
- 7 equation multi-phase approach
 - Simpler droplet model
- EOS : Quicksteam
 - Also, Quickmethane
- Currently writing 2 journal articles (Quicksteam & VF III)

Motivation : Quicksteam

- Ideal gas and stiffened gas laws not good for :
 - Gasses near saturation
 - Liquids
 - Ratio of specific heats $\gamma = C_{\rho} / C_{v}$ not well defined for liquids
- Need more accurate method that better accounts for physics
 - Experimental measurements are well documented and tabulated for water 1 and methane 2
 - Correlations of the tabulated data allow quick access to properties

Quicksteam and Quickmethane

• Quicksteam/methane

- Correlate equation of state experimental measurements
- Uses Gibbs or Helmholtz free energy
- Selecting region : Water
 - Region 1, liquid
 - Regions 2 and 5, vapour (steam)
 - Region 3, liquid/vapour
 - Region 4, saturation curve
 - In most cases fixing to region 1 for liquid and 2 for gas will produce the most stable simulation
- Automatic for methane after choice of ρ
- Beyond the region boundaries
 - Necessary in gas/liquid mixtures when temperatures cross saturation curve

The 7 equation Bestion model

- Solve for v = (δ , $\alpha_g \rho_g$, $\alpha_l \rho_l$, $\alpha_g \rho_g U_g$, $\alpha_l \rho_l U_l$, $\alpha_g \rho_g E_g$, $\alpha_l \rho_l E_l$)
- Newton's method to solve equation for T_g , P, T_I

$$R_{0} = \frac{(v_{0} + v_{1})e_{a}(T_{g}, P)}{2} + \frac{(v_{1} - v_{0})e_{s}(T_{g}, P)}{2} - v_{5} + \frac{v_{3}^{2}}{2v_{4}}$$

$$R_{1} = \alpha_{l}(T_{g}, P)\rho_{l}(T_{l}, P) - v_{2}$$

$$R_{2} = e_{l}(T_{l}, P) - \frac{1}{v_{2}}\left(v_{6} - \frac{v_{4}^{2}}{2v_{2}}\right)$$

- Similar equation with R_1 and R_2 for Euler
- Added switch to control phase change

$$Q_{il} = 0 \text{ if } (T_l < T_{\text{sat}} \text{ and } \alpha_v < \alpha_{\min})$$
$$Q_{iv} = 0 \text{ if } (T_g > T_{\text{sat}} \text{ and } \alpha_v > \alpha_{\min})$$

choose $\alpha_{\min} = 10^{-3}$

The 7 equation Bestion model

Drag force for dispersed phase

$$C_{\text{drag}} = \theta_{\rho} \frac{C^*}{r^*} \frac{\alpha_w \alpha_g \rho_w \rho_g}{\rho} |u_g - u_w|$$

where $\rho \equiv \alpha_g \rho_g + \alpha_w \rho_w$ and $\theta_{\rho} = \rho/(\alpha_g \rho_w)$.

- Dispersed liquid : droplets
- Dispersed gas : bubbles
- When blast wave passes, foam structure destroyed leaving droplets

Test cases

- Return to equilibrium
 - 7 equation Bestion model
- Block of liquid
 - Euler model with interface reconstruction
- Water hammer
 - 7 equation Bestion model

Return to equilibrium

- Intuitive test, looking for correct behaviour
 - i.e. return to saturation curve
- Initially
 - $P_o = 1.014$ bar $T_i = T_{sat} + 1$ $T_g = T_{sat} - 20$
- Single cell, $U_g = U_l = 0$
- Solid : $\alpha_{l} = \alpha_{v} = 0.5, \ \alpha_{a} = 0$
- Dashed : $\alpha_{l} = \alpha_{v} = 1/60$, $\alpha_{a} = 58/60$
- Temperatures return to saturation curve
- Methane (dashed) does not : $\alpha_v \rightarrow 0$

Block of water

- Tests compressibility effects
- With Interface capturing between liquid and vapour
 - Condensate
- Dimensionless groups
 - Bagnold number $S = \frac{\rho_L U_{2,0}^2 L_2}{2P_0 L_3}$

Collapse using Bagnold number

- Range of $U_{2,0}$, L_2 , L_3
 - Quicksteam
 - Quickmethane
 - Stiffened gas
- Bagnold number defined as :

$$S = \frac{\rho_L U_{2,0}^2 L_2}{2 P_0 L_3}$$

Pressure and temperature

- Properties approx constant inside each separate fluid
- Collapse with Bagnold
- $T_3 > T_{sat}$
 - No phase change

Water hammer

- Tank connected to a pipe with valve at end
 - Valve is suddenly closed
 - Pressure wave propagates back towards the tank and is reflected
 - Phase change possible depending on initial parameters

Water hammer

- Experimental and simulation results available²
- Good match with CATHARE code
 - CATHARE also uses steam tables
 - No phase change P_{min} higher than CATHARE code
- Match to experimental data can be improved by altering initial condition to account for physical effects²

2. G. Serre & D. Bestion, Two-Phase Water-Hammer Simulation with the CATHARE Code, 9^{th} International Conference on Nuclear Engineering; Nice, Acropolis (France); $8-12^{th}$ April 2001.

13

Without phase change

Applications

- Article title : Quick recovery of equation of state values for fluid flow simulation using Quicksteam and Quickmethane
- Attenuation of shock waves in aqueous foams
 - Pressures beyond Quicksteam's limits
 - Code not yet capable of these pressures...
 - Could apply stiffened gas or stretch
- Also used to study sloshing methane tanks
 - Liquid compressibility plays important role
 - Work of Matthieu Ancellin

Violent flows III

- Full title 'Violent flow in aqueous foams III: Comparison with experimental measurements and test cases'
- Objective : Make predictions of blast wave attenuation for a given amount of explosive
- Problems
 - Multiple phenomena to be modelled
 - Extremely high pressures
- Test cases
 - Detonation code coupled to Euler solver
 - Shock tube with water droplets
 - Droplet equations
 - 7 equation Bestion
 - Comparison with Sandia correlations

Detonation coupled to Euler code

- Use detonation model of Massoni et al. [3]
- Take data from detonation simulation
- Apply as left boundary condition in Euler simulation
 - Air and water

Shock tube with water droplets

- Experiments from [4]
- Vertical shock-tube
- Water droplets created by jet
- Shock and jet timed to meet at C6
- Strong attenuation of pressure jump

Fig. 6 View of the general experimental set-up and scheme of the shock tube with the locations of the different stations of measurements

Shock tube with water droplets

- Varying shock strength, α_i and droplet size
- Droplet model used by Jordan et al. [4]
- Results from droplet model and 7 equation Bestion
 - Both models match experiment well at M = 1.1

M = 1.5 also works, but 1.8 does not. High pressure problem needs to be rectified...

Sandia empirical data fits

- Detonation code at high pressure with Euler
- Low pressure using 7 equation Bestion
- Necessary to control T_g and P behind shock front
 - Negative values
 - using energy and mass sources
 - Would be energy and mass in real explosion

Conclusions

- Quicksteam and Quickmethane improve accuracy and robustness of multiphase simulations
 - 3 test cases
 - Article in preparation
- Good comparison with Sandia correlation for air at high pressure
- Reproduced trend for Sandia foam at low pressure
- Need to increase pressures in 7 equation Bestion model
 - Use numerical solution of Jordan matrix when matrices becomes singular