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On the occasion of the Abel Prize award to Yves Meyer.

It is a privilege to be able to relate ideas, explorations , and visions that Yves, his 
collaborators and students, developed over the last 40 years, for  some of which I 
was an active participant and observer. 
We have had a lot of fun and excitement in this adventure, continuing the 
Calderon-Zygmund vision, exploring and discovering beauty and structure. 

The  best reference for  this lecture is the paper by Yves Meyer :
“ Complex Analysis and Operator Theory in Alberto P. Calderon’s work”   in 
Selected papers of Alberto P. Calderon with commentary .    AMS  QA300.C252 ,  
2008.
I apologize in advance for many, many omissions , as the full list of contributions 
, would exceed a volume.       Only  a few of the simplest illustrations will be 
addressed.



Yves Meyer’s work in Harmonic Analysis  continues and builds on the 
Calderon-Zygmund vision and program

It was Zygmund’s view that Harmonic Analysis provides the 
infrastructure linking all areas of analysis, from complex analysis to partial 
differential equations to probability  and geometry .

In particular he pushed forward the idea that the remarkable tools of 
complex analysis , which include , contour integration , conformal 
mappings , factorization. Tools which were  used to provide miraculous 
proofs in real analysis , should be deciphered and converted to real 
variable tools ,  so that they can be “understood” and extended to other 
contexts.

.



Together with Calderon , they bucked the trend for abstraction, 
prevalent at the time, and  formed a school pushing forward this 
interplay between real and complex analysis .

A principal bridge was provided by real variable methods, Multiscale
Analysis, Littlewood Paley theory and related  Calderon representation 
formulas , later rediscovered by Morlet
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The Calderon-Zygmund world 
The key vision is the 
development of analytic 
methodologies , the challenge, 
was to prove boundedness in 
various Banach spaces, by 
leveraging the Fourier 
transform .
A  Calderon, goal was to go 
beyond convolutions.

Anthony		Zygmund

Alberto	Calderon



The next phase; beyond    C-Z.         
Nonlinear Analysis.

Multilinear Analysis, 
Analyticity in function 

spaces 

Operator 
Functional 
Calculus 

Applications to PDE 
and Complex 

Analysis
Special Spaces 
of distributions

Non convolutions , the T(1) T(b) 
theorems , the Cauchy integral

We will illustrate many of  these points on one fundamental seminal example , linking 
them all.  

The Cauchy transform and its multiple incarnations.

Meyer and Company



Natural examples of nonlinear analytic 
dependence, where serious mathematical challenges 
are posed . 
Discover the shape of flow lines of  water over a 
rough river bed .  This problem is theoretically solved 
by using the conformal map from the upper half plane 
onto  the region above the river bed. 
The image of the horizontal lines provides the flow 
lines.

Clearly the nature of the dependence of the conformal map on the shape of the river bed is 
of interest, can we quantify the effect on the flow of adding a bump or smoothing the  bed 
(This could also be part of the design of an airplane wing profile).

As we will see most of these questions , can be answered through nonlinear Calderon 
Zygmund theory , developed by Meyer and his collaborators and students.  





A similar but related problem arises when comparing two sets of points, like the 
red and black curves .  How do we measure their “similarity or distance” , this 
issue arises, when matching  hand written letters, or digits. The natural distances 
are obtained by distorting one curve to the other, and imposing a cost on the 
distortion. ( Earth mover distance  or ,transportation cost). These can also be 
measured by considering operators on functions on the set and measuring their 
distance in appropriate metrics , converting the geometry to analysis .



These earth mover distances are easily computed by considering each 
curve as a distribution in the Besov space dual to a Holder space , a 
space which is characterized by the sum of the scaled absolute value 
of  wavelet coefficients of the difference between the point 
distribution.    This transport metric becomes the distance in the 
Besov space, with the added advantage that it can be computed 
effectively.

Conceptually a version of this idea appears for matching or measuring 
continuity of solutions of the Navier Stokes equations.



Earth	Mover	Distance		computation,	equivalent	to		Besov distances	
,multiscaleanalysis	.

• Coming	back	to	comparing	2D	slices	 (rather	than	full	image	
profiles…)

• Euclidean	 distances	 in	high	dimension	 are	not	“informative”



Earth	Mover’s	Distance
• Efficient	 implementation	 via	“filtering”:
obtaining	coarser	and	coarser	views	[Shirdhonkar	&	Jacobs,	08]
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In order to understand some of the basic ideas and methods introduced by Meyer and to 
illustrate the scope of the program, we start with the basic example  of pseudo calculus, 
introduced by Calderon, of a bilinear operator needed to extend the smooth pseudo 
differential calculus, to rough environments. 
He managed by an analytical tour de force , to prove  that the so called Calderon 
commutator of           and multiplication by A     defined as; d

dx

    C(a,f)= [ d
dx

,A] f =  d
dx

(Af )− A( d
dx

f ) = A(x)− A(y)
(x − y)2∫ f (y)dy

where A' =a is a bounded  function , defines a bounded operator  in L2

 and d
dx

f = eixξ∫ |ξ | f
^
(ξ )dξ

Calderon proved this result by considering a dual form described below
reducing the result to deep complex analysis.  

Returning to fundamental challenges in Analysis . 



Let   a and f be of power series type    a= ak
^

k>0
∑ eikθ  and f= fk

^

k>0
∑ eikθ

define         h'(θ )=a(θ )f'(θ ),        h=Π(a, f )

ie                h(θ )= hk
^

k>0
∑ eikθ = a(t) f '(t)dt

0

θ

∫    where      hk
^ = ( j / k)ak− j

^

j=1

k

∑ f j
^

Here we assume that  f is in L2  and a is bounded,   Calderon proved that h is in  L2.
Meyer came  up with following simple proof .   

write     j/k =s= siγ∫  1
1+ γ 2 dγ ,    leading to the representation of h as 

 h (θ )= hγ∫  1
1+ γ 2 dγ ,   where      hγ

k
^ = k− iγ ak− j

^

j=1

k

∑ f j
^ j iγ

ie     h= M −γ∫ (aMγ ( f )) 1
1+ γ 2 dγ ,   where    Mγ ( f )(θ ) =   kiγ fk

^

k>0
∑ eikθ

Since M is an isometry on L2,  and a is bounded ,   h  is in  L2.



• There are several  points to be made here related to this seminal 
example

• C(a,f)  is a bilinear transformation  commuting with translations and 
dilations of both functional arguments

• The Fourier transform , reveals the structure and enables a simple 
representation as a sum of simple bilinear transformations of the form 
A(B(a)C(f)) ,  where A,B,C are linear operators .

An important idea,  hidden in the paraproduct
is the weak continuity of this  bilinear expression .

Observe that the product of functions is not a bilinear operation 
which is weakly continuous in the  arguments . ( consider sin(nx) which 
converges weakly to 0 while sin(nx).sin(nx) converges weakly to ½ .)
On the other hand the product of functions of analytic type is weakly 
continuous. 

 h=Π(a, f )



The simplest real variable version of the Calderon paraproduct is given as  

It is quite clear that for two sequences of distributions converging weakly in the sense that their mean converge 
to a limit  on each dyadic intervals,  the paraproduct converges weakly ,  ( for example we can have a  and  f be 
two fixed functions sampled randomly from two probability distributions , and the means ,computed 
empirically by averaging over the samples.)

More generally it was  J.M.  Bony  who discovered the utility of paraproducts to analyze nonlinear expressions 
, and developed paradifferential calculus in analyzing the propagation of singularities of nonlinear PDE. In 
particular if we replace the Haar wavelet by the Meyer wavelet ( or others) and the averaging by a low pass 
filter, he obtained the following remarkable formula in which the paraproduct captures the roughness of the 
function.

 

  h=Π(a, f ) = m I (a)
I
∑ f ,h I h I

where    h I  is the Haar function based on the dyadic interval I and m I (a) is the mean value of a
on that interval

Let F be smooth , and  f   Holder function with exponent α<1/2  then  

F( f )=Π(F '( f ), f )+ e =
I
∑ F '( f ,ϕ I f ,ψ I ψ I + e

where  e is Holder with exponent  2α ,



A class of problems in nonlinear Fourier analysis , concerns the analytic 
dependence of operators on functional parameters, as we will see such 
problems are deeply connected to all aspects of Harmonic Analysis, as we shall 
describe on the seminal example of the Cauchy transform





Consider a the graph z(x) of a function A(x) with bounded derivative  a  on the line  
i,e z(x)= x+iA(x)    and the corresponding  Cauchy integral operator 

C(a,f)(x)=limε→0  (1/2π i) f (t)
iε + z(x)-z(t)∫ z'(t)dt  =limε→0  (1/2π i) f (t)

iε + x-t+i(A(x)-A(t))
(∫ 1+ ia(t))dt 

This is the non orthogonal projection of f , onto boundary values of holomorphic functions 
above the curve . By expanding  as a series if  |a|<1-ε  we can write this integral as multilinear series .

 C(a,f)(x)= p.v
0

∞

∑ ik (A(x)-A(t))k  f (t)
(x-t)k+1 (∫ 1+ ia(t))dt  

 whose first nontrivial term is the Calderon commutator .
More generally we may want to represent a Jordan curve  by its arc length parameterization , ie

z(s)= exp(iα (t))dt
0

s

∫ ,  and assume that α  is in BMO ( bounded mean oscillation)   or that  the curve defined by z 

is a Lavrentiev curve  verifying the chord arc condition     |s-t|< C|z(s)-z(t)|.



A common remarkable component in much of the nonlinear analysis is the space
of functions of bounded mean oscillation introduced by .John and Nirenberg 

a BMO = sup I
1
|I | | a(x)−mI |

I
∫ dx  where mI   is the mean of a on the inteval I.

as we will see this space is the natural domain for a variety of nonlinear functionals.
in particular  the operator norm on L2  of the commutator of multiplication by a and the Hilbert transform
is equivalent to the BMO norm of a .  The image of bounded functions under singular integrals are in BMO 
 for example ln|x| is unbounded  but has bounded man oscillation.
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The relation with operator functional calculus ,  the Kato square root problem was 
revealed to us by Alan McIntoshIt was the basis of the remarkable
proof by Meyer of the boundedness of the Cauchy Transform. 
This and the relation to complex analysis becomes transparent
if we consider  perturbations of d/dx  obtained through conjugations by
changes of variable .  As described below; 

h(x)= (1+ a(t))
0

x

∫ dt   or more generally  h(x) = exp(β(t))
0

x

∫ dt  where   |a|<1-ε  and  β  is in BMO.

h is monotone and defines a change of variable on the line which can be used to perturb d/dx by conjugation
giving rise to the operator    1/(1+a) d/dx a simple calculation shows  that sgn[d/dx] is converted to 

f (t)
x-t+(A(x)-A(t))

dt∫       = sgn[1/(1+a) d/dx]f   ,  thus the Cauchy transform is an analytic continuation in a

of this operator , and the boundedness in L2  would imply an  analytic functional calculus of perturbations of d/dx. 

Alan McIntosh



Remarkably  if we let   Uh f = ( f !h)h '1/2  then U is unitary on L2  and the conjugation of the Hilbert transform
with U  is analytic in the functional parameter β = lnh ', viewed as an operator valued  functional, on the space BMO. 
Moreover the following  result is valid 

 UhH  Uh
−1 − H ≈ lnh ' BMO   formally this operator becomes the Cauchy transform when ln(h') is imaginary.

and   UhH  Uh
−1 f = Λk

k
∑ (β ) f       ,   Where  Λk  is a k multilinear operator valued  functional of (β,β,...β )

and      Λk < ck ( β BMO )k



Several remarkable features appear here :
• The operator valued functional is a convergent power series on BMO  and 

is the Cauchy transform on Chord arc curves .  

• The norm on BMO is the operator norm defined by the first linear term . It 
defines the space of analyticity of the nonlinear  transform .  

• The geometry  of the curve is equivalent to the property of the operator 
carried by the curve,  as shown by Guy David , S. Semmes , Peter Jones 
also in  higher dimension for Calderon Zygmund operators.



• A beautiful example; the Riemann Mapping functional mapping one side 
of a Chord-arc curve onto the upper half plane is real analytic on the 
Manifold of Chord-arc curves parameterized by BMO into  the group of 
changes of variables (preserving BMO ) itself parameterized by BMO . 
In fact BMO is characterized as the largest Banach space for which we 

have analyticity.

• This theme of discovery of the natural space is reoccurring in  Meyer’s 
work  for the Navier Stokes, and other nonlinear PDE . Where the 
appropriate Banach space structure is defined by the problem .



• As H=|d/dx| is the square root of  the Laplace operator , one can compute it 
and its perturbations through a functional calculus using the resolvent of 
the perturbations.  

• The Kato conjecture which concerns the domain of divergence form 
accretive  Laplace operators was ̀  solved   by Meyer and Dong Gao Deng 
for small perturbations and in full generality by Steven Hofmann, Pascal 
Auscher, Michael Lacey, John Lewis, Alan McIntosh and Philippe 
Tchamitchian.



• The multilinear operators arising in the powers series , can be analyzed 
and decomposed directly , using Fourier or other transforms, this 
approach provides insight and could enable efficient numerical 
implementations.

• The Cauchy integral generalizes directly to higher dimensions ,for 
example  as  double layer potential operator ,  or more generally as the 
restriction to a submanifold of a Calderon Zygmund operator of the 
appropriate homogeneity.

• The long standing problem of short time existence of water waves in 2 or 
3 dimensions, was solved by Sijue Wu using these higher dimensional 
extensions.



Multilinear operators commuting with translations , and Fourier transforms.
consider  the bilinear Calderon commutator written, as 

C(a,f) =
a(t)dt

x

y

∫
(x − y)2∫ f (y)dy = exp(ix(ξ +η) f̂ (ξ )â(η)∫ σ (ξ,η)dξdη  , 

 sigma is the bilinear symbol.
More generally this expression which defines bilinear  operators commuting with translations extends to multilinear 
operators. 

Λ(a1,a2,...ak )(x) = exp(ix(ξ1 + ξ2 + ...+ ξk ))â1(ξ1)â2 (ξ2 )...âk (ξk )∫ σ (ξ1,ξ2,...ξk )dξ1∫∫ dξ2...dξk
σ (ξ1,ξ2,...ξk ) = exp(−ix(ξ1 + ξ2 + ...+ ξk ))Λ(e1,e2,...ek )(x),    where  ek = exp(ix(ξk )).

Such expressions arise naturally , when considering power series in function space , or 
analytic dependence of natural operators  on functional parameters .  The Fourier 
representation enables partitioning Fourier space into simple components where  the symbol 
is easily expressible as a product. The challenge is the reassembly. 



The following remarkable theorem of G.David and J.L Journe , 
gives a simple necessary and sufficient condition for 
boundedness, and just as important enables dealing with k  
multilinear operators , by  induction on k.



ξ1

Another bilinear operator much harder thatn the commutator , is the bilinear Hilbert transform
defined as 

 B(f,g) =p.v f (x −αt)g(x + t)dt / t∫
here the bilinear symbol is        σ (ξ1,ξ2 ) = sgn ( αξ1 − ξ2 ) is deceivingly simple and easy to represents by partitioning 
the frequencies away from the singularity .The trouble is estimating the sum as being in some space .
This work by Lacey and Thiele, corresponds to oscillating paraproducts in space frequency , or time frquency 
atomic decompositions in terms of wavelet packets, it  creates a common method to explain 
the Carleson's theorem for Fourier series as done by Ch..Fefferman , and the Bilinear Hilbert transform .

The next example goes beyond the preceding ideas , and requires much more subtle    
book keeping to analyze



The waveforms on the left are wavelet packets which 
provide better frequency localization, they can be 
viewed as musical notes , having a pitch, duration,  
localization and amplitude, so  that the  description of a 
signal or sound, becomes more like musical notation . 

The decomposition , or orchestration of complex 
transformations on functions is a main tool of linear  
harmonic analysis , and much more so in the nonlinear 
context , where interactions are difficult to track.

wavelet packets 



The condition                                         is equivalent  to f being in BMO, and the 

Bilinear operator , can be estimated  using Littlewood Paley theory , and many of the 
tools  discussed above .

The Navier Stokes equation and adapted functional spaces .



Where are we heading , and future challenges.
Problems of nonlinear analysis and weak convergence , are “everywhere 
dense”,  for example;
• In Stochastic differential equations where the noise variance is depending on 

the solution 
The work of  M. Hairer , M. Gubinelli, T.J. Lyons and others are all centered 
around definitions of spaces of distributions, which are in the domain of weak 
continuity of nonlinear expressions.

• In statistics , say for random matrix theory , in what sense do the resolvent
operators converge to a limit as the size of the random matrix grows .  
(Matrix central limit theorems)

• In homogenization theory , Meyer , Sijue Wu , on weak limits of Green 
operators.



• Given two sets of points in space,  we can view each as a sum of dirac
measures , the Besov distance viewed as the distance in the dual space of 
Holder , is an earth mover transportation distance between the clouds of 
points .  This is a fundamental  problem is statistical machine learning , and 
empirical geometry , the adaptation of the Geometry to the structure of the 
data, is a main problem in Mathematical Empirical Modeling.  Currently 
local Euclidean geometry reigns, on the other hand geometries of data are 
controlled by the processes that generate them, biology, chemistry physics , 
all different . The tools described are adaptable to this rich setting 

• “Harmonic Hard Analysis” can be tuned , and adapted to the future of 
data/knowledge processing.  At the moment , many of the adaptive waveform 
analysis tools , are being replaced by machine learning optimizations , 
lacking fundamental estimates and error bars . A challenge is to merge the  
tools of signal processing with various machine learning methodologies. 

• Compressed sensing , has become a tool for dimensionality reduction, it 
also provides universal representations , beyond Fourier ,???? 



We see a rapid evolution, in the machine learning community to generate 
data driven descriptions of the world around us , at the  moment the world 
of artificial intelligence is showing spectacular progress on problems 
which have challenged engineers and scientists. 
These methods for automated data driven tabulations are in the process of 
being integrated with mathematics, for example in the context of the Mallat
scattering transforms, or integrated with the analysis of transformations on 
data clouds, in the same sense that the Cauchy transform on a curve reflected 
the geometric properties of the curve, and enabled quantifications of 
distances between shapes.
Although this seems farfetched , the real variable  combinatorial geometric 
multiscale methods , are  essential for the digital computational world. 
If nothing else the conceptual mathematical affinity between the different 
fields of analysis explored and developed by Meyer and his group is 
translated into the world of data-empirical modeling by computation.



Having	fun	in	1989


