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Magdalena Walias

Magdalena Walias asked me to give a talk at the ceremony of
her retirement.
The ceremony took place on the 25th of November 2016 at
Universidad Autónoma de Madrid.
I spoke on Guinand’s work.
Ildefonso Diaz suggested that Guinand’s construction of
crystalline measures could be deduced from Huygens’ principle.
Ildefonso was right as we will see now.

Jesús Ildefonso Díaz and Yves Meyer Short title 2 / 49



Magdalena Walias

Magdalena Walias asked me to give a talk at the ceremony of
her retirement.
The ceremony took place on the 25th of November 2016 at
Universidad Autónoma de Madrid.
I spoke on Guinand’s work.
Ildefonso Diaz suggested that Guinand’s construction of
crystalline measures could be deduced from Huygens’ principle.
Ildefonso was right as we will see now.

Jesús Ildefonso Díaz and Yves Meyer Short title 2 / 49



Magdalena Walias

Magdalena Walias asked me to give a talk at the ceremony of
her retirement.
The ceremony took place on the 25th of November 2016 at
Universidad Autónoma de Madrid.
I spoke on Guinand’s work.
Ildefonso Diaz suggested that Guinand’s construction of
crystalline measures could be deduced from Huygens’ principle.
Ildefonso was right as we will see now.

Jesús Ildefonso Díaz and Yves Meyer Short title 2 / 49



Magdalena Walias

Magdalena Walias asked me to give a talk at the ceremony of
her retirement.
The ceremony took place on the 25th of November 2016 at
Universidad Autónoma de Madrid.
I spoke on Guinand’s work.
Ildefonso Diaz suggested that Guinand’s construction of
crystalline measures could be deduced from Huygens’ principle.
Ildefonso was right as we will see now.

Jesús Ildefonso Díaz and Yves Meyer Short title 2 / 49



Magdalena Walias

Magdalena Walias asked me to give a talk at the ceremony of
her retirement.
The ceremony took place on the 25th of November 2016 at
Universidad Autónoma de Madrid.
I spoke on Guinand’s work.
Ildefonso Diaz suggested that Guinand’s construction of
crystalline measures could be deduced from Huygens’ principle.
Ildefonso was right as we will see now.

Jesús Ildefonso Díaz and Yves Meyer Short title 2 / 49



Magdalena Walias

Viernes 25-11-2016

Sala  520    11:30
Departamento de Matemáticas

Magdalena Walias
En homenaje a 

Yves Meyer
Measures with locally finite

support and spectrum

Jesús Ildefonso Díaz and Yves Meyer Short title 3 / 49



Magdalena Walias

Jesús Ildefonso Díaz and Yves Meyer Short title 4 / 49



Abstract

New Poisson summation formulae have been recently
discovered by Nir Lev and Alexander Olevskii since 2013.
But some other examples were concealed in an old paper by
Andrew Guinand dating from 1959 and published by Acta
Mathematica.
Guinand’s claims were proved in 2014. It took 55 years to
understand Guinand’s paper.
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Abstract

In the present contribution a third approach is proposed. As it
was guessed by Ildefonso Diaz, Guinand’s work follows from
Huygens’ principle for the three dimensional torus.
If the initial velocity is a Dirac mass at the origin, the solution is
Guinand’s distribution.
Using this new approach one can construct a large family of
initial velocities which give rise to crystalline measures
generalizing Guinand’s solution.
Huygens’ principle holds on a large class of homogeneous
spaces derived from the Coxeter group (so, for example, the
Weyl groups of simple Lie algebras). This approach will yield
new crystalline measures.
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Jesús Ildefonso Díaz and Yves Meyer, Poisson summation formulae
and the wave equation with a finitely supported measure as initial
velocity. African Diaspora Journal of Mathematics, Volume 20,
Number 1, pp. 113 (2017).
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Definition of crystalline measures

Definition

The Fourier transform F(f ) = f̂ of a function f is defined by
f̂ (y) =

∫
Rn exp(−2π ix · y)f (x) dx .

Definition
A set of points Λ ⊂ Rn is locally finite if, for every compact set B,
Λ ∩ B is finite.
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Definition of crystalline measures

A set of points Λ ⊂ Rn is uniformly discrete if

(1) inf
{λ, λ′∈Λ, λ′ 6=λ}

|λ′ − λ| = β > 0.
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Definition of crystalline measures

Definition
A crystalline measure is an atomic measure µ on Rn which satisfies
the conflicting but fortunately compatible properties:

(a) µ is supported by a locally finite set
(b) µ is a tempered distribution
(c) the distributional Fourier transform µ̂ of µ is also an atomic

measure supported by a locally finite set.
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Definition of crystalline measures

Let Λ be the support of a crystalline measure µ and let S be its
spectrum, i.e. the support of µ̂. We then have

(2) µ =
∑
λ∈Λ

aλδλ, µ̂ =
∑
y∈S

byδy .

It yields the following generalized Poisson summation formula:

(3)
∑
λ∈Λ

aλ f̂ (λ) =
∑
y∈S

by f (y), ∀f ∈ S(Rn).
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Definition of crystalline measures

A well known example is given by the standard Poisson
summation formula where Λ is a lattice. A lattice Γ ⊂ Rn is
defined by Γ = AZn where A ∈ GL(n,R).

A Dirac comb is a sum µ =
∑
γ∈Γ δγ of Dirac masses δγ on a

lattice Γ. The Fourier transform of the Dirac comb on a lattice Γ is
(up to a constant factor) the Dirac comb on the dual lattice Γ∗.

This is the standard Poisson summation formula which plays a
seminal role in X-ray crystallography and molecular biology.
Other Poisson summation formulae, which will be called
generalized Dirac combs, directly follow from the standard one.
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Definition of crystalline measures

The collection of crystalline measures is a vector space. It is not
a Banach space. If µ is a crystalline measure and if P is a finite
trigonometric sum then Pµ is also a crystalline measure. These
two remarks are used in the following definition:

Definition
Let σj be a Dirac comb supported by a coset aj + Γj of a lattice
Γj ⊂ Rn, 1 ≤ j ≤ N. Let gj be a finite trigonometric sum and µj = gj σj .
Then µ = µ1 + · · ·+ µN will be called a generalized Dirac comb.

The Fourier transform of a generalized Dirac comb is a
generalized Dirac comb.
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Definition of crystalline measures

Definition
A crystalline measure µ which is not a generalized Dirac comb is
called an exotic crystalline measure.

It is the case if the support Λ of µ is not contained in a finite union⋃N
1 (aj + Γj ) of co-sets of lattices.

Lemma
If µ is a crystalline measure and if the density of the support of µ is
infinite then µ is an exotic crystalline measure.
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Definition of crystalline measures

This observation will apply to Guinand’s measure. Our goal is the
construction of exotic crystalline measures. Two methods are
proposed. The first one (sketched now but detailed in the
Appendix) uses Guinand’s mysterious ideas.
Huygens’ principle yields a second construction.
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Guinand’s construction

Let r3(n), n ∈ N, be the number of points k ∈ Z3 such that
|k |2 = n. Guinand’s distribution σ ∈ S ′(R) is defined by

(4). σ = −2
d
dx
δ0 +

∞∑
1

r3(n)n−1/2(δ√n − δ−√n)

Guinand’s distribution is odd.
We have

∑N
0 r3(n)n−1/2 = 2πN + O(N1/4) which implies that σ is

a tempered distribution. Guinand proved the following:

Theorem
[Guinand] The distributional Fourier transform of σ is −iσ.

This follows from Huygens’ principle as it will be proved later on.
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Guinand-Y’s measure

For α ∈ (0,1) we define

(5) τα(x) = (α2 +
1
α

)σ(x)− ασ(αx)− σ(x/α)

Then the derivative of the Dirac mass at 0 disappears from this
linear combination.
Guinand’s theorem implies:

τ̂α(y) = (α2 +
1
α

) σ̂(y)− σ̂(y/α)− ασ̂(αy) = −iτα(y).
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Guinand-Y’s measure

Fix α = 1/2 in the preceding construction. Define χ(n) = −1/2 if
n ∈ N \ 4N, χ(n) = 4 if n ∈ 4N \ 16N, and χ(n) = 0 if n ∈ 16N.
Let τ = τ1/2. Then we have

Theorem
[Guinand-Y.] The Fourier transform of the measure

(6) τ =
∞∑
1

χ(n)r3(n)n−1/2(δ√n/2 − δ−√n/2)

is −iτ.
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Guinand-Y’s measure

Guinand-Y’s theorem will also follow from Diaz’ approach.

The support of τ is the set Λ = {±
√

m
2 , m 6= 4j (8k + 7), j , k ∈ N}.

Therefore the density of Λ is infinite and τ is an exotic crystalline
measure.
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Ildefonso Diaz and the wave equation

The following theorem will be proved now:

Theorem
[Ildefonso-Y.] Let V be a three dimensional torus (viewed as a
Riemannian manifold). Let ν be a finitely supported measure on V
such that

∫
V d ν = 0. Let u : V × R 7→ R be the solution of the Cauchy

problem

(i) ∂2

∂t2 u(x , t) = ∆ u(x , t)

(ii) u(x ,0) = 0, ∂
∂t u(x ,0) = ν.

This solution u(x , t) is extended to t ≤ 0 by u(x ,−t) = −u(x , t).

Then t 7→ u(x0, t) is a crystalline measure for every x0 ∈ V which
does not belong to the support of ν.
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Guinand’s distribution revisited

Guinand-Y’s theorem is now a direct corollary. Guinand’s theorem is
not needed. It suffices to define ν by the following four conditions: ν is
supported by {k/4, k ∈ Z3}, ν does not charge Z3, the mass of ν on
each point in (Z3/2) \ Z3 is 1/2, and the charge of ν on each point in
(Z3/4) \ (Z3/2) is −1/16.
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Guinand’s distribution revisited

Well-known facts:

Lemma

Let E = D′(T3) denotes the space of Schwartz distributions on T3.
Then for every u1(x) ∈ E there exists a unique solution
u(x , t) ∈ C∞([0,∞),E) of the Cauchy problem

(i) ∂2

∂t2 u(x , t) = ∆ u(x , t)

(ii) u(x ,0) = 0, ∂
∂t u(x ,0) = u1(x).

Moreover t 7→ u(x , t) extended to R as an odd function of t belongs to
C∞(R,E)
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Guinand’s distribution revisited

Let u1(x) =
∑

k∈Z3 α(k) exp(2πik · x) be the Fourier series
expansion of u1(x). Then the solution u(x , t) defined by Lemma
3.1 is given by

(7) u(x , t) = α(0)t +
∑

k∈Z3\{0}

α(k)
sin(2πt |k |)

2π|k |
exp(2πik · x).

A similar result holds for the wave equation on R3 where E is
replaced by the Schwartz space S ′ of tempered distributions on
R3.

If we are given a tempered distribution u1(x) on R3 there exists a
unique solution u(x , t) of the wave equation
∂2

∂t2 u(x , t) = ∆ u(x , t) such that u(x ,0) = 0, ∂
∂t u(x ,0) = u1(x). It

is given by û(ξ, t) = sin(2πt|ξ|)
2π|ξ| û1(ξ).
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Guinand’s distribution revisited

We now introduce Guinand’s distribution.

Corollary

Let w(x , t) be defined on T3 × R by

(8) w(x , t) = t +
∑

k∈Z3\{0}

sin(2πt |k |)
2π|k |

exp(2πik · x).

Then w(x , t) is the solution to the following Cauchy problem for the
wave equation on T3 × R
(i) ∂2

∂t2 u(x , t) = ∆ u(x , t)

(ii) u(x ,0) = 0, ∂
∂t u(x ,0) = δ0(x).
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Huygens’ principle

But w(x , t) can also be computed by periodization of the solution
of the same Cauchy problem on R3 × R. This scheme is detailed
now.

Lemma
Let σt , t ∈ R, be the normalized surface measure on the sphere
Bt ⊂ R3 centered at 0 with radius |t | (the total mass of σt is 1). Then
v(x , t) = t σt (x) belongs to C∞(R,S ′(R3)) and is the solution of the
Cauchy problem:

∂2

∂t2 u(x , t) = ∆ u(x , t)

u(x ,0) = 0,
∂

∂t
u(x ,0) = δ0(x).
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Guinand’s distribution revisited

Corollary

Under the assumptions of Lemma 3.2 one has that

(9) w(x , t) =
∑
k∈Z3

t σt (x − k)

is the solution of the following Cauchy problem for the wave equation
on the three dimensional torus:
(a) w(x ,0) = 0
(b) ∂

∂t w(x ,0) = δ0(x).

The two expansions of w(x , t) given by (8) and (9) are equal and this
is the main step to the proof of Guinand’s theorem.
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Guinand’s distribution revisited

Lemma
With the preceding notations we have

(10) w(x , t) =
∑
k∈Z3

t σt (x−k) = t +
∑

k∈Z3\{0}

sin(2πt |k |)
2π|k |

exp(2πik ·x).

This identity holds in C∞(R,S ′(R3)).
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Guinand’s distribution revisited

Let us compute the trace on x = x0 of the LHS and RHS of (10)
as a function of t . This trace is defined as follows.

Definition

A distribution u(x , t) ∈ S ′(R3 × R) defines a continuous mapping from
R3 to S ′(R) if for every test function φ ∈ S(R), the distribution
< u(x , ·), φ(·) > is a continuous function of x ∈ R3.

The RHS of (10) fulfills this requirement since φ̂(|k |) is rapidly
decreasing for φ ∈ S(R). Therefore the trace w(x0, t) exists for
every x0 ∈ R3 and belongs to S ′(R).
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Guinand’s distribution revisited

For computing the trace of the LHS of (10) one uses the following
observation:

Lemma

For every x0 ∈ R3 \ {0}, the trace on x = x0 of the tempered
distribution tσt (·) ∈ S ′(R3 × R) is 1

4π|x0| (δ|x0| − δ−|x0|).

This elementary fact follows form a simple calculation if one
observes that tσt (·) is odd in t .
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Guinand’s distribution revisited

Lemma 3.4 implies the following

Lemma

If x0 /∈ Z3 the trace of
∑

k∈Z3 t σt (x − k) is∑
k∈Z3

1
4π|x0−k| (δ|x0−k| − δ−|x0−k|).
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Guinand’s distribution revisited

We can conclude: Let x0 /∈ Z3. Then we have∑
k∈Z3

1
|x0 − k |

(δ|x0−k| − δ−|x0−k|) =

(11) 4πt + 2
∑

k∈Z3\{0}

sin(2π|k |t)
|k |

exp(2πik · x0)

and theses two series converge in S ′(R).

If x0 = 0 he RHS of (11) is the Fourier transform of the Guinand’s
distribution.
This identity does not make sense if x0 = 0 which is needed for
recovering Guinand’s theorem (this is not needed to recover the
Guinand-Y’s theorem). As it will be seen the divergence which
occurs is responsible for the derivative of the Dirac mass in the
definition of σ.
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Guinand’s distribution revisited

To settle this problem it suffices to observe that the distribution∑
k∈Z3\{0}

sin(2π|k|t)
|k| exp(2πik · x) is continuous on R3.

We then compute w(0, t) in (10) as limx→0, x 6=0 w(x , t).
Then 1

|x0| (δ|x0| − δ−|x0|)→ −2 d
dt δ0 as x0 → 0 which yields a new

proof of Guninand’s theorem.
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Proof of Ildefonso-Y.’s theorem

It can be assumed that x0 = 0. Then

(12) u(x , t) =
∑
γ∗∈Γ∗

ν̂(γ∗)
sin(2πt |γ∗|)

2π|γ∗|
exp(2πix · γ∗)

and we also have as above

(13) u(x , t) =
∑
γ∈Γ

(t σt ∗ ν)(x − γ).

By (13) u(0, t) is an atomic measure and by (12) u(0, t) is the
Fourier transform of the atomic measure

(14) µ =
∑
γ∗∈Γ∗

i ν̂(γ∗)

4π|γ∗|
(δ|γ∗| − δ−|γ∗|).

Let F be the support of ν. Then the support of the crystalline
measure µ is the set Λ = {±|γ∗|, γ∗ ∈ Γ∗, γ∗ 6= 0} and its
spectrum is the set S = {±|x + γ|, γ ∈ Γ, x ∈ F}.
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Concluding remarks

The detour by the wave equation on the three dimensional torus
provided us with a remarkable understanding of Guinand’s
distribution and Guinand’s measure. Let us observe that the
crystalline measures of I. Diaz and Y.M. are odd measures. However
there exist many more odd crystalline measures than those described
by I. Diaz and Y.M. . For example if α in (5) is irrational the
corresponding crystalline measure τα cannot be described by our
method. On the other hand Guinand proposed some examples of
even crystalline measures in [3] without giving satisfactory proofs.
These proofs were completed in [12].
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Concluding remarks

Finally an important family of even crystalline measures was
constructed by D. Radchenko and M. Viazovska in [14]. They
proved the following theorem:

Theorem
For every real number θ > 0 there exists a sequence
an = an(θ), n ∈ N, such that

µθ =
∞∑
0

an(δ√n + δ−
√

n)

is a crystalline measure and its Fourier transform is

µ̂θ = δθ + δ−θ +
∞∑
0

bn(δ√n + δ−
√

n).
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The authors are indebted to Kristian Seip for pointing out this
reference. Crystalline measures are still mysterious mathematical
objects.
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Guinand’s construction

Let us begin with Guinand’s genuine construction as it can be
found in [3]. By Legendre’s theorem, an integer n ≥ 0 can be
written as a sum of three squares (02 being admitted) if and only
if n is not of the form 4j (8k + 7), j , k ∈ N.
For instance 0, 1, 2, 3, 4, 5, 6 are sums of three squares but 7 is
not. Let r3(n) be the number of decompositions of the integer
n ≥ 1 into a sum of three squares (with r3(n) = 0 if n is not a sum
of three squares).
More precisely r3(n) is the number of points k ∈ Z3 such that
|k |2 = n. We have
r3(4n) = r3(n), ∀n ∈ N, r3(0) = 1, r3(1) = 6, r3(2) = 12, . . . .
Then r3(2j ) = 6 if j is even and 12 if j is odd.
The behavior of r3(n) as n→∞ is erratic.
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Guinand’s construction

Guinand began his seminal work [3] with a simple lemma

Lemma
For every a > 0 we have

1 +
∞∑
1

r3(n) exp(−πna) =

(14) a−3/2 + a−3/2
∞∑
1

r3(n) exp(−πn/a).
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Guinand’s construction

Guinand continued as follows. Let
fa(x) = x exp(−πax2), x ∈ R, a > 0. Then fa(x) is odd and its
Fourier transform is

f̂a(y) = −ia−3/2y exp(−πy2/a).

Now (4) can be written

dfa
dx

(0) +
∞∑
1

r3(n)n−1/2fa(
√

n) =

(15) i
d f̂a
dx

(0) + i
∞∑
1

r3(n)n−1/2 f̂a(
√

n).
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Guinand’s construction

Guinand introduced the odd distribution σ ∈ S ′(R) defined by

(16) σ = −2
d
dx
δ0 +

∞∑
1

r3(n)n−1/2(δ√n − δ−√n)

which will be named Guinand’s distribution.
We have

∑N
0 r3(n)n−1/2 = 2πN + O(N1/4) which implies that σ is

a tempered distribution. Guinand proved the following

Theorem
The distributional Fourier transform of σ is −iσ.
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Guinand’s construction

The oscillating behavior at infinity of Guinand’s distribution
follows from Guinand’s theorem.
Since the Fourier transform of δ√n − δ−√n is −2i sin(2π

√
nx), the

Fourier transform of the tempered distribution

σ = −2
d

d x
δ0 +

∞∑
1

r3(n)n−1/2(δ√n − δ−√n)

is
σ̂ = −iσ̃ where

σ̃ = 4πx + 2
∞∑
1

r3(n)n−1/2 sin(2π
√

nx).
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Guinand’s construction

Then Guinand’s theorem can be written equivalently σ = σ̃. This
remark will play a seminal role in Section 4.
The terminology of signal processing is used in the following
corollary.
It happens that a signal can be decomposed into the sum
between a trend and some fluctuation around this trend.
A trend indicates the large scale evolution of the signal. An
obvious example is given by the stock market.
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Guinand’s construction

Corollary

Guinand’s distribution is the sum of the trend 4πt and a fluctuation
which is an almost periodic distribution. ıMore precisely we have

(17) σ(t) = 4πt + 2
∞∑
1

r3(n)n−1/2 sin(2π
√

nt).

Using the variable t is intentional.
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Guinand’s construction

Let us observe that σ is not an almost periodic distribution.
We recall that a tempered distribution τ is almost periodic if for
every test function φ in the Schwartz class the convolution
product τ ∗ φ is an almost periodic function in the sense of Bohr.
This definition was proposed by L. Schwartz in [15].
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Guinand’s construction

We return to Guinand’s theorem. We need to prove
〈σ, φ̂〉 = −i〈σ, φ〉 for every test function φ.

But (5) can be rewritten as 〈σ, fa〉 = i〈σ, f̂a〉 or 〈σ, fa〉 = i〈σ̂, fa〉.
The collection fa, a > 0, of odd functions is total in the subspace
of odd functions of the Schwartz class and σ is a tempered
distribution. By continuity it implies 〈σ, f 〉 = i〈σ̂, f 〉 for every odd
function in the Schwartz class.
For even functions φ the identity 〈σ, φ̂〉 = −i〈σ, φ〉 is trivial since σ
is odd and 〈σ, φ̂〉 = −i〈σ, φ〉 = 0. Every function in the Schwartz
class is the sum of an even one and of an odd one which ends
the proof.
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This proof belongs to Guinand. We now move one small step beyond
Guinand’s work and extract what we call Guinand’s measure from
Guinand’s distribution.
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Guinand’s construction

If χ was erased from (9) τ would no longer be a crystalline
measure. The cancellations provided by χ are playing a key role.
The measure τ is not an almost periodic measure.
A Borel measure µ is almost periodic if for every compactly
supported continuous function f the convolution product g = µ ∗ f
is an almost periodic function in the sense of Bohr.
An almost periodic measure is translation bounded, which is not
the case for τ. Indeed |τ |([x , x + 1])→∞, x →∞. But τ is an
almost periodic distribution.
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Guinand’s construction

If µ is a crystalline measure and if µ̂ = λµ then λ ∈ {1,−1, i ,−i}.
Conversely for each of these four eigenvalues there exists a
crystalline measure µ such that µ̂ = λµ. This will be proved in a
forthcoming paper.
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The wave equation

Since the Fourier transform of δ√n − δ−√n is −2i sin(2π
√

nt), the
Fourier transform of the tempered distribution

σ = −2
d
dt
δ0 +

∞∑
1

r3(n)n−1/2(δ√n − δ−√n)

is −iσ̃ where

σ̃ = 4πt + 2
∞∑
1

r3(n)n−1/2 sin(2π
√

nt).

This was already observed in Section 3. Using the variable t
here is intentional.
Then Guinand’s theorem can be written equivalently

(18) σ = σ̃

As it was proved above (10) becomes an obvious geometrical
fact if it is translated into the language of the wave equation.
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