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Wavelet theory from continuous to discrete : a golden decade

1981-1983 : theory of the continuous wavelet transform (Morlet-Grossmann)

1984 : stable discretization using frame theory (Daubechies)

1985 : construction of an orthonormal wavelet basis (Meyer)

1986-1987 : multiresolution analysis framework (Mallat-Meyer)

1988 : compactly supported orthonormal wavelets (Daubechies)



Multiresolution analysis and refinable functions

Sequences of nested spaces · · · ⊂ Vj ⊂ Vj+1 ⊂ · · · of the particular form

Vj := span{ϕ(2j · −k) : k ∈ Z},

are the natural framework for the construction of wavelet bases.

From V0 ⊂ V1, the scaling function ϕ should satisfy a two-scale equation

ϕ(x) = 2
∑
n∈Z

hnϕ(2x − n),

with a sequence (hn)n∈Z such that
∑

hn = 1.

Example : ϕ = χ[0,1] = ϕ(2x) + ϕ(2x − 1), that is h0 = h1 = 1
2

.

The coefficients hn play a key role, as filters, in fast wavelet transform algorithms.

Idea : any function that satisfies a two-scale equation of the above type is a natural
candidate to generate a multiresolution analysis and in turn a wavelet basis. So let us
design the coefficients hn in such way that the solution ϕ has desirable properties.

Such functions are called “refinable function”. They were independently identified in
computer-aided geometric design as limits of refinement algorithms called subdivision
schemes (Cavaretta-Dyn-Levin, Dahmen-Michelli, 1980’s).
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Example : the B-splines

The choice h0 = h3 = 1/8 and h1 = h2 = 3/8 gives the quadratic B-spline ϕ = B2.
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Figure 2.2.1: Decomposition of the quadratic B-spline as a combination of
its scaled versions

Corollary 2.2.2 The function ' = BN is L2-stable. The associated or-
thonormal and dual scaling functions 'o, 'd are well defined in V0 and
have exponential decay at infinity. If N is odd, the associated interpolatory
function 'i is well defined in V0 and has exponential decay.

Proof From (2.2.41), we obtain

'̂(!) = [B̂0(!)]N+1 =
hei! � 1

i!

iN+1

, (2.2.44)

so that

|'̂(!)|2 =
h sin(!/2)

!

i2(N+1)

, (2.2.45)

does not vanish on [�⇡,⇡]. Thus S'(!) does not vanish and the existence
and properties of 'o and 'd follow from the first part of Corollary 2.2.1.

For odd N = 2M � 1, we have

'̂(!) = e�iM!
h sin(!/2)

!

i2M

. (2.2.46)

which shows that R'(!) = e�iM!SBM�1(!). It follows that R'(!) does not
vanish, and the existence and properties of 'i follow from the second part

The B-spline of degree n is given by Bn = (∗)n+1χ[0,1] (piecewise polynomials of

degree n and globally Cn−1).

Two-scale equation obtained by convolution of the equation for B0 = χ[0,1].



Example : Daubechies orthonormal scaling functions

With a judicious choice of (h0, h1, h2, h3), Ingrid Daubechies constructs a scaling
function ϕ that has orthonormal integer translates.
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Figure 2.10.3: Orthonormal scaling function and wavelet (N = 2)

This function has no simple explict expression, but the coefficients hn are explicitely
given. It is not C1 but has C s Hölder smoothness for s ∼ .55. Arbitrarily smooth such
functions can be constructed up to raising their support length.



An explicit expression

Application of Fourier transform to ϕ(x) = 2
∑

n∈Z hnϕ(2x − n) gives

ϕ̂(ω) = m(ω/2)ϕ̂(ω/2), m(ω) =
∑
n∈Z

hne
−inω.

and by iterating and using that m(0) = 1, we obtain

ϕ̂(ω) =
∏
j≥1

m(2−jω).

Smooth ϕ can be constructed by taking m(ω) =
(

1+e−iω

2

)n+1
p(ω), so that

ϕ̂(ω) = B̂n(ω)P̂(ω), B̂n(ω) =
(1 − e−iω

iω

)n+1
, P̂(ω) :=

∏
j≥1

p(2−jω).

The construction of scaling function and wavelets by this strategy has been intensively
studied, it led to the construction of the often used biorthogonal wavelets in 1992.

At that time, the graduate course of Yves Meyer was a “real time workshop” with new
constructions and results being anounced and presented every week.
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Besov spaces

The space Bs
p,q describes functions with s derivatives in Lp (fine tuning by q). Here for

simplicity we take q = p ∈]0,∞[ and s > 0.

Oleg Besov (1959) : let Ω ⊂ Rd be a domain, and ∆h : f 7→ f (· + h) − f be the finite
difference operator and ∆m

h its power for m an integer such that m > s. A function
f ∈ Lp(Ω) belongs to Bs

p,p(Ω) if and only if,(∫
t≥0

(
t−s sup

|h|≤t
‖∆m

h f ‖Lp(Ωh)

)p dt
t

)1/p
<∞

Here Ωh := {x ∈ Ω : [x , x +mh] ⊂ Ω}. The above-quantity added to ‖f ‖Lp defines a
norm on Bs

p,p(Ω).

Yves Meyer (1990) : let (ψλ) be an orthonormal wavelet basis of L2(Ω) with
generating wavelet of class C r for r ≥ s. A function f =

∑
dλψλ belongs to Bs

p,p(Ω)
if and only if, (∑

λ

2ap|λ||dλ|
p
)1/p

<∞, a := s +
d

2
−

d

p

Here ψλ ∼ 2dj/2ψ(2j · −k), and we use the notation |λ| = j for the scale level. The
above-quantity defines an equivalent norm on Bs

p,p(Ω). This shows that wavelets are
unconditional bases of these spaces.
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Consequences

In particular, when s = d
p
− d

2
for some p < 2, then a = 0 so that ‖f ‖Bs

p,p
∼ ‖(dλ)‖`p .

Simple expression of classical results : with s = d
p
− d

2
for p < 2, the critical Sobolev

embedding Bs
p,p ⊂ L2 is equivalent to the obvious observation that `p ⊂ `2

This embedding is not compact, yet an important approximation result holds : the
best n-term approximation of f is defined fn =

∑
λ∈Λn

dλψλ where Λn corresponds to
the n largest |dλ|. Observation by Stechkin :

(dλ) ∈ `p =⇒ ‖f − fn‖L2 ≤ Cn−r , C =: ‖(dλ)‖`p , r =
1

p
−

1

2
.

Proof : use (dk )k≥1 the decreasing rearrangement of (|dλ|) and combine

‖f − fn‖2
L2 =

∑
k>n

d2
k ≤ d2−p

n

∑
k>n

dp
k ≤ Cpd2−p

n and ndp
n ≤

n∑
k=1

dp
k ≤ Cp .

This result can be improved according to

(dλ) ∈ `pw ⇐⇒ ‖f − fn‖L2 ≤ Cn−r , r =
1

p
−

1

2
,

where `pw := {(dλ) : supk≥1 k
1/pdk <∞}.
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Sparsity

Small dimensional phenomenon in high dimensional context.

A few numerically significant coefficients concentrate most of the energy.



Measuring sparsity

In the previous results r = 1
p
− 1

2
→ ∞ as p → 0. The value of p quantifies the

amount of sparsity in the coefficient sequence (dλ).

This give the rate n−s/d for best n-term wavelet approximation in L2 when f ∈ Bs
p,p

with d = d
p
− d

2
, however in the above observations, (ψλ) could be any orthonormal

(or Riesz) basis.

Sparsity play a key role in various applications :

signal and image compression : allocate more bits to the large coefficients.

denoising and estimation : retain the observed coefficients that exceed noise level.

adaptive numerical simulation : approximate adaptively the solution to a PDE.

David Donoho (1993) : “Unconditional bases are optimal basis for data compression
and for statistical estimation”.

The hunt for sparsity is open

Sparse approximation is an instance of nonlinear approximation theorized in the 1980’s
by Ronald Devore, Pencho Petrushev, Vasil Popov.
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Images and BV functions

f ∈ BV if and only if f ∈ L1 and ∇f is a finite measure.

Prototype : χΩ with Ω of a set of finite perimeter.

BV ([0, 1]2) was proposed as a model for images :“piecewise smooth” with edge
singularities of finite length.

Cohen-DeVore-Petrushev-Xu (1993) : for the wavelet representation f =
∑

dλψλ,

f ∈ BV ([0, 1]2) ⇒ (dλ) ∈ w`1,

i.e. dk ≤ Ck−1.

Sharp estimate over BV : if f = χΩ then dk ≥ ck−1.

Optimal estimate for all bases

Best result for Fourier coefficients (Bourgain) :
∑

n∈Z2 (1 + |n|)−1|cn | <∞.

Yves Meyer : “In a world where images are the BV functions and the eye measures
error in L2, wavelets are the best tool”.
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Best result for Fourier coefficients (Bourgain) :
∑

n∈Z2 (1 + |n|)−1|cn | <∞.

Yves Meyer : “In a world where images are the BV functions and the eye measures
error in L2, wavelets are the best tool”.



Cubist images

Edges of BV functions have finite length, but no geometric smoothness. One could
hope for sparser representation for classes of images with geometrically smooth edges.

One of the simplest classes consists of piecewise constant images with straight edges.

Yves Meyer (2001) : let f = χΩ where Ω is a polygon of [0, 1]2, then the decreasingly
rearranged Fourier coefficients ck = ck (f ) decay at rate

ck ≤ Ck−1 log(k),

quite similar to wavelet coefficients.

In higher dimension d > 2, when Ω is a polyhedron of [0, 1]d , this property persists
with

ck ≤ Ck−1 log(k)d−1,

and Fourier representations are then sparser than wavelet representations.
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Cartoon images

The C2-C2 model : u is of the form
∑m

j=1 ujχΩj
, where the uj are C2 functions and

Ωj have piecewise C2 boundaries.

Candes-Donoho (1998) introduce multiscale representation systems with directional
selectivity : curvelets frames of the form

ψλ = 23j/2ψ(D jRl · −k), j ≥ 0, k ∈ Z, l = 0, . . . , 2j ,

where D = (4 0
0 2) and Rl is a rotation by πl2−j .

They prove that the curvelet representation
∑

dλψλ of u obeying the C2-C2 model
satisfies

(dλ) ∈ `p , p >
2

3
,

improving on wavelet and Fourier representation of such functions. The exponent 2/3
is optimal.

Variants : contourlets, shearlets, bandlets, anisotropic finite elements.
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Sparsity in high dimensions

Numerical approximation of functions of many variables suffers from the curse of
dimensionality. Example : best n-term wavelet approximation rate for Bs

p,p is n−s/d .

A source of infinite dimensional problems : parametrized PDEs. Elementary example :

−div(a∇u) = f in Ω ⊂ IRm and u = 0 on ∂Ω,

where f ∈ L2 if fixed and the diffusion function is parametrized according to

a = a(y) = a +
∑
j>0

yjψj y = (yj )j>0 ∈ U := [−1, 1]N,

where a and (ψj )j≥1 are in L∞, such that 0 < r ≤ a(y) ≤ R <∞ for all y ∈ U.

Polynomial expansions of the solution map from U to V = H1
0 (Ω) :

y 7→ u(y) =
∑
ν

uνy
ν, yν =

∏
j≥1

y
νj
j , ν = (ν1, ν2, . . . ).

Cohen-DeVore-Schwab (2011) : for any p < 1,∑
j

‖ψj‖pL∞ <∞ =⇒ ∑
ν

‖uν‖pV <∞.
Other approaches for high dimensional problems : sparse tensor formats, sparse grids.
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Exploiting sparsity in a different way

Assume that f is a sparse signal or image (in some basis).

Classical way to encode f : retain its k largest coordinates in the basis and encode
them. This requires to compute all coordinates before discarding the small one.

Compressed sensing (Donoho, Candes-Tao, 2000’s) : use m linear measurements of f
prescribed in advance, and exploit that f is sparse in order to reconstruct it accurately
from these measurements.

In other word, we observe y = Φf ∈ Rm with Φ a fixed measurement matrix and we
want to build g = ∆(y) close to f .

Key ingredient : ∆ should be nonlinear.
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An instructive example : 2D tomography (Candes-Romberg-Tao)

The Radon transform captures partial Fourier information.

Left : the Logan-Shep phantom test image

Right : position of the observed Fourier coefficients (white)



Two different reconstructions

Left : put the unknown coefficient to zero (minimum `2 norm) and reconstruct the
partial Fourier serie ⇒ oscillation artifacts.

Right : adjust the unknown coefficients so to minimize the total variation of the image
|f |TV =

∫
|∇f | ⇒ nearly exact reconstruction !



Questions

Let Σk be the set of k-sparse vectors (x ∈ RN with at most k non-zero entries).

 m

y xΦ

n

 

Minimal number m of measures which is sufficient to characterize any x ∈ Σk .

With which matrices Φ ? Which decodes ∆ ?

Robustness ? In practice, y = Φx + e with ‖e‖`2 ≤ ε and x ∈ Rn close to Σk .
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Reconstruction results

With m = 2k measures and generic choice of Φ, one can reconstruct exactly any
x ∈ Σk , but...

(i) Complex decoder : ∆(y) := Argmin{‖y −Φz‖ : z ∈ Σk }, and therefore O(Nk )
least square systems to solve. Alternative : ∆(y) := Argmin{‖z‖0 : Φz = y }, with
‖z‖0 = #{i : zi 6= 0}, same complexity.

(ii) No robustness to noise and deviation from Σk .

Candes-Tao (2005) : using m ∼ ck log(N/k) measures and specific Φ which satisfy
restricted isometry properties (RIP), one can reconstruct exactly any x ∈ Σk , with

(i) Simple decoder : ∆(y) := Argmin{‖z‖1 : Φz = y } with ‖z‖1 := |z1| + · · · + |zn |,
convex optimization, linear programming.

(ii) Robustness : ‖x − ∆(Φx)‖ controlled by noise and deviation of x from Σk .

but... Φ obtained by probabilistic techniques. Example : Φ = (Φi,j ) with Φi,j

independant random draws of Bernoulli ±1 or gaussians N (0, 1).

Deterministic constructions known for m ∼ ck2 log(N/k) (DeVore, Calderbank).



Reconstruction results

With m = 2k measures and generic choice of Φ, one can reconstruct exactly any
x ∈ Σk , but...

(i) Complex decoder : ∆(y) := Argmin{‖y −Φz‖ : z ∈ Σk }, and therefore O(Nk )
least square systems to solve. Alternative : ∆(y) := Argmin{‖z‖0 : Φz = y }, with
‖z‖0 = #{i : zi 6= 0}, same complexity.

(ii) No robustness to noise and deviation from Σk .

Candes-Tao (2005) : using m ∼ ck log(N/k) measures and specific Φ which satisfy
restricted isometry properties (RIP), one can reconstruct exactly any x ∈ Σk , with

(i) Simple decoder : ∆(y) := Argmin{‖z‖1 : Φz = y } with ‖z‖1 := |z1| + · · · + |zn |,
convex optimization, linear programming.

(ii) Robustness : ‖x − ∆(Φx)‖ controlled by noise and deviation of x from Σk .

but... Φ obtained by probabilistic techniques. Example : Φ = (Φi,j ) with Φi,j

independant random draws of Bernoulli ±1 or gaussians N (0, 1).

Deterministic constructions known for m ∼ ck2 log(N/k) (DeVore, Calderbank).



Reconstruction results

With m = 2k measures and generic choice of Φ, one can reconstruct exactly any
x ∈ Σk , but...

(i) Complex decoder : ∆(y) := Argmin{‖y −Φz‖ : z ∈ Σk }, and therefore O(Nk )
least square systems to solve. Alternative : ∆(y) := Argmin{‖z‖0 : Φz = y }, with
‖z‖0 = #{i : zi 6= 0}, same complexity.

(ii) No robustness to noise and deviation from Σk .

Candes-Tao (2005) : using m ∼ ck log(N/k) measures and specific Φ which satisfy
restricted isometry properties (RIP), one can reconstruct exactly any x ∈ Σk , with

(i) Simple decoder : ∆(y) := Argmin{‖z‖1 : Φz = y } with ‖z‖1 := |z1| + · · · + |zn |,
convex optimization, linear programming.

(ii) Robustness : ‖x − ∆(Φx)‖ controlled by noise and deviation of x from Σk .

but... Φ obtained by probabilistic techniques. Example : Φ = (Φi,j ) with Φi,j

independant random draws of Bernoulli ±1 or gaussians N (0, 1).

Deterministic constructions known for m ∼ ck2 log(N/k) (DeVore, Calderbank).



Reconstruction results

With m = 2k measures and generic choice of Φ, one can reconstruct exactly any
x ∈ Σk , but...

(i) Complex decoder : ∆(y) := Argmin{‖y −Φz‖ : z ∈ Σk }, and therefore O(Nk )
least square systems to solve. Alternative : ∆(y) := Argmin{‖z‖0 : Φz = y }, with
‖z‖0 = #{i : zi 6= 0}, same complexity.

(ii) No robustness to noise and deviation from Σk .

Candes-Tao (2005) : using m ∼ ck log(N/k) measures and specific Φ which satisfy
restricted isometry properties (RIP), one can reconstruct exactly any x ∈ Σk , with

(i) Simple decoder : ∆(y) := Argmin{‖z‖1 : Φz = y } with ‖z‖1 := |z1| + · · · + |zn |,
convex optimization, linear programming.

(ii) Robustness : ‖x − ∆(Φx)‖ controlled by noise and deviation of x from Σk .

but... Φ obtained by probabilistic techniques. Example : Φ = (Φi,j ) with Φi,j

independant random draws of Bernoulli ±1 or gaussians N (0, 1).

Deterministic constructions known for m ∼ ck2 log(N/k) (DeVore, Calderbank).



Sampling of band-limited discrete signals

Consider periodic functions on the 2d torus [0, 1]2 ∼ R2/Z2.

We say that f is β-sparse if its support inside [0, 1]2 is a set S of measure |S | ≤ β.

Matei-Meyer (2009) construct for any 0 < α < 1
2

, deterministic sets Λα ∈ Z2 of

density 2α such that any f ∈ L1([0, 1]2) that is β-sparse for β < α and positive, is
characterized by the Fourier coefficients cn(f ) for n ∈ Λα.

Other constructions have been proposed by Olevskii and Ulanovskii.

The sets proposed Matei-Meyer are simple quasi-crystals. One example of such a set is

Λα := {n = (n1, n2) ∈ Z2 : dist(n1

√
2 + n2

√
3,Z) ≤ α}

This set has density 2α : for all ε > 0, there exists R = R(ε) such that

(2α − ε)πR2 ≤ #{n ∈ Z2 : Λα ∩ |n − x | ≤ R} ≤ (2α + ε)πR2, x ∈ R2.

Periodic lattices would not work, due to the phenomenon of aliasing.
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Conclusions

Wavelet have been instrumental in putting the concept of sparsity into the forefront.

General objective : describe the properties of classes of object of interest by means of
an appropriate representation.

Many applications : data compression, estimation, inverse problems, numerical
simulation, compressed sensing.

Many open problems, in particular in high dimensions : what are the relevant classes ?
what are the natural sparse representations for these classes ?


