Wavelets and sparse analysis

Albert Cohen

Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie Paris

Journée Yves Meyer, Cachan, 20-06-2017

Wavelet theory from continuous to discrete : a golden decade

1981-1983 : theory of the continuous wavelet transform (Morlet-Grossmann)

1984 : stable discretization using frame theory (Daubechies)

1985 : construction of an orthonormal wavelet basis (Meyer)

1986-1987 : multiresolution analysis framework (Mallat-Meyer)

1988 : compactly supported orthonormal wavelets (Daubechies)

Multiresolution analysis and refinable functions
Sequences of nested spaces $\cdots \subset V_{j} \subset V_{j+1} \subset \cdots$ of the particular form

$$
V_{j}:=\operatorname{span}\left\{\varphi\left(2^{j} \cdot-k\right): k \in \mathbb{Z}\right\},
$$

are the natural framework for the construction of wavelet bases.
From $V_{0} \subset V_{1}$, the scaling function φ should satisfy a two-scale equation
with a sequence $\left(h_{n}\right)_{n \in \mathbb{Z}}$ such that $\sum h_{n}=1$.
Example: $\uparrow=\chi_{[0,1]}=\varphi(2 x)+\varphi(2 x-1)$, that is $h_{0}=h_{1}=\frac{1}{2}$
The coefficients h_{n} play a key role, as filters, in fast wavelet transform algorithms.
Idea: any function that satisfies a two-scale equation of the above type is a natural candidate to generate a multiresolution analysis and in turn a wavelet basis. So let us design the coefficients h_{n} in such way that the solution φ has desirable properties.

Such functions are called "refinable function". They were independently identified in computer-aided geometric design as limits of refinement algorithms called subdivision schemes (Cavaretta-Dyn-Levin, Dahmen-Michelli, 1980's)

Multiresolution analysis and refinable functions
Sequences of nested spaces $\cdots \subset V_{j} \subset V_{j+1} \subset \cdots$ of the particular form

$$
V_{j}:=\operatorname{span}\left\{\varphi\left(2^{j} \cdot-k\right): k \in \mathbb{Z}\right\},
$$

are the natural framework for the construction of wavelet bases.
From $V_{0} \subset V_{1}$, the scaling function φ should satisfy a two-scale equation

$$
\varphi(x)=2 \sum_{n \in \mathbb{Z}} h_{n} \varphi(2 x-n),
$$

with a sequence $\left(h_{n}\right)_{n \in \mathbb{Z}}$ such that $\sum h_{n}=1$.
Example : $\varphi=\chi_{[0,1]}=\varphi(2 x)+\varphi(2 x-1)$, that is $h_{0}=h_{1}=\frac{1}{2}$.
The coefficients h_{n} play a key role, as filters, in fast wavelet transform algorithms.
Idea : any function that satisfies a two-scale equation of the above type is a natural candidate to generate a multiresolution analysis and in turn a wavelet basis. So let us design the coefficients h_{n} in such way that the solution φ has desirable properties.

Such functions are called "refinable function". They were independently identified in computer-aided geometric design as limits of refinement algorithms called subdivision schemes (Cavaretta-Dyn-Levin, Dahmen-Micheili, 1980's)

Multiresolution analysis and refinable functions
Sequences of nested spaces $\cdots \subset V_{j} \subset V_{j+1} \subset \cdots$ of the particular form

$$
V_{j}:=\operatorname{span}\left\{\varphi\left(2^{j} \cdot-k\right): k \in \mathbb{Z}\right\},
$$

are the natural framework for the construction of wavelet bases.
From $V_{0} \subset V_{1}$, the scaling function φ should satisfy a two-scale equation

$$
\varphi(x)=2 \sum_{n \in \mathbb{Z}} h_{n} \varphi(2 x-n),
$$

with a sequence $\left(h_{n}\right)_{n \in \mathbb{Z}}$ such that $\sum h_{n}=1$.
Example : $\varphi=\chi_{[0,1]}=\varphi(2 x)+\varphi(2 x-1)$, that is $h_{0}=h_{1}=\frac{1}{2}$.
The coefficients h_{n} play a key role, as filters, in fast wavelet transform algorithms.
Idea : any function that satisfies a two-scale equation of the above type is a natural candidate to generate a multiresolution analysis and in turn a wavelet basis. So let us design the coefficients h_{n} in such way that the solution φ has desirable properties.

Such functions are called "refinable function". They were independently identified in computer-aided geometric design as limits of refinement algorithms called subdivision schemes (Cavaretta-Dyn-Levin, Dahmen-Michelli, 1980's).

Multiresolution analysis and refinable functions

Sequences of nested spaces $\cdots \subset V_{j} \subset V_{j+1} \subset \cdots$ of the particular form

$$
V_{j}:=\operatorname{span}\left\{\varphi\left(2^{j} \cdot-k\right): k \in \mathbb{Z}\right\},
$$

are the natural framework for the construction of wavelet bases.
From $V_{0} \subset V_{1}$, the scaling function φ should satisfy a two-scale equation

$$
\varphi(x)=2 \sum_{n \in \mathbb{Z}} h_{n} \varphi(2 x-n),
$$

with a sequence $\left(h_{n}\right)_{n \in \mathbb{Z}}$ such that $\sum h_{n}=1$.
Example : $\varphi=\chi_{[0,1]}=\varphi(2 x)+\varphi(2 x-1)$, that is $h_{0}=h_{1}=\frac{1}{2}$.
The coefficients h_{n} play a key role, as filters, in fast wavelet transform algorithms.
Idea : any function that satisfies a two-scale equation of the above type is a natural candidate to generate a multiresolution analysis and in turn a wavelet basis. So let us design the coefficients h_{n} in such way that the solution φ has desirable properties.

Such functions are called "refinable function". They were independently identified in computer-aided geometric design as limits of refinement algorithms called subdivision schemes (Cavaretta-Dyn-Levin, Dahmen-Michelli, 1980's).

Example : the B-splines
The choice $h_{0}=h_{3}=1 / 8$ and $h_{1}=h_{2}=3 / 8$ gives the quadratic B-spline $\varphi=B_{2}$.

The B-spline of degree n is given by $B_{n}=(*)^{n+1} X_{[0,1]}$ (piecewise polynomials of degree n and globally C^{n-1}).

Two-scale equation obtained by convolution of the equation for $B_{0}=\chi_{[0,1]}$.

Example: Daubechies orthonormal scaling functions

With a judicious choice of $\left(h_{0}, h_{1}, h_{2}, h_{3}\right)$, Ingrid Daubechies constructs a scaling function φ that has orthonormal integer translates.

This function has no simple explict expression, but the coefficients h_{n} are explicitely given. It is not C^{1} but has C^{s} Hölder smoothness for $s \sim .55$. Arbitrarily smooth such functions can be constructed up to raising their support length.

An explicit expression
Application of Fourier transform to $\varphi(x)=2 \sum_{n \in \mathbb{Z}} h_{n} \varphi(2 x-n)$ gives

$$
\widehat{\varphi}(\omega)=m(\omega / 2) \widehat{\varphi}(\omega / 2), \quad m(\omega)=\sum_{n \in \mathbb{Z}} h_{n} e^{-i n \omega}
$$

and by iterating and using that $m(0)=1$, we obtain

$$
\widehat{\varphi}(\omega)=\prod_{j \geq 1} m\left(2^{-j} \omega\right)
$$

Smooth φ can be constructed by taking $m(\omega)=\left(\frac{1+e^{-i \omega}}{2}\right)^{n+1} p(\omega)$, so that

The construction of scaling function and wavelets by this strategy has been intensively studied, it led to the construction of the often used biorthogonal wavelets in 1992.

At that time, the graduate course of Yves Meyer was a "real time workshop" with new constructions and results being anounced and presented every week.

An explicit expression

Application of Fourier transform to $\varphi(x)=2 \sum_{n \in \mathbb{Z}} h_{n} \varphi(2 x-n)$ gives

$$
\widehat{\varphi}(\omega)=m(\omega / 2) \widehat{\varphi}(\omega / 2), \quad m(\omega)=\sum_{n \in \mathbb{Z}} h_{n} e^{-i n \omega}
$$

and by iterating and using that $m(0)=1$, we obtain

$$
\widehat{\varphi}(\omega)=\prod_{j \geq 1} m\left(2^{-j} \omega\right)
$$

Smooth φ can be constructed by taking $m(\omega)=\left(\frac{1+e^{-i \omega}}{2}\right)^{n+1} p(\omega)$, so that

$$
\widehat{\varphi}(\omega)=\widehat{B}_{n}(\omega) \widehat{P}(\omega), \quad \widehat{B}_{n}(\omega)=\left(\frac{1-e^{-i \omega}}{i \omega}\right)^{n+1}, \quad \widehat{P}(\omega):=\prod_{j \geq 1} p\left(2^{-j} \omega\right)
$$

The construction of scaling function and wavelets by this strategy has been intensively studied, it led to the construction of the often used biorthogonal wavelets in 1992.

At that time the graduate course of Yves Mever was a "real time workshon" with new constructions and results being anounced and presented every week.

An explicit expression

Application of Fourier transform to $\varphi(x)=2 \sum_{n \in \mathbb{Z}} h_{n} \varphi(2 x-n)$ gives

$$
\widehat{\varphi}(\omega)=m(\omega / 2) \widehat{\varphi}(\omega / 2), \quad m(\omega)=\sum_{n \in \mathbb{Z}} h_{n} e^{-i n \omega} .
$$

and by iterating and using that $m(0)=1$, we obtain

$$
\widehat{\varphi}(\omega)=\prod_{j \geq 1} m\left(2^{-j} \omega\right)
$$

Smooth φ can be constructed by taking $m(\omega)=\left(\frac{1+e^{-i \omega}}{2}\right)^{n+1} p(\omega)$, so that

$$
\widehat{\varphi}(\omega)=\widehat{B}_{n}(\omega) \widehat{P}(\omega), \quad \widehat{B}_{n}(\omega)=\left(\frac{1-e^{-i \omega}}{i \omega}\right)^{n+1}, \quad \widehat{P}(\omega):=\prod_{j \geq 1} p\left(2^{-j} \omega\right)
$$

The construction of scaling function and wavelets by this strategy has been intensively studied, it led to the construction of the often used biorthogonal wavelets in 1992.

At that time, the graduate course of Yves Meyer was a "real time workshop" with new constructions and results being anounced and presented every week.

Application of Fourier transform to $\varphi(x)=2 \sum_{n \in \mathbb{Z}} h_{n} \varphi(2 x-n)$ gives

$$
\widehat{\varphi}(\omega)=m(\omega / 2) \widehat{\varphi}(\omega / 2), \quad m(\omega)=\sum_{n \in \mathbb{Z}} h_{n} e^{-i n \omega} .
$$

and by iterating and using that $m(0)=1$, we obtain

$$
\widehat{\varphi}(\omega)=\prod_{j \geq 1} m\left(2^{-j} \omega\right)
$$

Smooth φ can be constructed by taking $m(\omega)=\left(\frac{1+e^{-i \omega}}{2}\right)^{n+1} p(\omega)$, so that

$$
\widehat{\varphi}(\omega)=\widehat{B}_{n}(\omega) \widehat{P}(\omega), \quad \widehat{B}_{n}(\omega)=\left(\frac{1-e^{-i \omega}}{i \omega}\right)^{n+1}, \quad \widehat{P}(\omega):=\prod_{j \geq 1} p\left(2^{-j} \omega\right)
$$

The construction of scaling function and wavelets by this strategy has been intensively studied, it led to the construction of the often used biorthogonal wavelets in 1992.

At that time, the graduate course of Yves Meyer was a "real time workshop" with new constructions and results being anounced and presented every week.

Construction de fonctions multifractales ayant un spectre de singularités prescrit.

Ste'phane JAFFARD

1. Introduction et e'noncés des résultato.

Soit $s>0$ mn exposant ; mous supposerons que A n'est pas un entier. Si x_{0} est un nombre réal, rous défincirow l'espace de Hölder ponctuel $C^{\&}\left(x_{0}\right)$ par la andition
(1.1) $\quad\left|f(x)-P\left(x-x_{0}\right)\right| \leqslant C\left|x-x_{0}\right|^{s}$
on C est une constante, P un pobynôme at $\overline{\text { ou }} x$ appartient à un certain voisinage de x_{0}. On pent e'videmment supposes gue le degré de P ne dépesse pass la partie entiere de s.

Si maintenant s >0 est un nombre réel arbitracre, nous écrirons $f \in \Gamma^{s}\left(x_{0}\right)$ si
(1.2) $f \in \bigcap_{\varepsilon>0} C^{s-\varepsilon}\left(x_{0}\right)$ mais $f \notin \bigcup_{\varepsilon>0} C^{s+\varepsilon}\left(x_{0}\right)$.

Calcul symbolique pour les opératewrs de Calderón-Zygmund généralités

Ph. Tchamitchian

1. Introduction et énoncé du théṑme

Nous désignow par $H^{1}=H^{1}\left(\mathbb{R}^{x}\right)$ l'espace de Hardy généralisé de Stein et Weiss dont le dual est l'erpace BMO de John et Nirenberg. Suivant Coifman et Weiss toute fonction of $\in H^{1}$ s'érrit $f=\sum_{0}^{\infty} \lambda_{k} a_{k}(x)$ ou les λ_{k} sont des scalairas vérufiant $\sum_{0}^{\infty}\left|\lambda_{k}\right|<+\infty$ et our les $a_{k}(x)^{k}$ sont des a tomes. Cela signifie qu'il existe des cubes Q_{k} tels que $\left\|a_{k}\right\|_{\infty} \leq \frac{1}{\left|Q_{k}\right|}$ support $a_{k} \subset Q_{k}$ et $\int a_{k}(x) d x=0$.
Nout appelors $B \subset \mathscr{L}\left(L^{2}, L^{2}\right), L^{2}=L^{2}\left(\mathbb{R}^{n} ; d x\right)$, l'algebire des ope'rateurs T bornés sur L^{2} qui sont, de ϕ lus, bornés sur H^{1} et sur BMO. Cela signifie qu' 'e' existe une constante C telle que poer tout atome $a(a)$, on ait $\|T(a)\|_{H^{2}}+\left\|T^{*}(a)\right\|_{H^{2}} \leqslant C$. Kous arms de'signé par T^{*} l'adjoint de T.

La"version ondelettes" du théorème du Jacobien
Sylvia DOBYINSKY

1. Intrisuction.

On dizizne par $\sigma_{f}^{1}\left(\mathbb{R}^{2}\right)$ l'cespace de Hardy daus la versian défioe par E.Stein et G. Weiss: c'est à dire que f appritient, à ofth $\left(\mathbb{R}^{2}\right)$ siat seulement si f et les traus'-ieméés de Riesz $R_{1} f$ et $R_{2} f$ appartiennent touice trois $a L^{2}\left(\mathbb{R}^{2}\right)$.
Le t'éórème du Jacokien est l'énoncé suivant. Si $f(x, y)$ of $c^{\prime}(x, y)$ appartionnent $\bar{a} L_{l_{v c}}^{1}\left(\mathbb{R}^{2}\right)$ et $x i$ les quatre deriniés (prised an sens des distributians) $\frac{\partial f}{\partial x}, \frac{\partial t}{\partial y}, \frac{\partial g}{\partial r}$ et $\frac{i g}{i g}$ uppartiennent $\bar{a} L^{2}\left(\mathbb{R}^{2}\right)$, alors
(1.1) $J(f, g)=\frac{\partial k}{\partial x} \frac{\partial q}{\partial y}-\frac{\partial f}{\partial y} \frac{\partial q}{\partial x} \in \mathcal{H}^{\prime}\left(\mathbb{R}^{2}\right)$.

COMPRESSION DES DONNEES ET RESTAURATION D'IMAGES BRUITEES

d'après DAVID DONOHO

1.Introduction.

David Donoho avait déjà acquis une très forte réputation en traitement statistique du signal lorsqu'il fut conduit à s'intéresser aux possibilités offertes par les ondelettes pour résoudre un de ses problèmes favoris. Nous allons décrire dans les pages qui suivent ce problème particulier et l'influence que sa solution a eue sur le développement contemporain de la recherche sur les ondelettes.

Ce qui m'enchante dans la démarche de Donoho est sa totale objectivité scientifique: il ne connaissait pas les ondelettes et avait un besoin urgent d'un outil très particulier. Lors d'une école d'été de statistiques à St.Flour, une de ses collègues, Dominique Picard, lui apprend que cet outil vient précisément d'être créé et que les détails se trouvent dans mon livre paru chez Hermann.
D.Donoho a passé le reste de l'été à lire cet ouvrage et a particulièrement aimé un des chapitres les plus controversés: celui où je montre que les ondelettes constituent un mode de représentation optimal pour une gamme d'espaces fonctionnels que je trouve délectables. Ces espaces sont les fameux espaces de Besov, que beaucoup de scientifiques rejettent avec mépris car trois indices différents apparaissent dans leur définition et que trois indices. c'est trop! En fait, Donoho nous apprend que ce florilège d'espaces fonctionnels permet une description délicate et précise de larges classes de signaux et d'images dont les propriétés génériques deviennent alors des propriétés fonctionnelles. 11 en est résulte une suite de papiers retentissants sur le débruitage de signaux et d'images pour lesquels la connaissance a priori se modélise par l'ordre de grandeur d'une certaine norme Besov.

The space $B_{p, q}^{s}$ describes functions with s derivatives in L^{p} (fine tuning by q). Here for simplicity we take $q=p \in] 0, \infty[$ and $s>0$.

Oleg Besov (1959) : let $\Omega \subset \mathbb{R}^{d}$ be a domain, and $\Delta_{h}: f \mapsto f(\cdot+h)-f$ be the finite difference operator and Δ_{h}^{m} its power for m an integer such that $m>s$. A function $f \in L^{p}(\Omega)$ belongs to $B_{p, p}^{s}(\Omega)$ if and only if,

$$
\left(\int_{t \geq 0}\left(t^{-s} \sup _{|h| \leq t}\left\|\Delta_{h}^{m} f\right\|_{L^{p}\left(\Omega_{h}\right)}\right)^{p} \frac{d t}{t}\right)^{1 / p}<\infty
$$

Here $\Omega_{h}:=\{x \in \Omega:[x, x+m h] \subset \Omega\}$. The above-quantity added to $\|f\|_{L^{p}}$ defines a norm on $B_{p, p}^{s}(\Omega)$.

Yves Meyer (1990) : let $\left(\psi_{\lambda}\right)$ be an orthonormal wavelet basis of $L^{2}(\Omega)$ with generating wavelet of class C^{r} for $r \geq s$. A function $f=\sum d_{\lambda} \psi_{\lambda}$ belongs to $B_{p, p}^{s}(\Omega)$ if and only if,

Here $\psi_{\lambda} \sim 2^{d j / 2} \psi\left(2^{j} \cdot-k\right)$, and we use the notation $|\lambda|=j$ for the scale level. The above-quantity defines an equivalent norm on $B_{p, p}^{s}(\Omega)$. This shows that wavelets are unconditional bases of these spaces.

Besov spaces

The space $B_{p, q}^{s}$ describes functions with s derivatives in L^{p} (fine tuning by q). Here for simplicity we take $q=p \in] 0, \infty[$ and $s>0$.

Oleg Besov (1959) : let $\Omega \subset \mathbb{R}^{d}$ be a domain, and $\Delta_{h}: f \mapsto f(\cdot+h)-f$ be the finite difference operator and Δ_{h}^{m} its power for m an integer such that $m>s$. A function $f \in L^{p}(\Omega)$ belongs to $B_{p, p}^{s}(\Omega)$ if and only if,

$$
\left(\int_{t \geq 0}\left(t^{-s} \sup _{|h| \leq t}\left\|\Delta_{h}^{m} f\right\|_{L^{p}\left(\Omega_{h}\right)}\right)^{p} \frac{d t}{t}\right)^{1 / p}<\infty
$$

Here $\Omega_{h}:=\{x \in \Omega:[x, x+m h] \subset \Omega\}$. The above-quantity added to $\|f\|_{L^{p}}$ defines a norm on $B_{p, p}^{s}(\Omega)$.

Yves Meyer (1990) : let $\left(\psi_{\lambda}\right)$ be an orthonormal wavelet basis of $L^{2}(\Omega)$ with generating wavelet of class C^{r} for $r \geq s$. A function $f=\sum d_{\lambda} \psi_{\lambda}$ belongs to $B_{p, p}^{s}(\Omega)$ if and only if,

$$
\left(\sum_{\lambda} 2^{a p|\lambda|}\left|d_{\lambda}\right|^{p}\right)^{1 / p}<\infty, \quad a:=s+\frac{d}{2}-\frac{d}{p}
$$

Here $\psi_{\lambda} \sim 2^{d j / 2} \psi\left(2^{j} \cdot-k\right)$, and we use the notation $|\lambda|=j$ for the scale level. The above-quantity defines an equivalent norm on $B_{p, p}^{s}(\Omega)$. This shows that wavelets are unconditional bases of these spaces.

Consequences

In particular, when $s=\frac{d}{p}-\frac{d}{2}$ for some $p<2$, then $a=0$ so that $\|f\|_{B_{p, p}^{s}} \sim\left\|\left(d_{\lambda}\right)\right\|_{\ell \rho}$.
Simple expression of classical results : with $s=\frac{d}{p}-\frac{d}{2}$ for $p<2$, the critical Sobolev embedding $B_{p, p}^{s} \subset L^{2}$ is equivalent to the obvious observation that $\ell^{p} \subset \ell^{2}$

This embedding is not compact yet an important anproximation result holds : the best n-term approximation of f is defined $f_{n}=\sum_{\lambda \in \Lambda_{n}} d_{\lambda} \psi_{\lambda}$ where Λ_{n} corresponds to the n largest $\left|d_{\lambda}\right|$. Observation by Stechkin

$$
\left(d_{\lambda}\right) \in \ell^{p} \Longrightarrow\left\|f-f_{n}\right\|_{L^{2}} \leq C n^{-r}, \quad C=:\left\|\left(d_{\lambda}\right)\right\| \ell^{p}, \quad r=\frac{1}{p}-\frac{1}{2} .
$$

Proof: use $\left(d_{k}\right)_{k \geq 1}$ the decreasing rearrangement of $\left(\left|d_{\lambda}\right|\right)$ and combine

$$
\left\|f-f_{n}\right\|_{L^{2}}^{2}=\sum_{k>n} d_{k}^{2} \leq d_{n}^{2-p} \sum_{k>n} d_{k}^{p} \leq C^{p} d_{n}^{2-p} \quad \text { and } \quad n d_{n}^{p} \leq \sum_{k=1}^{n} d_{k}^{p} \leq C^{p} \text {. }
$$

This result can be improved according to

$$
\left(d_{\lambda}\right) \in \ell_{w}^{p} \Longleftrightarrow\left\|f-f_{n}\right\|_{L^{2}} \leq C n^{-r}, \quad r=\frac{1}{p}-\frac{1}{2},
$$

where $\ell_{w}^{p}:=\left\{\left(d_{\lambda}\right): \sup _{k>1} k^{1 / p} d_{k}<\infty\right\}$.

Consequences

In particular, when $s=\frac{d}{p}-\frac{d}{2}$ for some $p<2$, then $a=0$ so that $\|f\|_{B_{p, p}^{s}} \sim\left\|\left(d_{\lambda}\right)\right\|_{\ell \rho}$. Simple expression of classical results : with $s=\frac{d}{p}-\frac{d}{2}$ for $p<2$, the critical Sobolev embedding $B_{p, p}^{s} \subset L^{2}$ is equivalent to the obvious observation that $\ell^{p} \subset \ell^{2}$

> This embedding is not compact, yet an important approximation result holds : the best n-term approximation of f is defined $f_{n}=\sum_{\lambda \in \Lambda_{n}} d_{\lambda} \psi_{\lambda}$ where Λ_{n} corresponds to the n largest $\left|d_{\lambda}\right|$. Observation by Stechkin

Proof : use $\left(d_{k}\right)_{k \geq 1}$ the decreasing rearrangement of $\left(\left|d_{\lambda}\right|\right)$ and combine

This result can be improved according to

$$
\left(d_{\lambda}\right) \in \ell_{w}^{p} \Longleftrightarrow\left\|f-f_{n}\right\|_{L^{2}} \leq C n^{-r}, \quad r=\frac{1}{p}-\frac{1}{2},
$$

Consequences

In particular, when $s=\frac{d}{p}-\frac{d}{2}$ for some $p<2$, then $a=0$ so that $\|f\|_{B_{p, p}^{s}} \sim\left\|\left(d_{\lambda}\right)\right\|_{\ell \rho}$. Simple expression of classical results : with $s=\frac{d}{p}-\frac{d}{2}$ for $p<2$, the critical Sobolev embedding $B_{p, p}^{s} \subset L^{2}$ is equivalent to the obvious observation that $\ell^{p} \subset \ell^{2}$

This embedding is not compact, yet an important approximation result holds : the best n-term approximation of f is defined $f_{n}=\sum_{\lambda \in \Lambda_{n}} d_{\lambda} \psi_{\lambda}$ where Λ_{n} corresponds to the n largest $\left|d_{\lambda}\right|$. Observation by Stechkin :

$$
\left(d_{\lambda}\right) \in \ell^{p} \Longrightarrow\left\|f-f_{n}\right\|_{L^{2}} \leq C n^{-r}, \quad C=:\left\|\left(d_{\lambda}\right)\right\|_{\ell^{p}}, \quad r=\frac{1}{p}-\frac{1}{2} .
$$

Proof: use $\left(d_{k}\right)_{k \geq 1}$ the decreasing rearrangement of $\left(\left|d_{\lambda}\right|\right)$ and combine

This result can be improved according to

Consequences

In particular, when $s=\frac{d}{p}-\frac{d}{2}$ for some $p<2$, then $a=0$ so that $\|f\|_{B_{p, p}^{s}} \sim\left\|\left(d_{\lambda}\right)\right\|_{\ell \rho}$.
Simple expression of classical results : with $s=\frac{d}{p}-\frac{d}{2}$ for $p<2$, the critical Sobolev embedding $B_{p, p}^{s} \subset L^{2}$ is equivalent to the obvious observation that $\ell^{p} \subset \ell^{2}$

This embedding is not compact, yet an important approximation result holds : the best n-term approximation of f is defined $f_{n}=\sum_{\lambda \in \Lambda_{n}} d_{\lambda} \psi_{\lambda}$ where Λ_{n} corresponds to the n largest $\left|d_{\lambda}\right|$. Observation by Stechkin :

$$
\left(d_{\lambda}\right) \in \ell^{p} \Longrightarrow\left\|f-f_{n}\right\|_{L^{2}} \leq C n^{-r}, \quad C=:\left\|\left(d_{\lambda}\right)\right\|_{\ell^{p}}, \quad r=\frac{1}{p}-\frac{1}{2} .
$$

Proof : use $\left(d_{k}\right)_{k \geq 1}$ the decreasing rearrangement of $\left(\left|d_{\lambda}\right|\right)$ and combine

$$
\left\|f-f_{n}\right\|_{L^{2}}^{2}=\sum_{k>n} d_{k}^{2} \leq d_{n}^{2-p} \sum_{k>n} d_{k}^{p} \leq C^{p} d_{n}^{2-p} \quad \text { and } \quad n d_{n}^{p} \leq \sum_{k=1}^{n} d_{k}^{p} \leq C^{p} .
$$

This result can be improved according to

Consequences

In particular, when $s=\frac{d}{p}-\frac{d}{2}$ for some $p<2$, then $a=0$ so that $\|f\|_{B_{p, p}^{s}} \sim\left\|\left(d_{\lambda}\right)\right\|_{\ell \rho}$.
Simple expression of classical results : with $s=\frac{d}{p}-\frac{d}{2}$ for $p<2$, the critical Sobolev embedding $B_{p, p}^{s} \subset L^{2}$ is equivalent to the obvious observation that $\ell^{p} \subset \ell^{2}$

This embedding is not compact, yet an important approximation result holds : the best n-term approximation of f is defined $f_{n}=\sum_{\lambda \in \Lambda_{n}} d_{\lambda} \psi_{\lambda}$ where Λ_{n} corresponds to the n largest $\left|d_{\lambda}\right|$. Observation by Stechkin :

$$
\left(d_{\lambda}\right) \in \ell^{p} \Longrightarrow\left\|f-f_{n}\right\|_{L^{2}} \leq C n^{-r}, \quad C=:\left\|\left(d_{\lambda}\right)\right\|_{\ell^{p}}, \quad r=\frac{1}{p}-\frac{1}{2}
$$

Proof : use $\left(d_{k}\right)_{k \geq 1}$ the decreasing rearrangement of $\left(\left|d_{\lambda}\right|\right)$ and combine

$$
\left\|f-f_{n}\right\|_{L^{2}}^{2}=\sum_{k>n} d_{k}^{2} \leq d_{n}^{2-p} \sum_{k>n} d_{k}^{p} \leq C^{p} d_{n}^{2-p} \quad \text { and } \quad n d_{n}^{p} \leq \sum_{k=1}^{n} d_{k}^{p} \leq C^{p} .
$$

This result can be improved according to

$$
\left(d_{\lambda}\right) \in \ell_{w}^{p} \Longleftrightarrow\left\|f-f_{n}\right\|_{L^{2}} \leq C n^{-r}, \quad r=\frac{1}{p}-\frac{1}{2}
$$

where $\ell_{w}^{p}:=\left\{\left(d_{\lambda}\right): \sup _{k \geq 1} k^{1 / p} d_{k}<\infty\right\}$.

Sparsity

Small dimensional phenomenon in high dimensional context.

A few numerically significant coefficients concentrate most of the energy.

Measuring sparsity
In the previous results $r=\frac{1}{p}-\frac{1}{2} \rightarrow \infty$ as $p \rightarrow 0$. The value of p quantifies the amount of sparsity in the coefficient sequence (d_{λ}).

This give the rate $n^{-s / d}$ for best n-term wavelet approximation in L^{2} when $f \in B_{p, p}^{s}$ with $d=\frac{d}{p}-\frac{d}{2}$, however in the above observations, $\left(\psi_{\lambda}\right)$ could be any orthonormal (or Riesz) basis.

Sparsity play a key role in various applications
signal and image compression : allocate more bits to the large coefficients.
denoising and estimation : retain the observed coefficients that exceed noise level.
adaptive numerical simulation : approximate adaptively the solution to a PDE.
David Donoho (1993) : "Unconditional bases are optimal basis for data compression and for statistical estimation".

The hunt for sparsity is open
Sparse approximation is an instance of nonlinear approximation theorized in the 1980's
by Ronald Devore, Pencho Petrushev, Vasil Popov.
Measuring sparsity

In the previous results $r=\frac{1}{p}-\frac{1}{2} \rightarrow \infty$ as $p \rightarrow 0$. The value of p quantifies the amount of sparsity in the coefficient sequence (d_{λ}).
This give the rate $n^{-s / d}$ for best n-term wavelet approximation in L^{2} when $f \in B_{p, p}^{s}$ with $d=\frac{d}{p}-\frac{d}{2}$, however in the above observations, $\left(\psi_{\lambda}\right)$ could be any orthonormal (or Riesz) basis.

Sparsity play a key role in various applications
signal and image compression : allocate more bits to the large coefficients.
denoising and estimation : retain the observed coefficients that exceed noise level.
adaptive numerical simulation : approximate adaptively the solution to a PDE.
David Donoho (1993) : "Unconditional bases are optimal basis for data compression and for statistical estimation"

The hunt for sparsity is open
Sparse approximation is an instance of nonlinear approximation theorized in the 1980's
by Ronald Devore, Pencho Petrushev, Vasil Popov.

In the previous results $r=\frac{1}{p}-\frac{1}{2} \rightarrow \infty$ as $p \rightarrow 0$. The value of p quantifies the amount of sparsity in the coefficient sequence (d_{λ}).
This give the rate $n^{-s / d}$ for best n-term wavelet approximation in L^{2} when $f \in B_{p, p}^{s}$ with $d=\frac{d}{p}-\frac{d}{2}$, however in the above observations, $\left(\psi_{\lambda}\right)$ could be any orthonormal (or Riesz) basis.

Sparsity play a key role in various applications :
signal and image compression : allocate more bits to the large coefficients.
denoising and estimation : retain the observed coefficients that exceed noise level.
adaptive numerical simulation : approximate adaptively the solution to a PDE.
David Donoho (1993) : "Unconditional bases are optimal basis for data compression and for statistical estimation'

> The hunt for sparsity is open

Sparse approximation is an instance of nonlinear approximation theorized in the 1980's by Ronald Devore, Pencho Petrushev, Vasil Popov.

In the previous results $r=\frac{1}{p}-\frac{1}{2} \rightarrow \infty$ as $p \rightarrow 0$. The value of p quantifies the amount of sparsity in the coefficient sequence (d_{λ}).
This give the rate $n^{-s / d}$ for best n-term wavelet approximation in L^{2} when $f \in B_{p, p}^{s}$ with $d=\frac{d}{p}-\frac{d}{2}$, however in the above observations, $\left(\psi_{\lambda}\right)$ could be any orthonormal (or Riesz) basis.

Sparsity play a key role in various applications :
signal and image compression : allocate more bits to the large coefficients.
denoising and estimation : retain the observed coefficients that exceed noise level.
adaptive numerical simulation : approximate adaptively the solution to a PDE.
David Donoho (1993) : "Unconditional bases are optimal basis for data compression and for statistical estimation".

The hunt for sparsity is open
Sparse approximation is an instance of nonlinear approximation theorized in the 1980's by Ronald Devore, Pencho Petrushev, Vasil Popov.

Images and BV functions

$f \in B V$ if and only if $f \in L^{1}$ and ∇f is a finite measure.
Prototype : χ_{Ω} with Ω of a set of finite perimeter.
$B V\left([0,1]^{2}\right)$ was proposed as a model for images : "piecewise smooth" with edge singularities of finite length.

Cohen-DeVore-Petrushev- Xu_{u} (1993) : for the wavelet representation $f=\sum d_{\lambda} \psi_{\lambda}$,
i.e. $d_{k} \leq C k^{-1}$

Sharp estimate over $B V$: if $f=X_{\Omega}$ then $d_{k} \geq c k^{-1}$
Optimal estimate for all bases
Best result for Fourier coefficients (Bourgain): $\sum_{n \in \mathbb{Z}^{2}}(1+|n|)^{-1}\left|c_{n}\right|<\infty$.
Yves Meyer: "In a world where images are the $B V$ functions and the eye measures error in L^{2}, wavelets are the best tool"

Images and BV functions

$f \in B V$ if and only if $f \in L^{1}$ and ∇f is a finite measure.
Prototype : χ_{Ω} with Ω of a set of finite perimeter.
$B V\left([0,1]^{2}\right)$ was proposed as a model for images : "piecewise smooth" with edge singularities of finite length.

Cohen-DeVore-Petrushev- $\mathrm{Xu}_{\mathrm{u}}(1993)$: for the wavelet representation $f=\sum d_{\lambda} \psi_{\lambda}$,

$$
f \in B V\left([0,1]^{2}\right) \Rightarrow\left(d_{\lambda}\right) \in w \ell^{1}
$$

i.e. $d_{k} \leq C k^{-1}$.

Sharp estimate over $B V:$ if $f=\chi_{\Omega}$ then $d_{k} \geq c k^{-1}$.
Optimal estimate for all bases
Best result for Fourier coefficients (Bourgain) : $\sum_{n \in \mathbb{Z}^{2}}(1+|n|)^{-1}\left|c_{n}\right|<\infty$.
Yves Meyer: "In a world where images are the $B V$ functions and the eye measures error in L^{2}, wavelets are the best tool".

Cubist images

Edges of $B V$ functions have finite length, but no geometric smoothness. One could hope for sparser representation for classes of images with geometrically smooth edges.

One of the simplest classes consists of piecewise constant images with straight edges.
Yves Meyer (2001) : let $f=\chi_{\Omega}$ where Ω is a polygon of $[0,1]^{2}$, then the decreasingly rearranged Fourier coefficients $c_{k}=c_{k}(f)$ decay at rate
quite similar to wavelet coefficients.
In higher dimension $d>2$, when O is a polyhedron of $[0,1]^{d}$, this property persists with
and Fourier representations are then sparser than wavelet representations.

Cubist images

Edges of $B V$ functions have finite length, but no geometric smoothness. One could hope for sparser representation for classes of images with geometrically smooth edges.

One of the simplest classes consists of piecewise constant images with straight edges.
Yves Meyer (2001) : let $f=\chi_{\Omega}$ where Ω is a polygon of $[0,1]^{2}$, then the decreasingly rearranged Fourier coefficients $c_{k}=c_{k}(f)$ decay at rate

$$
c_{k} \leq C k^{-1} \log (k)
$$

quite similar to wavelet coefficients.
In higher dimension $d>2$, when Ω is a polyhedron of $[0,1]^{d}$, this property persists with

$$
c_{k} \leq C k^{-1} \log (k)^{d-1}
$$

and Fourier representations are then sparser than wavelet representations.

Cartoon images

The $C^{2}-C^{2}$ model : u is of the form $\sum_{j=1}^{m} u_{j} \chi_{\Omega_{j}}$, where the u_{j} are C^{2} functions and Ω_{j} have piecewise C^{2} boundaries.

```
Candes-Donoho (1998) introduce multiscale representation systems with directional
selectivity: curvelets frames of the form
```

$$
\psi_{\lambda}=2^{3 i / 2} \psi\left(D^{i} R,-k\right), \quad j \geq 0, k \in \mathbb{Z}, \quad l=0, \ldots, 2^{i},
$$

where $D=\left(\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right)$ and R_{l} is a rotation by $\pi / 2^{-j}$
Thev prove that the curvelet representation $\sum d_{\lambda} \psi_{\lambda}$ of u obeying the $C^{2}-C^{2}$ model
satisfies
improving on wavelet and Fourier representation of such functions. The exponent 2/3
is optimal

Variants : contourlets, shearlets, bandlets, anisotropic finite elements.

Cartoon images

The $C^{2}-C^{2}$ model : u is of the form $\sum_{j=1}^{m} u_{j} \chi_{\Omega_{j}}$, where the u_{j} are C^{2} functions and Ω_{j} have piecewise C^{2} boundaries.

Candes-Donoho (1998) introduce multiscale representation systems with directional selectivity : curvelets frames of the form

$$
\psi_{\lambda}=2^{3 j / 2} \psi\left(D^{j} R_{l} \cdot-k\right), \quad j \geq 0, k \in \mathbb{Z}, \quad I=0, \ldots, 2^{j}
$$

where $D=\left(\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right)$ and $R /$ is a rotation by $\pi / 2^{-j}$.
They prove that the curvelet representation $\sum d_{\lambda} \psi_{\lambda}$ of u obeying the $C^{2}-C^{2}$ model satisfies

$$
\left(d_{\lambda}\right) \in \ell^{p}, \quad p>\frac{2}{3},
$$

improving on wavelet and Fourier representation of such functions. The exponent 2/3 is optimal.

Variants : contourlets, shearlets, bandlets, anisotropic finite elements.

Cartoon images

The $C^{2}-C^{2}$ model : u is of the form $\sum_{j=1}^{m} u_{j} \chi_{\Omega_{j}}$, where the u_{j} are C^{2} functions and Ω_{j} have piecewise C^{2} boundaries.

Candes-Donoho (1998) introduce multiscale representation systems with directional selectivity : curvelets frames of the form

$$
\psi_{\lambda}=2^{3 j / 2} \psi\left(D^{j} R_{l} \cdot-k\right), \quad j \geq 0, k \in \mathbb{Z}, \quad I=0, \ldots, 2^{j}
$$

where $D=\left(\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right)$ and $R /$ is a rotation by $\pi / 2^{-j}$.
They prove that the curvelet representation $\sum d_{\lambda} \psi_{\lambda}$ of u obeying the $C^{2}-C^{2}$ model satisfies

$$
\left(d_{\lambda}\right) \in \ell^{p}, \quad p>\frac{2}{3},
$$

improving on wavelet and Fourier representation of such functions. The exponent 2/3 is optimal.

Variants : contourlets, shearlets, bandlets, anisotropic finite elements.

Sparsity in high dimensions

Numerical approximation of functions of many variables suffers from the curse of dimensionality. Example : best n-term wavelet approximation rate for $B_{p, p}^{s}$ is $n^{-s / d}$. A source of infinite dimensional problems : parametrized PDEs. Elementary example
where $f \in L^{2}$ if fixed and the diffusion function is parametrized according to
where \bar{a} and $\left(\psi_{j}\right)_{j \geq 1}$ are in L^{∞}, such that $0<r \leq a(y) \leq R<\infty$ for all $y \in U$. Polynomial expancions of the solution man from U to $V=H_{0}^{1}(\Omega)$

Cohen-DeVore-Schwab (2011) : for any $p<1$,

Numerical approximation of functions of many variables suffers from the curse of dimensionality. Example : best n-term wavelet approximation rate for $B_{p, p}^{s}$ is $n^{-s / d}$. A source of infinite dimensional problems : parametrized PDEs. Elementary example :

$$
-\operatorname{div}(a \nabla u)=f \text { in } \Omega \subset \mathbf{R}^{\mathrm{m}} \text { and } \mathrm{u}=0 \text { on } \partial \Omega,
$$

where $f \in L^{2}$ if fixed and the diffusion function is parametrized according to

$$
a=a(y)=\bar{a}+\sum_{j>0} y_{j} \psi_{j} \quad y=\left(y_{j}\right)_{j>0} \in U:=[-1,1]^{\mathbb{N}},
$$

where \bar{a} and $\left(\psi_{j}\right)_{j \geq 1}$ are in L^{∞}, such that $0<r \leq a(y) \leq R<\infty$ for all $y \in U$.
Polynomial expansions of the solution map from U to $V=H_{0}^{1}(\Omega)$

Cohen-DeVore-Schwab (2011) : for any $p<1$

Numerical approximation of functions of many variables suffers from the curse of dimensionality. Example : best n-term wavelet approximation rate for $B_{p, p}^{s}$ is $n^{-s / d}$. A source of infinite dimensional problems : parametrized PDEs. Elementary example :

$$
-\operatorname{div}(a \nabla u)=f \text { in } \Omega \subset \mathbf{R}^{\mathrm{m}} \text { and } \mathrm{u}=0 \text { on } \partial \Omega,
$$

where $f \in L^{2}$ if fixed and the diffusion function is parametrized according to

$$
a=a(y)=\bar{a}+\sum_{j>0} y_{j} \psi_{j} \quad y=\left(y_{j}\right)_{j>0} \in U:=[-1,1]^{\mathbb{N}},
$$

where \bar{a} and $\left(\psi_{j}\right)_{j \geq 1}$ are in L^{∞}, such that $0<r \leq a(y) \leq R<\infty$ for all $y \in U$.
Polynomial expansions of the solution map from U to $V=H_{0}^{1}(\Omega)$:

$$
y \mapsto u(y)=\sum_{v} u_{v} y^{v}, \quad y^{v}=\prod_{j \geq 1} y_{j}^{v_{j}}, \quad v=\left(v_{1}, v_{2}, \ldots\right) .
$$

Cohen-DeVore-Schwab (2011) : for any $p<1$,

Numerical approximation of functions of many variables suffers from the curse of dimensionality. Example : best n-term wavelet approximation rate for $B_{p, p}^{s}$ is $n^{-s / d}$. A source of infinite dimensional problems : parametrized PDEs. Elementary example :

$$
-\operatorname{div}(a \nabla u)=f \text { in } \Omega \subset \mathbf{R}^{\mathrm{m}} \text { and } \mathrm{u}=0 \text { on } \partial \Omega,
$$

where $f \in L^{2}$ if fixed and the diffusion function is parametrized according to

$$
a=a(y)=\bar{a}+\sum_{j>0} y_{j} \psi_{j} \quad y=\left(y_{j}\right)_{j>0} \in U:=[-1,1]^{\mathbb{N}},
$$

where \bar{a} and $\left(\psi_{j}\right)_{j \geq 1}$ are in L^{∞}, such that $0<r \leq a(y) \leq R<\infty$ for all $y \in U$.
Polynomial expansions of the solution map from U to $V=H_{0}^{1}(\Omega)$:

$$
y \mapsto u(y)=\sum_{v} u_{v} y^{v}, \quad y^{v}=\prod_{j \geq 1} y_{j}^{v_{j}}, \quad v=\left(v_{1}, v_{2}, \ldots\right)
$$

Cohen-DeVore-Schwab (2011) : for any $p<1$,

$$
\sum_{j}\left\|\psi_{j}\right\|_{L^{\infty}}^{p}<\infty \Longrightarrow \sum_{v}\left\|u_{v}\right\|_{V}^{p}<\infty
$$

Numerical approximation of functions of many variables suffers from the curse of dimensionality. Example : best n-term wavelet approximation rate for $B_{p, p}^{s}$ is $n^{-s / d}$. A source of infinite dimensional problems : parametrized PDEs. Elementary example :

$$
-\operatorname{div}(a \nabla u)=f \text { in } \Omega \subset \mathbf{R}^{\mathrm{m}} \text { and } \mathrm{u}=0 \text { on } \partial \Omega,
$$

where $f \in L^{2}$ if fixed and the diffusion function is parametrized according to

$$
a=a(y)=\bar{a}+\sum_{j>0} y_{j} \psi_{j} \quad y=\left(y_{j}\right)_{j>0} \in U:=[-1,1]^{\mathbb{N}},
$$

where \bar{a} and $\left(\psi_{j}\right)_{j \geq 1}$ are in L^{∞}, such that $0<r \leq a(y) \leq R<\infty$ for all $y \in U$.
Polynomial expansions of the solution map from U to $V=H_{0}^{1}(\Omega)$:

$$
y \mapsto u(y)=\sum_{v} u_{v} y^{v}, \quad y^{v}=\prod_{j \geq 1} y_{j}^{v_{j}}, \quad v=\left(v_{1}, v_{2}, \ldots\right)
$$

Cohen-DeVore-Schwab (2011) : for any $p<1$,

$$
\sum_{j}\left\|\psi_{j}\right\|_{L \infty}^{p}<\infty \Longrightarrow \sum_{v}\left\|u_{v}\right\|_{V}^{p}<\infty .
$$

Other approaches for high dimensional problems : sparse tensor formats, sparse grids.

Exploiting sparsity in a different way

Assume that f is a sparse signal or image (in some basis).
Classical way to encode f : retain its k largest coordinates in the basis and encode them. This requires to compute all coordinates before discarding the small one.

```
Compressed sensing (Donoho, Candes-Tao, 2000's) : use \(m\) linear measurements of \(f\)
prescribed in advance, and exploit that \(f\) is sparse in order to reconstruct it accurately
from these measurements.
In other word, we observe \(y=\Phi f \in \mathbb{R}^{m}\) with \(\Phi\) a fixed measurement matrix and we
want to build \(g=\Delta(y)\) close to \(f\).
Key ingredient : \(\Lambda\) should be nonlinear
```

Exploiting sparsity in a different way

Assume that f is a sparse signal or image (in some basis).
Classical way to encode f : retain its k largest coordinates in the basis and encode them. This requires to compute all coordinates before discarding the small one.

Compressed sensing (Donoho, Candes-Tao, 2000's) : use m linear measurements of f prescribed in advance, and exploit that f is sparse in order to reconstruct it accurately from these measurements.

In other word, we observe $y=\Phi f \in \mathbb{R}^{m}$ with Φ a fixed measurement matrix and we want to build $g=\Delta(y)$ close to f.

Key ingredient : Δ should be nonlinear.

An instructive example: 2D tomography (Candes-Romberg-Tao)
The Radon transform captures partial Fourier information.

Left : the Logan-Shep phantom test image
Right : position of the observed Fourier coefficients (white)

Two different reconstructions

Left : put the unknown coefficient to zero (minimum ℓ^{2} norm) and reconstruct the partial Fourier serie \Rightarrow oscillation artifacts.

Right : adjust the unknown coefficients so to minimize the total variation of the image $|f|_{T V}=\int|\nabla f| \Rightarrow$ nearly exact reconstruction!

Questions

Let Σ_{k} be the set of k-sparse vectors ($x \in \mathbb{R}^{N}$ with at most k non-zero entries).

Minimal number m of measures which is sufficient to characterize any $x \in \Sigma_{k}$.
With which matrices Φ ? Which decodes Δ ?
Robustness? In practice, $y=\Phi x+e$ with $\|e\|_{e^{2}} \leq \varepsilon$ and $x \in \mathbb{R}^{n}$ close to Σ_{k}

Questions

Let Σ_{k} be the set of k-sparse vectors ($x \in \mathbb{R}^{N}$ with at most k non-zero entries).

Minimal number m of measures which is sufficient to characterize any $x \in \Sigma_{k}$.
With which matrices Φ ? Which decodes Δ ?
Robustness? In practice, $y=\Phi x+e$ with $\|e\|_{\ell^{2}} \leq \varepsilon$ and $x \in \mathbb{R}^{n}$ close to Σ_{k}.

Reconstruction results

With $m=2 k$ measures and generic choice of Φ, one can reconstruct exactly any $x \in \Sigma_{k}$, but...
(i) Complex decoder : $\Delta(y):=\operatorname{Argmin}\left\{\|y-\Phi z\|: z \in \Sigma_{k}\right\}$, and therefore $\mathcal{O}\left(N^{k}\right)$ least square systems to solve. Alternative : $\Delta(y):=\operatorname{Argmin}\left\{\|z\|_{0}: \Phi z=y\right\}$, with $\|z\|_{0}=\#\left\{i: z_{i} \neq 0\right\}$, same complexity.
(ii) No robustness to noise and deviation from Σ_{k}

Candes-Tao (2005) : using $m \sim c k \log (N / k)$ measures and specific Φ which satisfy restricted isometry properties (RIP), one can reconstruct exactly any $x \in \Sigma_{k}$, with
(i) Simple decoder $: \Delta(y):=\operatorname{Argmin}\left\{\|z\|_{1}: \Phi z=y\right\}$ with $\|z\|_{1}:=\left|z_{1}\right|+\cdots+\left|z_{n}\right|$, convex optimization, linear programming
(ii) Robusthess: $\|x-\Delta(\Phi x)\|$ controlled by noise and deviation of x from Σ_{k}.
but... Φ obtained by probabilistic techniques. Example : $\Phi=\left(\Phi_{i, j}\right)$ with $\Phi_{i, j}$ independant random draws of Bernoulli ± 1 or gaussians $\mathcal{N}(0,1)$

Deterministic constructions known for $m \sim c k^{2} \log (N / k)$ (DeVore, Calderbank).

Reconstruction results

With $m=2 k$ measures and generic choice of Φ, one can reconstruct exactly any $x \in \Sigma_{k}$, but...
(i) Complex decoder : $\Delta(y):=\operatorname{Argmin}\left\{\|y-\Phi z\|: z \in \Sigma_{k}\right\}$, and therefore $\mathcal{O}\left(N^{k}\right)$ least square systems to solve. Alternative : $\Delta(y):=\operatorname{Argmin}\left\{\|z\|_{0}: \Phi z=y\right\}$, with $\|z\|_{0}=\#\left\{i: z_{i} \neq 0\right\}$, same complexity.
(ii) No robustness to noise and deviation from Σ_{k}.

Candes-Tao (2005) : using $m \sim c k \log (N / k)$ measures and specific Φ which satisfy restricted isometry properties (RIP), one can reconstruct exactly any $x \in \Sigma_{k}$, with
(i) Simple decoder : $\Delta(v):=\operatorname{Argmin}\left\{\|z\|_{1}: \Phi z=v\right\}$ with $\|z\|_{1}:=\left|z_{1}\right|+\cdots+\left|z_{n}\right|$.
convex optimization, linear programming.
(ii) Robustness : $\|x-\Delta(\Phi x)\|$ controlled by noise and deviation of x from Σ_{k}
but... Φ obtained by probabilistic techniques. Example: $\Phi=\left(\Phi_{i, j}\right)$ with $\Phi_{i, j}$
independant random draws of Bernoulli ± 1 or gaussians $\mathcal{N}(0,1)$
Deterministic constructions known for $m \sim c k^{2} \log (N / k)$ (DeVore, Calderbank).

Reconstruction results

With $m=2 k$ measures and generic choice of Φ, one can reconstruct exactly any $x \in \Sigma_{k}$, but...
(i) Complex decoder : $\Delta(y):=\operatorname{Argmin}\left\{\|y-\Phi z\|: z \in \Sigma_{k}\right\}$, and therefore $\mathcal{O}\left(N^{k}\right)$ least square systems to solve. Alternative : $\Delta(y):=\operatorname{Argmin}\left\{\|z\|_{0}: \Phi z=y\right\}$, with $\|z\|_{0}=\#\left\{i: z_{i} \neq 0\right\}$, same complexity.
(ii) No robustness to noise and deviation from Σ_{k}.

Candes-Tao (2005) : using $m \sim c k \log (N / k)$ measures and specific Φ which satisfy restricted isometry properties (RIP), one can reconstruct exactly any $x \in \Sigma_{k}$, with
(i) Simple decoder : $\Delta(y):=\operatorname{Argmin}\left\{\|z\|_{1}: \Phi z=y\right\}$ with $\|z\|_{1}:=\left|z_{1}\right|+\cdots+\left|z_{n}\right|$, convex optimization, linear programming.
(ii) Robustness : $\|x-\Delta(\Phi x)\|$ controlled by noise and deviation of x from Σ_{k}. but... independant random draws of Bernoulli ± 1 or gaussians $\mathcal{N}(0,1)$

Reconstruction results

With $m=2 k$ measures and generic choice of Φ, one can reconstruct exactly any $x \in \Sigma_{k}$, but...
(i) Complex decoder : $\Delta(y):=\operatorname{Argmin}\left\{\|y-\Phi z\|: z \in \Sigma_{k}\right\}$, and therefore $\mathcal{O}\left(N^{k}\right)$ least square systems to solve. Alternative : $\Delta(y):=\operatorname{Argmin}\left\{\|z\|_{0}: \Phi z=y\right\}$, with $\|z\|_{0}=\#\left\{i: z_{i} \neq 0\right\}$, same complexity.
(ii) No robustness to noise and deviation from Σ_{k}.

Candes-Tao (2005) : using $m \sim c k \log (N / k)$ measures and specific Φ which satisfy restricted isometry properties (RIP), one can reconstruct exactly any $x \in \Sigma_{k}$, with
(i) Simple decoder : $\Delta(y):=\operatorname{Argmin}\left\{\|z\|_{1}: \Phi z=y\right\}$ with $\|z\|_{1}:=\left|z_{1}\right|+\cdots+\left|z_{n}\right|$, convex optimization, linear programming.
(ii) Robustness : $\|x-\Delta(\Phi x)\|$ controlled by noise and deviation of x from Σ_{k}.
but... Φ obtained by probabilistic techniques. Example : $\Phi=\left(\Phi_{i, j}\right)$ with $\Phi_{i, j}$ independant random draws of Bernoulli ± 1 or gaussians $\mathcal{N}(0,1)$.

Deterministic constructions known for $m \sim c k^{2} \log (N / k)$ (DeVore, Calderbank).

Sampling of band-limited discrete signals
Consider periodic functions on the 2 d torus $[0,1]^{2} \sim \mathbb{R}^{2} / \mathbb{Z}^{2}$.
We say that f is β-sparse if its support inside $[0,1]^{2}$ is a set S of measure $|S| \leq \beta$.
Matei-Meyer (2009) construct for any $0<\alpha<\frac{1}{2}$, deterministic sets $\Lambda_{\alpha} \in \mathbb{Z}^{2}$ of density 2α such that any $f \in L^{1}\left([0,1]^{2}\right)$ that is β-sparse for $\beta<\alpha$ and positive, is characterized by the Fourier coefficients $c_{n}(f)$ for $n \in \Lambda_{\alpha}$.

Other constructions have been proposed by Olevskii and Ulanovskii.
The sets proposed Matei-Meyer are simple quasi-crystals. One example of such a set is

This set has density 2α : for all $\varepsilon>0$, there exists $R=R(\varepsilon)$ such that

$$
(2 \alpha-c) \pi R^{2} \leq \#\left\{n \in \mathbb{T}^{2}: \Lambda_{\alpha} \cap|n-x| \leq R\right\} \leq(2 \alpha+c) \pi R^{2}
$$

Periodic lattices would not work, due to the phenomenon of aliasing.

Sampling of band-limited discrete signals
Consider periodic functions on the 2 d torus $[0,1]^{2} \sim \mathbb{R}^{2} / \mathbb{Z}^{2}$.
We say that f is β-sparse if its support inside $[0,1]^{2}$ is a set S of measure $|S| \leq \beta$.
Matei-Meyer (2009) construct for any $0<\alpha<\frac{1}{2}$, deterministic sets $\Lambda_{\alpha} \in \mathbb{Z}^{2}$ of density 2α such that any $f \in L^{1}\left([0,1]^{2}\right)$ that is β-sparse for $\beta<\alpha$ and positive, is characterized by the Fourier coefficients $c_{n}(f)$ for $n \in \Lambda_{\alpha}$.

Other constructions have been proposed by Olevskii and Ulanovskii.
The sets proposed Matei-Meyer are simple quasi-crystals. One example of such a set is

This set has density 2α : for all $\varepsilon>0$, there exists $R=R(\varepsilon)$ such that

Periodic lattices would not work, due to the phenomenon of aliasing.

Sampling of band-limited discrete signals
Consider periodic functions on the 2 d torus $[0,1]^{2} \sim \mathbb{R}^{2} / \mathbb{Z}^{2}$.
We say that f is β-sparse if its support inside $[0,1]^{2}$ is a set S of measure $|S| \leq \beta$.
Matei-Meyer (2009) construct for any $0<\alpha<\frac{1}{2}$, deterministic sets $\Lambda_{\alpha} \in \mathbb{Z}^{2}$ of density 2α such that any $f \in L^{1}\left([0,1]^{2}\right)$ that is β-sparse for $\beta<\alpha$ and positive, is characterized by the Fourier coefficients $c_{n}(f)$ for $n \in \Lambda_{\alpha}$.

Other constructions have been proposed by Olevskii and Ulanovskii.
The sets proposed Matei-Meyer are simple quasi-crystals. One example of such a set is

$$
\Lambda_{\alpha}:=\left\{n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}: \operatorname{dist}\left(n_{1} \sqrt{2}+n_{2} \sqrt{3}, \mathbb{Z}\right) \leq \alpha\right\}
$$

This set has density 2α : for all $\varepsilon>0$, there exists $R=R(\varepsilon)$ such that

$$
(2 \alpha-\varepsilon) \pi R^{2} \leq \#\left\{n \in \mathbb{Z}^{2}: \Lambda_{\alpha} \cap|n-x| \leq R\right\} \leq(2 \alpha+\varepsilon) \pi R^{2}, \quad x \in \mathbb{R}^{2} .
$$

Periodic lattices would not work, due to the phenomenon of aliasing.

Conclusions

Wavelet have been instrumental in putting the concept of sparsity into the forefront.
General objective : describe the properties of classes of object of interest by means of an appropriate representation.

Many applications : data compression, estimation, inverse problems, numerical simulation, compressed sensing.

Many open problems, in particular in high dimensions: what are the relevant classes? what are the natural sparse representations for these classes?

