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Wavelet theory from continuous to discrete : a golden decade

1981-1983 : theory of the continuous wavelet transform (Morlet-Grossmann)
1984 : stable discretization using frame theory (Daubechies)

1985 : construction of an orthonormal wavelet basis (Meyer)

1986-1987 : multiresolution analysis framework (Mallat-Meyer)

1988 : compactly supported orthonormal wavelets (Daubechies)
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Multiresolution analysis and refinable functions

Sequences of nested spaces --- C V; C Vi1 C --- of the particular form
V= span{@ (2 - —k) : k € 7},
are the natural framework for the construction of wavelet bases.
From Vg C Vi, the scaling function ¢ should satisfy a two-scale equation
@(x) =2 hnp(2x—n),
neZ
with a sequence (hn)nez such that Y~ h, = 1.
Example : ¢ =X[g,1] = @(2x) + @(2x — 1), that is hg = h; = %
The coefficients h, play a key role, as filters, in fast wavelet transform algorithms.

Idea : any function that satisfies a two-scale equation of the above type is a natural
candidate to generate a multiresolution analysis and in turn a wavelet basis. So let us
design the coefficients hj, in such way that the solution ¢ has desirable properties.

Such functions are called “refinable function”. They were independently identified in
computer-aided geometric design as limits of refinement algorithms called subdivision
schemes (Cavaretta-Dyn-Levin, Dahmen-Michelli, 1980's).



Example : the B-splines

The choice hg = h3 =1/8 and h; = hp = 3/8 gives the quadratic B-spline ¢ = B;.
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The B-spline of degree n is given by B, = (*)"*1)([0)1] (piecewise polynomials of

degree n and globally C"1).

Two-scale equation obtained by convolution of the equation for By = X[g 1]



Example : Daubechies orthonormal scaling functions

With a judicious choice of (hg, h1, h2, h3), Ingrid Daubechies constructs a scaling

function ¢ that has orthonormal integer translates.
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This function has no simple explict expression, but the coefficients h, are explicitely
given. It is not C! but has C5 Holder smoothness for s ~ .55. Arbitrarily smooth such
functions can be constructed up to raising their support length.
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Application of Fourier transform to @(x) =23, ha@(2x — n) gives
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and by iterating and using that m(0) = 1, we obtain
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—iw \ n+1
Smooth ¢ can be constructed by taking m(w) = (1“2 ) p(w), so that

9(@) = Bo(wPlw), Bylw) = (FE

iw

)nﬂ) Is(w) = Hp(2*jw].

jz1
The construction of scaling function and wavelets by this strategy has been intensively
studied, it led to the construction of the often used biorthogonal wavelets in 1992.

At that time, the graduate course of Yves Meyer was a “real time workshop” with new
constructions and results being anounced and presented every week.
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COMPRESSION DES DONNEES
ET RESTAURATION D'IMAGES BRUITEES

d'aprés DAVID DONOHO

1.Introduction.

David Donoho avait déja acquis une trés forte réputation en
traitement statistique du signal lorsqu'il fut conduit a s'intéresser aux
possibilités offertes par les ondelettes pour résoudre un de ses
problémes favoris. Nous allons décrire dans les pages qui suivent ce
probléme particulier et l'influence que sa scolution a eue sur le
développement contemporain de la recherche sur les ondelettes.

Ce qui m'enchante dans la démarche de Donoho est sa totale
objectivité scientifique: il ne connaissait pas les ondelettes et avait un
besoin urgent d'vn outil trés particulier, Lors d'une école d'été de
statistiques a St.Flour, une de ses collégues, Dominique Picard, lui
apprend que cet outil vient précisément d'éire créé et que les détails
se trouvent dans mon livre paru chez Hermann.

D.Donoho a passé le reste de 1'é1é a lire cet ouvrage et a
particulierement aimé un des chapitres les plus controversés: celui o
je montre que les ondelettes constituent un mode de représentation
optimal pour une gamme d'espaces fonctionnels que je trouve
délectables, Ces espaces sont les fameux espaces de Besov, que
beaucoup de scientifiques rejettent avec mépris car trois indices
différents apparaissent dans leur définition et que trois indices, c'est
trop! En fait, Donoho nous apprend que ce (florilege d'espaces
fonctionnels permet une description délicate et précise de larges
classes de signaux et d'images dont les propriétés génériques
deviennent alors des propriétés fonctionnelles. [l en est résulte une
suite de papiers retentissants sur le débruitage de signaux et d'images
pour lesquels la connaissance a priori se modélise par l'ordre de
grandeur d'une certaine norme Besov.

A



Besov spaces
The space B; , describes functions with s derivatives in LP (fine tuning by q). Here for
simplicity we take g = p €]0, 00l and s > 0.

Oleg Besov (1959) : let Q C RY be a domain, and A : f — f(- + h) — f be the finite
difference operator and A} its power for m an integer such that m > s. A function
f € LP(Q) belongs to B ,(Q) if and only if,

i _ pdt\1/p
(| (7 sup 189 Flusia,) ") " < o0
t>0 |h|<t t

Here Q) :={x € Q: [x,x + mh] C Q}. The above-quantity added to ||f||.r defines a
norm on B; ,(Q).
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simplicity we take g = p €]0, 00l and s > 0.

Oleg Besov (1959) : let Q C RY be a domain, and A : f — f(- + h) — f be the finite
difference operator and A} its power for m an integer such that m > s. A function
f € LP(Q) belongs to B ,(Q) if and only if,

i _ pdt\1/p
(J (t ° sup HAhmeLp(Qh)> —) < o0
t>0 [h<t t

Here Q) :={x € Q: [x,x + mh] C Q}. The above-quantity added to ||f||.r defines a
norm on B; ,(Q).

Yves Meyer (1990) : let (») be an orthonormal wavelet basis of L2(Q) with
generating wavelet of class C" for r > s. A function f = Y d\\, belongs to B; »(Q)
if and only if,

(; Zapl}“\d)\\p)l/p <oo, a:=s+ g — %

Here Py ~ 29/ (2/ . —k), and we use the notation [A| = j for the scale level. The
above-quantity defines an equivalent norm on B;,p(Q]' This shows that wavelets are
unconditional bases of these spaces.
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In particular, when s = £ —

‘—; g for some p < 2, then a =0 so that Hf”B; b [[(dr)]lep-

Simple expression of classical results : with s = % — % for p < 2, the critical Sobolev

embedding B, , C L? is equivalent to the obvious observation that P C (2

This embedding is not compact, yet an important approximation result holds : the
best n-term approximation of f is defined f, = Z)\e/\,, da\\) where A, corresponds to
the n largest |d,|. Observation by Stechkin :

_r 1
) et = I —follz <, C=llidhle, r=> -

N =

Proof : use (dk)k>1 the decreasing rearrangement of (|d5|) and combine

n
If—fall?22 =) df <diP) df <CPd? P and ndf <) df <CP.
k>n k>n k=1

This result can be improved according to

(dh) €t = |f—fillp<Cn, r=

T
N[ =

where (5, :={(dx) : SUPy>1 kY/Pd, < o).



Sparsity

Small dimensional phenomenon in high dimensional context.

A few numerically significant coefficients concentrate most of the energy.
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Measuring sparsity

In the previous results r = % — % — 00 as p — 0. The value of p quantifies the

amount of sparsity in the coefficient sequence (d)).

This give the rate n—5/9 for best n-term wavelet approximation in L2 when f € B,
d_ d

with d = T however in the above observations, (1)) could be any orthonormal
(or Riesz) basis.

Sparsity play a key role in various applications :

signal and image compression : allocate more bits to the large coefficients.
denoising and estimation : retain the observed coefficients that exceed noise level.

adaptive numerical simulation : approximate adaptively the solution to a PDE.

David Donoho (1993) : “Unconditional bases are optimal basis for data compression
and for statistical estimation”.

The hunt for sparsity is open

Sparse approximation is an instance of nonlinear approximation theorized in the 1980’'s
by Ronald Devore, Pencho Petrushev, Vasil Popov.
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Images and BV functions

f € BV if and only if f € L! and Vf is a finite measure.
Prototype : X with Q of a set of finite perimeter.

BV/([0,1]%) was proposed as a model for images : “piecewise smooth” with edge
singularities of finite length.

Cohen-DeVore-Petrushev-Xu (1993) : for the wavelet representation f = Y daa,
f € BV([0,1) = (dy) € wt',

ie dp < Ck~l.

Sharp estimate over BV : if f =X then dy > ck—1.

Optimal estimate for all bases

Best result for Fourier coefficients (Bourgain) : Znezz(l + )" Yenl < oo.

Yves Meyer : “In a world where images are the BV functions and the eye measures
error in L2, wavelets are the best tool”.



Cubist images

Edges of BV functions have finite length, but no geometric smoothness. One could
hope for sparser representation for classes of images with geometrically smooth edges.

One of the simplest classes consists of piecewise constant images with straight edges.



Cubist images
Edges of BV functions have finite length, but no geometric smoothness. One could
hope for sparser representation for classes of images with geometrically smooth edges.
One of the simplest classes consists of piecewise constant images with straight edges.

Yves Meyer (2001) : let f =X where Q is a polygon of [0, 1]2, then the decreasingly
rearranged Fourier coefficients ¢, = ¢, (f) decay at rate

cx < Cklog(k),

quite similar to wavelet coefficients.

In higher dimension d > 2, when Q is a polyhedron of [0, 119, this property persists
with
ok < Cktlog(k)*,

and Fourier representations are then sparser than wavelet representations.
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Cartoon images

The C2-C2 model : u is of the form 2_77:1 uJ-XQj, where the u; are C? functions and
Q; have piecewise C? boundaries.

Candes-Donoho (1998) introduce multiscale representation systems with directional
selectivity : curvelets frames of the form

Y =2Y2Y(D/R - —k), j>0, k€Z, 1=0,...,2,
where D = (gg) and R, is a rotation by 71/27.

They prove that the curvelet representation 3_ daba of u obeying the C2-C? model
satisfies

2
(d?\) ezp) p> gv

improving on wavelet and Fourier representation of such functions. The exponent 2/3
is optimal.

Variants : contourlets, shearlets, bandlets, anisotropic finite elements.
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Sparsity in high dimensions

Numerical approximation of functions of many variables suffers from the curse of
dimensionality. Example : best n-term wavelet approximation rate for By, is n—s/d.

A source of infinite dimensional problems : parametrized PDEs. Elementary example :
—div(aVu)=f in Q CR™ and u=0 on 9Q,

where f € L2 if fixed and the diffusion function is parametrized according to

a=aly)=a+) ybj y=(y)j=0 € U:=[-1,1",
j>0

where 3 and (;);>1 are in L*°, such that 0 < r < a(y) < R< oo forall y € U.

Polynomial expansions of the solution map from U to V = H&(Q) :

v,
youly) =) wy, y=1]y" v=0mnva..0).
v i1

Cohen-DeVore-Schwab (2011) : for any p < 1,

D Ibjlfe <00 = D lluvllf < oo
Jj hY%

Other approaches for high dimensional problems : sparse tensor formats, sparse grids.
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Exploiting sparsity in a different way

Assume that f is a sparse signal or image (in some basis).

Classical way to encode f : retain its k largest coordinates in the basis and encode
them. This requires to compute all coordinates before discarding the small one.

Compressed sensing (Donoho, Candes-Tao, 2000's) : use m linear measurements of f
prescribed in advance, and exploit that f is sparse in order to reconstruct it accurately
from these measurements.

In other word, we observe y = ®f € R™ with ® a fixed measurement matrix and we
want to build g = A(y) close to f.

Key ingredient : A should be nonlinear.



An instructive example : 2D tomography (Candes-Romberg-Tao)

The Radon transform captures partial Fourier information.

Left : the Logan-Shep phantom test image

Right : position of the observed Fourier coefficients (white)



Two different reconstructions

Left : put the unknown coefficient to zero (minimum €2 norm) and reconstruct the
partial Fourier serie = oscillation artifacts.

Right : adjust the unknown coefficients so to minimize the total variation of the image
Iflrv = [IVf| = nearly exact reconstruction !
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Questions

Let X4 be the set of k-sparse vectors (x € RM with at most k non-zero entries).
y P X
m 8 =
n

Minimal number m of measures which is sufficient to characterize any x € X.
With which matrices ® ? Which decodes A?

Robustness ? In practice, y = ®x + e with |le[[;2 < € and x € R" close to X.
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least square systems to solve. Alternative : A(y) := Argmin{||z|lo : ®z = y}, with
llzllo = #{i : z # 0}, same complexity.
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Candes-Tao (2005) : using m ~ ck log(N/k) measures and specific ® which satisfy
restricted isometry properties (RIP), one can reconstruct exactly any x € L, with

(i) Simple decoder : A(y) := Argmin{||z||1 : ®z = y} with ||z||1 := |z1]| + -+ + |zal,
convex optimization, linear programming.

(ii) Robustness : ||[x — A(®x)|| controlled by noise and deviation of x from Z.

but... @ obtained by probabilistic techniques. Example : ® = (®; ;) with @; ;
independant random draws of Bernoulli +1 or gaussians A/(0,1).

Deterministic constructions known for m ~ ck? log(N/k) (DeVore, Calderbank).
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We say that f is B-sparse if its support inside [0,1]? is a set S of measure |S| < f.

Matei-Meyer (2009) construct for any 0 < & < % deterministic sets Ay € Z? of
density 2« such that any f € L1([0,1]2) that is B-sparse for p < « and positive, is
characterized by the Fourier coefficients c,(f) for n € Ax.

Other constructions have been proposed by Olevskii and Ulanovskii.

The sets proposed Matei-Meyer are simple quasi-crystals. One example of such a set is
Ao :={n=(n,n) € Z? : dist(mv2+ mv3,Z) < o}
This set has density 2« : for all ¢ > 0, there exists R = R(¢) such that
Ra—e)mR? < #{ne 7% : AaNln—x| < R} < (2a+ ¢)nR?, x € R2.

Periodic lattices would not work, due to the phenomenon of aliasing.



Conclusions

Wavelet have been instrumental in putting the concept of sparsity into the forefront.

General objective : describe the properties of classes of object of interest by means of
an appropriate representation.

Many applications : data compression, estimation, inverse problems, numerical
simulation, compressed sensing.

Many open problems, in particular in high dimensions : what are the relevant classes ?
what are the natural sparse representations for these classes ?



