
Numerical Computing
Validation on New Architecture
and Large Scale Systems

Eric Petit; Pablo Oliveira; Yohan Chatelain;
Bruno Lathuliere; Francois Fevotte

Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.

2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese

1
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Foreword about ECR Lab. at Teratec
CEA DAM, Intel, UVSQ

Since 2010, around 10 people working on MAQAO, MPC, ASK, Cere,
DClib, Titus, Verificarlo, MALT...

And optimizing many workloads from CEA and other institute and
industrials: QMC=Chem, Abinit, Polaris, EPX, Yales2, AVBP, Polaris,
Total RTM,...

Objective: How to build applications for the next generations of Intel
systems?

• Application-architecture co-design
• Scalable and parallel efficient algorithms
• Scalable performance tools
• Other challenges arising from code modernization for highly parallel

systems: numerical precision, programmability, scalable runtime,
benchmarking...

2
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Table of contents

1. The Evolution of Modern Architecture and its Challenges for the
Software Stack

2. About numerical stability from the floating point evaluation
perspective

3. Verificarlo: Checking Floating-Point Accuracy Through Monte Carlo
Arithmetic

4. Some Verificarlo Results

3
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Section 1

The Evolution of Modern Architecture and its
Challenges for the Software Stack

Intel innovations for HPC systems

Anyone can build a fast CPU. The trick is to build a fast system.
Seymour Cray

And I would add: which efficiently compute the expected results!

4
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Architectural evolution cycles

• Multiple reasons in the architecture environment can be challenging
for the precision/reproducibility/determinim of your computation

• A system is not just a computing unit, and it is NOT generally
deterministic!

runtimes
memory alignement
parallel algorithm
implicit/explicit hw level parallelism
compiler optimization
asynchronousity...

• This makes the numerical precision a recurrent hot topic everytime a
major change is happening on the hw side and propagating in the
full system.

vector instruction set, multi-core, manycore, FMA...

5
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Intel architecture drivers and the interweaved HPC
and AI systems evolution

• For a long time performance has been by far the main driver,
• And HPC was ahead, paving the way of future consumer technology
• Support market were and still are commodity datacenters, PC, and

videogames.
• However new concerns and new market are arising

Memory and I/O often are the main bottleneck (not new)
α.F lop/(β.W.γ.$) is the main metric to tune
Cloud infrastructure and ML/DL workloads (embedded or not) are
becoming the most influential for processor, memory and network
(wire and wireless) technologies

→ New trade-off are arising for processor/memory
organization, productivity, and FLOP operators and
their accuracy

6
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

BTW, 2 common shortcuts in HPC about AI and its
influence on compute ressources

• DL framework relies on large FP16 throughput?
WRONG
Training and inference are very different steps:

• while training some operation can work on lower precision or range
(flexpoint, fixed point), others welcome DP. Througput-oriented
specialized design (ASIC) are welcome (Nervana, TPU) with
high-throughput large-memory hierarchy (Intel NVME, HBM)

• inference is low precision (a few bits) and less compute intensive.
Latency matters as much as throughput and power consumption:
FPGA, ASIC, SoC (nervana, movidius, mobileye, Altera)

• Intel has strong assets in all aspect of ML that already percolate in
both direction

• We will have to compute on AI plateform?
WRONG
For Intel hardware, there is two separate roadmaps, and the one for
HPC is today closer to the cloud computing one. But there will be
probably mutual fertilization.
For software, I cannot see any convergence in a near future, but
there is great idea on both side that can benefit us all.

7
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Issue with implementing FP codes on a moving base

Changing architecture, parallelization, heterogeneity, compiler,
optimizations level and language can result in different numerical results.

• How to assess correctness of a result? or validate an
implementation?

• Ensuring the numerical reproducibility is not always a requirement!
Despite most the (HPC) users want to be conservative. . .

• Does different results means wrong results?

8
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Section 2

About numerical stability from the floating
point evaluation perspective

Defining the correctness of a result?

Fragilized

Fragilized

a. Normal (IEEE) b. Fragilized (IEEE)

c. Normal (100 MCA samples) d. Fragilized (100 MCA samples)

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2
x

z

Figure 1: Buckling simulation of a 1D beam with EPX

9
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

From the physics to the compute units

1 Physical phenomena
→ Model error

2 Mathematical model
→ Discretization error

3 Numerical Algorithm
→ Computation error

4 Implementation
5 Compilation
6 Execution

• Verification: the computation match the model
• Validation: the computation match the physics

10
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Code validation for FP errors?
• It does not validate the model, but its implementation!
• Two main tools family:

Formal
• (very) limited on coverage, expression, loop, but not a full HPC

simulation for all possible inputs... but strictly 100% sure
• Static analysis, abstract interpretation, interval arithmetic, affine

arithmetic...
• Fluctuat, Daisy, Numalis suite

Empirical
• Can scale to a full application and full-scale use-case but strictly less

than 100% sure
• CESTAC, MCA, interval arithmetic, extended precision
• Verificarlo, Verrou, Cadna, Precimonious, FPdebug...

• Is statistical FP implementation debugging and validation enough for
you?

Unitary test coverage?
On my use case, I am 95% sure that:

• (The model predict that) My nuclear reactor will not melt.
• My search engine is giving accurate results.
• Is this enough? ;)

• FP arithmetic statiscal validation tools validate the implementation
of your model on a given set of experiment with a given confidency

11
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Floating point computation: the IEEE-754 standard

• What Every Computer Scientist Should Know About Floating-Point
Arithmetic, David Goldberg, 1991 ACM issue of Computing Surveys

• Floating point (FP) numbers approximate real numbers with a finite
precision

Discrete and finite set of values
In base 2

• Different representation and encoding in memory defined in IEEE
754

• Trade-off between range and precision
Single (32 bits), Double (64 bits)...

• And four rounding modes :
nearest, toward +∞, toward −∞, toward zero

12
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Floating-point representation

13
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Rounding modes

ULP

0 +Inf

Real

Nearest

Toward 0

Toward +infinity

Toward -infinity

+1/2 ulp-1/2 ulp

Real

-1/2 ulp +1/2 ulp

14
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Floating point computation: some adverse effects
• A floating point computation approximates the real computation

Representation errors
• 3.14159265359300

Loss of arithmetical properties (for example the floating point
summation is not associative)
Absorption, a part of the significant digits cannot be represented in
the result format.

• 3.14159+0.00141421=3.14300{421}
Cancellation, relative error when subtracting variables with very close
values

• 3.14300-3.14159=0.00141

223

+

1.625 ×

23 1.3×

absorbed digits

15
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

The most common sources of FP arithmetic bugs,
indeterminism or imprecision in HPC

• Large summation: dot product, integral computation, global values
reduction (global energy...)

• Gradient computation of near values: small variations in large
quantities, gradient with neighbor (e.g. stencil, CFD), residual

• Small contributions overtime: explicit methods, last iterations of a
linear solver

• Duplication of mathematically equivalent computation on parallel
actors

• Or a combination of the above: L2 norm of a residual,
standard-deviation...

16
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Reproducibility, accuracy, and precision

• Quoting J. Demmel et al. about reproBLAS:
Reproducibility : obtaining bit-wise identical results from different
runs of the program on the same input data, regardless of different
available resources.
Reproducibility is needed for debugging and for understanding the
reliability of the program.

• Architecture, mem layout, nb process, threads, vector size...
• Reproducible ∼ strictly deterministic
• And (hopefully) many physicists/numericians doesn’t have the same

definition for their code:
Reproducible = the significant part of the meaningful result are
similar across platform and architecture
Use-case dependent, only the scientist can tell.

• Conservation of energy, flow speed on the output, quantity of
pollutant, total absorbed energy, maximum deformation...

17
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Does it always make sense to be reproducible?

Fragilized

Fragilized

a. Normal (IEEE) b. Fragilized (IEEE)

c. Normal (100 MCA samples) d. Fragilized (100 MCA samples)

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2
x

z

Figure 2: Buckling simulation of a 1D beam with EPX

18
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Precision, accuracy and reproducibility, which one do
you really want?

• Reproducible and/or accurate operators and libraries exists for many
operations (extension and improvement are still an active domain).

Specific hardware such has Kulish accumulator are largely explored.
Will it be implemented? Where?
Trend (DL..) is more to explore lower precision and accuracy hw
operators.
Different techniques: extended precision, compensation, formula
rewriting...
Libraries: reproblas, mpfr, boost, libeft...

• Accurate ⇒precise and reproducible
• But the opposite is not true! e.g. See J.M Muller example in the

following verificarlo part of the presentation

⇒ You can be precisely wrong, and you can reproduce it ;)

19
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

BTW is this accurate?

Fragilized

Fragilized

a. Normal (IEEE) b. Fragilized (IEEE)

c. Normal (100 MCA samples) d. Fragilized (100 MCA samples)

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2
x

z

Figure 3: Buckling simulation of a 1D beam with EPX

20
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Motivating example: Numerical bugs in Abinit

• In 2016 a first bug was solved by T. Guillet (Intel)
With the vectorization enabled, the code was diverging
The inaccuracy in an integral computation (summation) was giving
slightly different results among the MPI ranks
This differences were introducing new ”bad” eigenvalues to the
problem definition
This has been solved using accurate summation algorithm, or locally
disabling the vectorization

• Quite recently a similar bug appears
A well define use cases prepared for a grand Challenge on Oxygen2
at CINES refuse to converge
The convergence oscillate around a constant residual
Again switching off the vectorization solved the issue
...but degrade the performance...

21
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Target objectives

• Can we spot and fix these numerical bug in systematic way?
• Can we prepare the portability on future systems?
• Can we elaborate unitary test for non regression?
• Can we optimize while reducing locally the accuracy? (mixed

precision)
Without computing the exact theoretical answer
On a whole full scale scientific code
Without modifying the application code
And taking into account compiler optimization and special
instructions
And ultimately, can we, computer arithmetic expert, be replaced by
some scripts to have the programmer doing it himself? ;)

22
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Section 3

Verificarlo: Checking Floating-Point Accuracy
Through Monte Carlo Arithmetic

Example by W. Kahan, condition number 2.497e8

(
0.2161 0.1441
1.2969 0.8648

)
x =

(
0.1440
0.8642

)
, xexact =

(
2
−2

)
• Results obtained using the LAPACK routines

xsingle =
(

1.33317912
−1.00000000

)
xdouble =

(
2.00000000240030218
−2.00000000359962060

)
• How to automatically estimate s, the number of significant digits ?

Without computing the exact theoretical answer
On a whole full scale scientific code
Without modifying the application code

23
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Introducing Verificarlo

• Verificarlo is a numerical debugger for the IEEE-754 floating point
model

Estimate significant digits of a computation
Compromise between performance, precision and reproducibility
Open Source GPLv3 at github.com/verificarlo/verificarlo
Contributors: Pablo Oliveira (UVSQ), Yohan Chatelain (UVSQ), Eric
Petit (Intel) and Christophe Denis (CMLA)

24
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

github.com/verificarlo/verificarlo

Verificarlo

LLVM

C/C++/Fortran
Application

Replace FP
operation by MCA
equivalents

MCA backends:
 • mpfr (libmca)
 • quad

Executable

 Sampling
(embarassingly parallel)

 • mask

• Transparently transforms code to Monte Carlo Arithmetic
• Operates on optimized code: evaluates floating point errors

introduced by compiler optimizations

- %37 = fadd fast <4 x float> %wide.load.2, %31
+ %37 = call <4 x float> @_4x_mca_floatadd(<4 x float> %wide.load.2,

<4 x float> %31)

25
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Monte Carlo Arithmetic: models FP Error
Propagation [S. Parker, 1999]

• Verificarlo estimate the number of significant digits by using N
Monte Carlo samples s̃ = − log10 (σ̃µ̃)

µ̃: empirical mean and σ̃: empirical standard deviation

-

Across multiple MCA executions : error digits will change
significant digits will stay stable

cancellation mca noise

26
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Random Rounding = MCA 53/27

ULP

0 +Inf

Real

Nearest

Toward 0

Toward +infinity

Toward -infinity

+1/2 ulp-1/2 ulp

Real

-1/2 ulp +1/2 ulp

27
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Compiler optimizations are instrumented

• Instrumentation occurs just before code generation
• Enables analyzing precision loss due to compiler optimizations

for (int i=1;i<n;i++) {
y = f[i] - c;
t = sum + y;
c = (t - sum) - y;
sum = t;

}
return sum;

Figure 4: Analysis of the effect of compiler flags on a Kahan compensated sum
algorithm (Random Rounding with p=53)

28
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Example by W. Kahan, condition number 2.497e8
• Computations using IEEE-754 FP numbers

Precision Result s

SP x(1) = 1.33317912 0
x(2) = −1.00000000 0

DP x(1) = 2.00000000240030218 9
x(2) = 2.00000000359962060 9

• Computation performed with Verificarlo(N = 1000 samples)

Precision µ̂ σ̂ ŝ

Verificarlo SP µ̂(x(1)) = 1.02463705 σ̂(x(1)) = 6.4... 0.0
µ̂(x(2)) = 6.46717332 σ̂(x(2)) = 9.6... 0.0

Verificarlo DP µ̂(x(1)) = 1.9999999992 σ̂(x(1)) = 8.4...× 10−9 8.3
µ̂(x(2)) = −1.9999999988 σ̂(x(2)) = 1.2...× 10−8 8.2

For this example, verificarlo automatically instrumented LAPACK
and BLAS libraries without any modification of their source code

29
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Tracing precision

Computing the numerical limit of the following sequence:

un+1 = 111− 1130
un

+ 3000
unun−1

with u0 = 1, u1 = −4

• The accurate result is 6
• Whatever the precision, a computer will answer 100

30
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

VeriTracer

0 5 10 15 20 25 30
Iteration

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

S
ig

n
if
ic

a
n
t

d
ig

it
s

Significant digits evolution

s

• At n = 30, s = 16 ⇒ computation is accurate ?
• for n = 14, s < 0 ⇒ u14 has no correct decimal digits, ie you can

introduce any random number instead of your variable at that point!
• Only checking the final results is not enough to detect the accuracy

loss.
• Most of FP analysis tools will conclude on a fully precise result.
• Veritracer allow to trace the precision and highlight the problem
• That is an example of ’precisely wrong’ ;)

31
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

VeriTracer: context-enriched precision tracer
• Our last paper to be published at arith25, release planned Q3 2018.
• Tracing the precision and contextual information of the FP

computation
• A function can be called by different parents hierarchy: the Call Site

Path (CSP)
• Depending on its CSP, a function may have different behaviors
• Tracing CSP avoid possible false correlations in the analysis

Figure 5: Coloring Call Sites Path to differentiate call contexts. Numerical
enhancement pinpoints by red arrow is an illusion since blue points and red
points do not belong to the same call site path

32
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Section 4

Some Verificarlo Results

Study on Europlexus (EPX)

• Fast transient dynamic simulation
soundness of mechanical confinement barriers in nuclear reactors
soundness of public structures in case of explosions

• 1 million lines of Fortran 77 and Fortran 90
• Instrumented out of the box with Verificarlo without any change to

the source code
• Users complain about non reproducibility across hardware platform
• Precision on a rectangular beam buckling experiment:

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
0

5

10

15

time

average number of
significant digits over
the mesh points

bifurcation

33
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

VTK plugin for Europlexus - covariance
• Europlexus dynamic buckling of a rectangular section beam
• Visualized using the Verificarlo VTK post-process plugin
• Left side is the initial ripples after impact at t = 4.25ms

• The right side shows the end of the simulation at t = 16ms.
• At t = 4.25ms the number of significant digits is high (s > 8).
• At t = 16ms the precision is very low since there are no significant digits.

34
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

VTK plugin for Europlexus - standard deviation
• Europlexus dynamic buckling of a rectangular section beam
• Visualized using the Verificarlo VTK post-process plugin
• The left beam is the displacement
• The right beam is its empirical standard deviation
• The standard deviation is low compare to the displacement even if no significant

digits remains.

35
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

ABINIT: Presentation

• Scientific computing code developed by an international community
of industrial and academic scientifics

• Allows finding the total energy of a quantum system within Density
Functional Theory (DFT)

• Code large and complex (∼ 106 lines of Fortran)
• Suffering from numerical instabilities when vectorized

36
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Checking function sensitivity to precision loss with
Verificarlo

• Perovskite (BaTiO3) use
case

• Find the minimal virtual
precision for each function
that guarantees accurate
results

pinpoint fragile routines
detect routines that can
be potentially converted
to single precision

• The simp gen function:
computes an integral by
the Simpsons’ rule
3rd most sensitive
function
suspected of numerical
instabilities by the
ABINIT community 0 5 10 15 20 23 25 30 35 40 45 50 53

invcb_
bound_
getng_
prcref_

__m_lobpcgwf_MOD_lobpcgwf2
__m_pawfgr_MOD_pawfgr_init

xcmult_
initro_

moddiel_
__m_fftcore_MOD_kpgsph

__m_xg_MOD_xgblock_colwisecaxmy
getcut_

prep_fourwf_
pawmkrho_

__m_pawrhoij_MOD_symrhoij
dotprodm_v_
pawmknhat_

xcpot_
__m_pawxc_MOD_pawxcsum

symrhg_
newrho_

pawaccrhoij_
__m_paw_sphharm_MOD_initylmr
__m_lobpcgwf_MOD_getghc_gsc

__m_paw_numeric_MOD_paw_spline
scfopt_

invars2_
getghc_

__m_xg_MOD_xgblock_add
mkffnl_

__m_special_funcs_MOD_abi_derfc
__m_splines_MOD_splfit

__m_paw_atom_MOD_atompaw_shpfun
__m_sgfft_MOD_sg_fftz

metric_
atm2fft_

__m_pawrad_MOD_nderiv_lin
__m_paw_atom_MOD_atompaw_dij0

hartre_
__m_paw_numeric_MOD_paw_jbessel

__m_paw_atom_MOD_atompaw_shapebes
__m_pawpsp_MOD_pawpsp_lo

xcpbe_
etotfor_

__m_pawpsp_MOD_pawpsp_17in
vtorho_

__m_pawxc_MOD_pawxcm
pawdenpot_

__m_pawdij_MOD_pawdijhat
__m_pawrad_MOD_poisson

dotprod_vn_
__m_pawrad_MOD_simp_gen

rhohxc_
__m_ewald_MOD_ewald

min virtual precision

37
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

VeriTracer analysis on simp gen (original)

• Evolution of the number of significant digits over time
• Isolating Call Sites Path to avoid confusions
• 24 samples, tvirtual = 53 with Random Rounding mode

• Running on Occigen GENCI cluster

38
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

simp gen code

• The main loop can be seen as
a dot product

• Can we improve the accuracy ?
• Compensated algorithm: Dot2
• Dot product in twice the

working precision from Ogita,
Rump and Oisha
[ogita2005accurate]

• Implemented with libeft
github.com/ffevotte/libeft

s u b r o u t i n e
s imp gen (i n t g , func , radmesh)
. . .
nn=radmesh%i n t m e s h s z
r a d s i m=radmesh%s i m f a c t
simp=z e r o
do i =1,nn

simp=simp+func(i)*radsim(i)
end do
. . .
i n t g=simp+r e s i d
end s u b r o u t i n e

s u b r o u t i n e
s imp gen (i n t g , func , radmesh)
. . .
nn=radmesh%i n t m e s h s z
r a d s i m=radmesh%s i m f a c t
simp=z e r o
c a l l Dot2(simp,func,radsim)
. . .
i n t g=simp+r e s i d
end s u b r o u t i n e

39
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

github.com/ffevotte/libeft

VeriTracer analysis on simp gen (compensated
version)

• Dot2 compensates numerical errors of 30 CSP among 31
• Red points require deeper analyses

40
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Concluding remarks

• The assessment of the numerical accuracy of scientific codes
becomes crucial

When porting a scientific code on another programming
To find the best compromise between performance and precision
Transparent instrumentation eases large code bases analysis.

• Verificarlo is a young project we tested (mainly) on
Code ASTER and Telemac (EDF), Europlexus, Abinit (CEA), Yales2
(CORIA), Intel products

• Verrou appears at the same time and propose a complementary
approach tested on:

EDF Codes: ASTER, Telemac , Cocagne, Athena, Saturn...

41
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Future work: Interflop

• Open framework for numerical analysis tools
• Initiated by EDF, Intel, and UVSQ
• Enables composing Verrou and Verificarlo back-ends (MCA/Random

Rounding/...) and front-ends (Valgrind / LLVM instrumentation)
• Unite efforts on processing and analysis tools
• If interested, follow us on github, or even join us!

github.com/verificarlo/verificarlo
github.com/edf-hpc/verrou
github.com/interflop/interflop

42
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

github.com/verificarlo/verificarlo
github.com/edf-hpc/verrou
github.com/interflop/interflop

Section 5

Appendix

Monte Carlo Arithmetic: Estimating output error

−2.5

0.0

2.5

5.0

0.00 0.25 0.50 0.75 1.00

x

T
(x

)

Figure 6: Tchebychev Polynomial, catastrophic cancellation near 1 [Wilkinson,
1994]

43
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Verificarlo: an Automatic LLVM Tool for FP
Accuracy Checking using MCA

• Using LLVM brings advantages:
The instrumentation library is an independent module which can be
tuned for other tools
LLVM supports multiple languages and multiple ISA
It benefits from the powerful analysis of the LLVM compiler based on
code semantics

• e.g. per function/loop analysis, access to debug info to relate the
observation to the source code...

• But also some constraints:
Tied to LLVM compiler, addressing a new compiler would require to
rewrite the compiler pass (but it is a reasonably short and simple
piece of software)
Cannot handle precompiled libraries
No access to language abstraction makes some approaches tedious
(e.g. type overloading)

44
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Verificarlo Overhead
version samples total time (s) time

sample (s)

original program 1 .056 .056
Verificarlo MASK 128 12.42 .097
Verificarlo MPFR 128 834.57 6.52
Verificarlo QUAD 128 198.58 1.55
Verificarlo MPFR 16 thds. 128 54.39 .42
Verificarlo QUAD 16 thds. 128 12.54 .098

Table 1: Verificarlo overhead on a compensated sum algorithm (double) on a
16-core 2-socket Xeon E5@2.70GHz.

• Monte Carlo Arithmetic requires additional precision which is costly
• No size fits all

MASK backend is cheap (x2 per iteration) but statistically imprecise
QUAD backend implements exact MCA model but costly (x27 per
iteration)
MPFR used only for validation

• Embarrassingly parallel across executions

45
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

VeriTracer

Raw values
output by
executable

10110
01110 Statistical tests
01101
11010
01101
10010

• expected value
• standard deviation
• number significant digits

LLVM

C/C++/Fortran
Application Executable

Sampling
(embarassingly parallel)

Replace FP
operation by MCA
equivalents

Wrap FP store
with an output
function

Output function:
 • Debug location info
 • Address memory
 • Value

s

t

MCA backends:
 • mpfr
 • quad
 • bitmask

• An LLVM pass that insert probes after FP operations
• After executing the code multiple times ...
• ... postprocess raw data and enriches with contextual information
• Visualization of the numerical quality over time

46
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Precision

• Precision is the amount of bits used for the floating point
representation and computation

• Precision ∼ rounding error

47
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

Accuracy

• Accuracy is the distance to the result in the Real number domain

48
Intel-DCG-IPAG; UVSQ; ECR Lab.; EDF Lab.
2018-01-23 – ETSN 2018 Lecture on Verrou and Verificarlo – Cargese Eric Petit

	The Evolution of Modern Architecture and its Challenges for the Software Stack
	About numerical stability from the floating point evaluation perspective
	Verificarlo: Checking Floating-Point Accuracy Through Monte Carlo Arithmetic
	Some Verificarlo Results

