Anisotropic soap bubbles

Valentina Franceschi

FMJH \& IMO, Université Paris Sud

December 13th, 2018
Séminaire du CMLA, ENS Paris-Saclay
in collaboration with Aldo Pratelli (Pisa) and Giorgio Stefani (SNS, Pisa).

Outline

11 Introduction to soap bubble clusters

2 Anisotropic planar case

3 Symmetric double bubbles in the Grushin plane

4 (Non-)Existence of anisotropic m-clusters

Introduction to soap bubble clusters

Minimal partition problem

M smooth manifold of dimension n, endowed with:

- V volume measure \rightarrow " n-dimensional meas",

■ P perimeter measure \rightarrow " $n-1$)-dimensional meas",

Minimal partition problem

Given $v_{1}, \ldots, v_{m}>0$, let
$\mathcal{C}\left(v_{1}, \ldots, v_{m}\right)=\left\{E \subset M: E=\bigcup_{i=1}^{m} E_{i}, \vee\left(E_{i}\right)=v_{i}, i=1, \ldots, m\right\}$
where E_{1}, \ldots, E_{m} are pairwise disjoint.

$$
\text { Problem: } \inf \left\{\mathcal{P}_{P}(E): E \in \mathcal{C}\left(v_{1}, \ldots v_{m}\right)\right\}
$$

where

$$
\mathcal{P}_{P}(E)=\frac{1}{2}\left(\sum_{i=1}^{m} P\left(E_{i}\right)+P(M \backslash E)\right)
$$

Solutions are called m-minimal clusters.

Minimal partition problem
M smooth manifold of dimension n, endowed with:
■ V volume measure \rightarrow " n-dimensional meas",
■ P perimeter measure \rightarrow " $(n-1)$-dimensional meas",

Minimal partition problem

Given $v_{1}, \ldots, v_{m}>0$, let
$\mathcal{C}\left(v_{1}, \ldots, v_{m}\right)=\left\{E \subset M: E=\bigcup_{i=1}^{m} E_{i}, \vee\left(E_{i}\right)=v_{i}, i=1, \ldots, m\right\}$
where E_{1}, \ldots, E_{m} are pairwise disjoint.

$$
\text { Problem: } \inf \left\{\mathcal{P}_{P}(E): E \in \mathcal{C}\left(v_{1}, \ldots v_{m}\right)\right\}
$$

where

$$
\mathcal{P}_{P}(E)=\frac{1}{2}\left(\sum_{i=1}^{m} P\left(E_{i}\right)+P(M \backslash E)\right)
$$

Solutions are called m-minimal clusters.

Minimal partition problem

M smooth manifold of dimension n, endowed with:

- V volume measure \rightarrow " n-dimensional meas",

■ P perimeter measure \rightarrow " $n-1$)-dimensional meas",

Minimal partition problem

Given $v_{1}, \ldots, v_{m}>0$, let
$\mathcal{C}\left(v_{1}, \ldots, v_{m}\right)=\left\{E \subset M: E=\bigcup_{i=1}^{m} E_{i}, \vee\left(E_{i}\right)=v_{i}, i=1, \ldots, m\right\}$
where E_{1}, \ldots, E_{m} are pairwise disjoint.

$$
\text { Problem: } \inf \left\{\mathcal{P}_{P}(E): E \in \mathcal{C}\left(v_{1}, \ldots v_{m}\right)\right\},
$$

where

$$
\mathcal{P}_{P}(E)=\frac{1}{2}\left(\sum_{i=1}^{m} P\left(E_{i}\right)+P(M \backslash E)\right)
$$

Solutions are called m-minimal clusters.

Minimal cluster problem: Euclidean case

Example 1

$$
M=\mathbb{R}^{n}, P=\text { De Giorgi perimeter, } V=\text { Lebesgue measure }
$$

Minimal cluster problem: Euclidean case

Example 1

$$
M=\mathbb{R}^{n}, P=\text { De Giorgi perimeter, } V=\text { Lebesgue measure }
$$

■ Existence of solutions: [Almgren (1976)] $+E$ minimal cluster $\Longrightarrow \partial E$ is smooth outside the singular set $\Sigma \subset \partial E\left(\mathcal{H}^{n-1}(\Sigma)=0\right)$.

Minimal cluster problem: Euclidean case

Example 1

$$
M=\mathbb{R}^{n}, P=\text { De Giorgi perimeter, } V=\text { Lebesgue measure }
$$

- Existence of solutions: [Almgren (1976)] $+E$ minimal cluster $\Longrightarrow \partial E$ is smooth outside the singular set $\Sigma \subset \partial E\left(\mathcal{H}^{n-1}(\Sigma)=0\right)$.
- Structure of singularities for $n=3$: [Taylor (1975)] E minimal cluster $\Longrightarrow \partial E$ is the union of smooth surfaces meeting in threes along an edge (Plateau border), at an angle of 120 degrees. These Plateau borders, in turn, meet in fours at a vertex at the tetrahedral angle.

Minimal cluster problem: Euclidean case

Example 1

$$
M=\mathbb{R}^{n}, P=\text { De Giorgi perimeter, } V=\text { Lebesgue measure }
$$

- Existence of solutions: [Almgren (1976)] $+E$ minimal cluster $\Longrightarrow \partial E$ is smooth outside the singular set $\Sigma \subset \partial E\left(\mathcal{H}^{n-1}(\Sigma)=0\right)$.

■ Structure of singularities for $n=3$: [Taylor (1975)] E minimal cluster $\Longrightarrow \partial E$ is the union of smooth surfaces meeting in threes along an edge (Plateau border), at an angle of 120 degrees. These Plateau borders, in turn, meet in fours at a vertex at the tetrahedral angle.

- Existence of solutions and structure of singularities for $n=2$: [Morgan (1994)] (singularities are only at 120 degrees).

Isoperimetric problem
($\mathrm{m}=1$)
Isoperimetric Problem
Given $v>0$, consider

$$
\inf \{P(E): E \subset M, V(E)=v\} .
$$

Solutions are called isoperimetric sets.

Isoperimetric sets are balls [De Giorgi (1958)]

Minimal cluster problem: Euclidean case

$\mathbf{(m}=\mathbf{2)}$ Double bubble problem. Solutions are standard double bubbles:

Images from [Foisy \& al. (1993)] and [Maggi (2012)]
These are given by three ($n-1$)-dimensional spherical cups intersecting in a ($n-2$)-dimensional sphere at an angle of 120 degrees.
$\rightarrow n=2$ [Foisy et. al. (1993)]; $n=3$ [Hutchings, Morgan, Ritoré, Ros (2002)]; $n \geq 4$ [Reichardt (2008)].

Minimal cluster problem: Euclidean case

$\mathbf{(m}=\mathbf{2)}$ Double bubble problem. Solutions are standard double bubbles:

Images from [Foisy \& al. (1993)] and [Maggi (2012)]
These are given by three ($n-1$)-dimensional spherical cups intersecting in a ($n-2$)-dimensional sphere at an angle of 120 degrees.
$\rightarrow n=2$ [Foisy et. al. (1993)]; $n=3$ [Hutchings, Morgan, Ritoré, Ros (2002)]; $n \geq 4$ [Reichardt (2008)].
$\mathbf{(m}=\mathbf{3})$ If $n=2$, solutions are the standard triple bubbles:

Image from [Wichiramala (2004)]
given by six arcs of circle intersecting at an angle of 120 degrees. [Wichiramala (2004)]

Minimal cluster problem: Euclidean case

($m \geq 4$) OPEN.
(" $m=\infty$ ") Honeycomb theorem [Hales (2001)] : a regular hexagonal grid is the best way to tassellate the plane into regions of equal area with the least total perimeter.

Image from Morgan's book

Minimal cluster problem: Riemannian case

Example 2

$M=$ Riemannian manifold, $P=$ Riemannian perimeter, $V=$ Riemannian measure

- Existence of solutions and structure of singularities from [Almgren (1986)]

Minimal cluster problem: Riemannian case

Example 2

$M=$ Riemannian manifold, $P=$ Riemannian perimeter, $V=$ Riemannian measure

- Existence of solutions and structure of singularities from [Almgren (1986)]
$\mathbf{(m}=\mathbf{1}) M=n$-Sphere or the Hyperbolic space: solutions metric balls.

Minimal cluster problem: Riemannian case

($\mathrm{m}=2$)
■ $M=\mathbb{S}^{n}$: if $n=2$ solutions are standard double bubbles [Masters (1996)]. If $n \geq 3$ only partial results are available.

- $M=$ 2-dimensional boundary of the cone in $\mathbb{R}^{3}: 2$ types of minimizers (two concentric circles or a circle lens) [Lopez \& Baker (2006)].

■ $M=$ flat 2-torus: 5 types of minimizers [Corneli et. al.(2004)].

Anisotropic planar case

Anisotropic planar case

Want to study:

$$
\inf \left\{\mathcal{P}_{P}(E): E=\bigcup_{i=1}^{m} E_{i} \subset \mathbb{R}^{2}, V\left(E_{i}\right)=v_{i}, i=1 \ldots m\right\}
$$

- $n=2$. Denote points as $(x, y) \in \mathbb{R}^{2}$;
- V anisotropic volume: Given $\beta \in \mathbb{R}$, and a Borel set $E \subset \mathbb{R}^{2}$, we consider its volume to be defined as

$$
V_{\beta}(E)=\int_{E}|x|^{\beta} d x d y
$$

- P anisotropic perimeter: Given $\alpha>0$, and $E \subset \mathbb{R}^{2}, \mathcal{L}^{2}$-measurable we consider its perimeter to be defined as

$$
P_{\alpha}(E)=\sup \left\{\int_{E} \partial_{x} \varphi_{1}+|x|^{\alpha} \partial_{y} \varphi_{2} d p: \varphi=\left(\varphi_{1}, \varphi_{2}\right) \in C_{c}^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}^{2}\right),\|\varphi\|_{\infty} \leq 1\right\}
$$

This is also called the Grushin perimeter.

Preliminary remarks on volume and perimeter
$V_{\beta}(E)=\int_{E}|x|^{\beta} d x d y ; \quad P_{\alpha}(E)=\sup \left\{\int_{E} \partial_{x} \varphi_{1}+|x|^{\alpha} \partial_{y} \varphi_{2} d p: \varphi \in C_{c}^{\infty},\|\varphi\|_{\infty} \leq 1\right\}$.
On the anisotropic volume

- If $\beta=0, V_{\beta}=\mathcal{L}^{2}$.
- It is not invariant under x-translations.

On the anisotropic perimeter
Proposition (Representation formula - Monti \& Morbidelli (2004))
$E \subset \mathbb{R}^{n}$ bounded, ∂E Lipschitz. $N^{E}=\left(N_{x}^{E}, N_{y}^{E}\right)$ outer unit normal to ∂E. Then

$$
P_{\alpha}(E)=\int_{\partial E} \sqrt{\left|N_{x}^{E}\right|^{2}+|x|^{2 \alpha}\left|N_{y}^{E}\right|^{2}} d \mathcal{H}^{1}
$$

- If $\alpha=0$, then $P_{\alpha}=P$.
- It is an anisotropic perimeter, not invariant under x-translations.

A sub-Riemannian underlying geometric structure

$$
V_{\beta}(E)=\int_{E}|x|^{\beta} d x d y ; \quad P_{\alpha}(E)=\sup \left\{\int_{E} \partial_{x} \varphi_{1}+|x|^{\alpha} \partial_{y} \varphi_{2} d p: \varphi \in C_{c}^{\infty},\|\varphi\|_{\infty} \leq 1\right\} .
$$

A sub-Riemannian underlying geometric structure

$$
V_{\beta}(E)=\int_{E}|x|^{\beta} d x d y ; \quad P_{\alpha}(E)=\sup \left\{\int_{E} X \varphi_{1}+Y \varphi_{2} d p: \varphi \in C_{c}^{\infty},\|\varphi\|_{\infty} \leq 1\right\} .
$$

Despite the fact that Y is vanishing along $\{x=0\}$, a distance on \mathbb{R}^{2} can be naturally associated with

$$
X=\partial_{x}, \quad Y(x, y)=|x|^{\alpha} \partial_{y} .
$$

This is not a "Riemannian distance", but a sub-Riemannian one!

A sub-Riemannian underlying geometric structure

$$
V_{0}(E)=\int_{E} d x d y ; \quad P_{\alpha}(E)=\sup \left\{\int_{E} X \varphi_{1}+Y \varphi_{2} d p: \varphi \in C_{c}^{\infty},\|\varphi\|_{\infty} \leq 1\right\} .
$$

Despite the fact that Y is vanishing along $\{x=0\}$, a distance on \mathbb{R}^{2} can be naturally associated with

$$
X=\partial_{x}, \quad Y(x, y)=|x|^{\alpha} \partial_{y} .
$$

This is not a "Riemannian distance", but a sub-Riemannian one!
Remark: For $\beta=0, P_{\alpha}$ is then associated with such geometry, and $V_{0}=\mathcal{L}^{2}$, i.e.,

$$
P_{\alpha}(E)=\sup \left\{\int_{E} \operatorname{div}_{\mathcal{L}^{2}}\left(\varphi_{1} X+\varphi_{2} Y\right) d p: \varphi \in C_{c}^{\infty},\|\varphi\|_{\infty} \leq 1\right\}
$$

\rightarrow One can consider the sub-Riemannian perimeter defined above in any sub-Riemannian structure: several open problems (Pansu's conjecture, lack of regularity theory, ...)
$(\mathbf{m}=1)$: Grushin isoperimetric problem:

Theorem ([Monti \& Morbidelli (2004)])
Let $v>0$. Up to vertical translations, there exists a unique solution of

$$
\begin{equation*}
\inf \left\{P_{\alpha}(E): \mathcal{L}^{2}(E)=v\right\} \tag{1}
\end{equation*}
$$

If E solves (1), then there exists $\lambda>0$ such that

$$
E=\delta_{\lambda}\left(E_{\alpha}\right)
$$

where $E_{\alpha}=\left\{(x, y) \in \mathbb{R}^{2}:|y| \leq \phi_{\alpha}(|x|),|x| \leq 1\right\}$, and $\phi_{\alpha}:[0,1] \rightarrow[0,+\infty)$ is given by

$$
\phi_{\alpha}(x)=\int_{\arcsin x}^{\frac{\pi}{2}} \sin ^{\alpha+1}(t) d t, \quad \text { for } x \in[0,1]
$$

- $\delta_{\lambda}(x, y)=\left(\lambda x, \lambda^{\alpha+1} y\right)$ are anisotropic dilations such that $P_{\alpha}\left(\delta_{\lambda}(E)\right)=\lambda^{Q-1} P_{\alpha}(E)$, $\mathcal{L}^{2}\left(\delta_{\lambda}(E)\right)=\lambda^{Q} \mathcal{L}^{2}(E)$ for $Q=\alpha+2$.
- For $\alpha=1, \phi_{\alpha}$ is the profile function of the Pansu set.

NB: Here rearrangements work!
$(\mathbf{m}=1)$: Grushin isoperimetric problem:

Theorem ([Monti \& Morbidelli (2004)])
Let $v>0$. Up to vertical translations, there exists a unique solution of

$$
\begin{equation*}
\inf \left\{P_{\alpha}(E): \mathcal{L}^{2}(E)=v\right\} \tag{1}
\end{equation*}
$$

If E solves (1), then there exists $\lambda>0$ such that

$$
E=\delta_{\lambda}\left(E_{\alpha}\right)
$$

where $E_{\alpha}=\left\{(x, y) \in \mathbb{R}^{2}:|y| \leq \phi_{\alpha}(|x|),|x| \leq 1\right\}$, and $\phi_{\alpha}:[0,1] \rightarrow[0,+\infty)$ is given by

$$
\phi_{\alpha}(x)=\int_{\arcsin x}^{\frac{\pi}{2}} \sin ^{\alpha+1}(t) d t, \quad \text { for } x \in[0,1]
$$

- $\delta_{\lambda}(x, y)=\left(\lambda x, \lambda^{\alpha+1} y\right)$ are anisotropic dilations such that $P_{\alpha}\left(\delta_{\lambda}(E)\right)=\lambda^{Q-1} P_{\alpha}(E)$, $\mathcal{L}^{2}\left(\delta_{\lambda}(E)\right)=\lambda^{Q} \mathcal{L}^{2}(E)$ for $Q=\alpha+2$.
- For $\alpha=1, \phi_{\alpha}$ is the profile function of the Pansu set.

NB: Here rearrangements work!
$(\mathbf{m}=1)$: Grushin isoperimetric problem:

Theorem ([Monti \& Morbidelli (2004)])
Let $v>0$. Up to vertical translations, there exists a unique solution of

$$
\begin{equation*}
\inf \left\{P_{\alpha}(E): \mathcal{L}^{2}(E)=v\right\} \tag{1}
\end{equation*}
$$

If E solves (1), then there exists $\lambda>0$ such that

$$
E=\delta_{\lambda}\left(E_{\alpha}\right)
$$

where $E_{\alpha}=\left\{(x, y) \in \mathbb{R}^{2}:|y| \leq \phi_{\alpha}(|x|),|x| \leq 1\right\}$, and $\phi_{\alpha}:[0,1] \rightarrow[0,+\infty)$ is given by

$$
\phi_{\alpha}(x)=\int_{\arcsin x}^{\frac{\pi}{2}} \sin ^{\alpha+1}(t) d t, \quad \text { for } x \in[0,1]
$$

- $\delta_{\lambda}(x, y)=\left(\lambda x, \lambda^{\alpha+1} y\right)$ are anisotropic dilations such that $P_{\alpha}\left(\delta_{\lambda}(E)\right)=\lambda^{Q-1} P_{\alpha}(E)$, $\mathcal{L}^{2}\left(\delta_{\lambda}(E)\right)=\lambda^{Q} \mathcal{L}^{2}(E)$ for $Q=\alpha+2$.
- For $\alpha=1, \phi_{\alpha}$ is the profile function of the Pansu set.

NB: Here rearrangements work!
$(\mathbf{m}=1)$: Grushin isoperimetric problem:

Theorem ([Monti \& Morbidelli (2004)])
Let $v>0$. Up to vertical translations, there exists a unique solution of

$$
\begin{equation*}
\inf \left\{P_{\alpha}(E): \mathcal{L}^{2}(E)=v\right\} \tag{1}
\end{equation*}
$$

If E solves (1), then there exists $\lambda>0$ such that

$$
E=\delta_{\lambda}\left(E_{\alpha}\right)
$$

where $E_{\alpha}=\left\{(x, y) \in \mathbb{R}^{2}:|y| \leq \phi_{\alpha}(|x|),|x| \leq 1\right\}$, and $\phi_{\alpha}:[0,1] \rightarrow[0,+\infty)$ is given by

$$
\phi_{\alpha}(x)=\int_{\arcsin x}^{\frac{\pi}{2}} \sin ^{\alpha+1}(t) d t, \quad \text { for } x \in[0,1]
$$

- $\delta_{\lambda}(x, y)=\left(\lambda x, \lambda^{\alpha+1} y\right)$ are anisotropic dilations such that $P_{\alpha}\left(\delta_{\lambda}(E)\right)=\lambda^{Q-1} P_{\alpha}(E)$, $\mathcal{L}^{2}\left(\delta_{\lambda}(E)\right)=\lambda^{Q} \mathcal{L}^{2}(E)$ for $Q=\alpha+2$.
- For $\alpha=1, \phi_{\alpha}$ is the profile function of the Pansu set.

NB: Here rearrangements work!
$(\mathbf{m} \in \mathbb{N})$ Grushin minimal partition problem

Given $m \in \mathbb{N}, v_{1}, \ldots, v_{m}>0$ study

$$
\inf \left\{\mathcal{P}_{\alpha}(E)=\frac{1}{2}\left(\sum_{i=1}^{m} P_{\alpha}\left(E_{i}\right)+P_{\alpha}(E)\right): E \in \mathcal{C}\left(v_{1}, \ldots v_{m}\right)\right\}
$$

where

$$
\mathcal{C}\left(v_{1}, \ldots, v_{m}\right)=\left\{E \subset \mathbb{R}^{2}: E=\bigcup_{i=1}^{m} E_{i}, \mathcal{L}^{2}\left(E_{i}\right)=v_{i}, i=1, \ldots, m\right\} .
$$

We address the following problems

1) Characterize solutions for $(\mathbf{m}=\mathbf{2})$ under additional assumptions:

Symmetric double bubbles in the Grushin plane. (joint work with G. Stefani)
2) Prove existence of minimal clusters for any $\mathbf{m} \in \mathbb{N}$. (ongoing work with A. Pratelli, G. Stefani)

Symmetric double bubbles in the Grushin plane

Grushin double bubble problem

Want to study: Grushin double boubble problem

$$
\begin{gathered}
\inf \left\{\mathcal{P}_{\alpha}(E): E=E_{1} \cup E_{2} \in \mathcal{C}\left(v_{1}, v_{2}\right)\right\} \\
\mathcal{P}_{\alpha}(E)=\frac{1}{2}\left(P_{\alpha}\left(E_{1}\right)+P_{\alpha}\left(E_{2}\right)+P_{\alpha}\left(\mathbb{R}^{2} \backslash E\right)\right) .
\end{gathered}
$$

Grushin double bubble problem

Want to study: Grushin double boubble problem

$$
\begin{gathered}
\inf \left\{\mathcal{P}_{\alpha}(E): E=E_{1} \cup E_{2} \in \mathcal{C}\left(v_{1}, v_{2}\right)\right\} \\
\mathcal{P}_{\alpha}(E)=\frac{1}{2}\left(P_{\alpha}\left(E_{1}\right)+P_{\alpha}\left(E_{2}\right)+P_{\alpha}\left(\mathbb{R}^{2} \backslash E\right)\right)
\end{gathered}
$$

We consider the double bubble problem under more restrictive conditions:
(1) We assume $v_{1}=v_{2}=v \geq 0$.
(2) We assume specific structures of interfaces.

Problem 1: (DBV) Double bubbles with vertical interface: $\mathcal{C}\left(v_{1}, v_{2}\right)$ replaced by

$$
\mathcal{A}^{v}(v)=\left\{E \subset \mathbb{R}^{2}: \mathcal{L}^{2}(E \cap\{x>0\})=\mathcal{L}^{2}(E \cap\{x<0\})=v\right\}
$$

Problem 2: (DBH) Double bubbles with horizontal interface: $\mathcal{C}\left(v_{1}, v_{2}\right)$ replaced by

$$
\mathcal{A}^{H}(v)=\left\{E \subset \mathbb{R}^{2}: \mathcal{L}^{2}(E \cap\{y>0\})=\mathcal{L}^{2}(E \cap\{y<0\})=v\right\} .
$$

Main result

Theorem (F., Stefani)
Let $v>0$. Then solutions to problems (DBV), (DBH) exist. Moreover, the following statements hold.
(DBV) If $E^{\vee} \subset \mathbb{R}^{2}$ is a solution to (DBV), then, up to vertical translations, we have

$$
E^{V}=\left\{(x, y) \in \mathbb{R}^{2}:|y| \leq f(|x|),|x| \leq r\right\},
$$

where $\left.f \in C([0, r]) \cap C^{\infty}(] 0, r[), r \in\right] 0,+\infty[$, depends explicitly on v and α. In particular, if $\alpha>0$, then $f^{\prime}(0)=0$.

$$
\text { Case } \alpha=0
$$

Case $\alpha=1$

Main result

Theorem (F., Stefani)
Let $v>0$. Then solutions to problems (DBV), (DBH) exist. Moreover, the following statements hold.
(DBV) If $E^{V} \subset \mathbb{R}^{2}$ is a solution to ($D B V$), then, up to vertical translations, we have

$$
E^{V}=\left\{(x, y) \in \mathbb{R}^{2}:|y| \leq f(|x|),|x| \leq r\right\}
$$

where $\left.f \in C([0, r]) \cap C^{\infty}(] 0, r[), r \in\right] 0,+\infty[$, depends explicitly on v and α. In particular, if $\alpha>0$, then $f^{\prime}(0)=0$.

Case $\alpha=1$

Main result

Theorem (F., Stefani continuation)

(DBH) If $E^{H} \subset \mathbb{R}^{2}$ is a solution to $(D B H)$, then, up to vertical translations, we have

$$
E^{H}=\delta_{\frac{1}{h}}\left(\left\{(x, y) \in \mathbb{R}^{2}:\left(x,|y|-\phi_{\alpha}\left(\frac{\sqrt{3}}{2}\right)\right) \in E_{\alpha}\right\}\right),
$$

where $\phi_{\alpha}:[0,1] \rightarrow[0,+\infty[$ is the isoperimetric profile and h depends explicitly on v, α.

Case $\alpha=1$

Main result

Theorem (F., Stefani continuation)

(DBH) If $E^{H} \subset \mathbb{R}^{2}$ is a solution to $(D B H)$, then, up to vertical translations, we have

$$
E^{H}=\delta_{\frac{1}{h}}\left(\left\{(x, y) \in \mathbb{R}^{2}:\left(x,|y|-\phi_{\alpha}\left(\frac{\sqrt{3}}{2}\right)\right) \in E_{\alpha}\right\}\right),
$$

where $\phi_{\alpha}:[0,1] \rightarrow[0,+\infty[$ is the isoperimetric profile and h depends explicitly on v, α.

Case $\alpha=0$

Case $\alpha=1$

Main result

Theorem (F., Stefani continuation)

(DBH) If $E^{H} \subset \mathbb{R}^{2}$ is a solution to $(D B H)$, then, up to vertical translations, we have

$$
E^{H}=\delta_{\frac{1}{h}}\left(\left\{(x, y) \in \mathbb{R}^{2}:\left(x,|y|-\phi_{\alpha}\left(\frac{\sqrt{3}}{2}\right)\right) \in E_{\alpha}\right\}\right),
$$

where $\phi_{\alpha}:[0,1] \rightarrow[0,+\infty[$ is the isoperimetric profile and h depends explicitly on v, α.

Case $\alpha=0$

Case $\alpha=1$

Main result

Theorem (F., Stefani continuation)

(DBH) If $E^{H} \subset \mathbb{R}^{2}$ is a solution to $(D B H)$, then, up to vertical translations, we have

$$
E^{H}=\delta_{\frac{1}{h}}\left(\left\{(x, y) \in \mathbb{R}^{2}:\left(x,|y|-\phi_{\alpha}\left(\frac{\sqrt{3}}{2}\right)\right) \in E_{\alpha}\right\}\right),
$$

where $\phi_{\alpha}:[0,1] \rightarrow[0,+\infty[$ is the isoperimetric profile and h depends explicitly on v, α.

Case $\alpha=0$

Case $\alpha=1$

Main result

Theorem (F., Stefani continuation)

(DBH) If $E^{H} \subset \mathbb{R}^{2}$ is a solution to $(D B H)$, then, up to vertical translations, we have

$$
E^{H}=\delta_{\frac{1}{h}}\left(\left\{(x, y) \in \mathbb{R}^{2}:\left(x,|y|-\phi_{\alpha}\left(\frac{\sqrt{3}}{2}\right)\right) \in E_{\alpha}\right\}\right),
$$

where $\phi_{\alpha}:[0,1] \rightarrow[0,+\infty[$ is the isoperimetric profile and h depends explicitly on v, α.

Case $\alpha=0$

Case $\alpha=1$

120 degrees rule.

In the Euclidean setting $(\alpha=0): E \subset \mathbb{R}^{2}$ minimal cluster $\Longrightarrow \partial E$ is the union of three arcs of circumference meeting in threes at an angle of 120 degrees.

What about 120 degrees rule in the case $\alpha>0$?

(DBV) The angle of interface between the bubbles is flat.

(DBH) The angle of interface between the bubbles depends on α, v.

120 degrees rule.

Transformed plane [Monti \& Morbidelli (2004)]
The diffeomorphism $\Psi: \mathbb{R}_{x, y}^{2} \rightarrow \mathbb{R}_{\xi, \eta}^{2}, \quad \Psi(x, y)=\left(\operatorname{sgn}(x) \frac{|x|^{\alpha+1}}{\alpha+1}, y\right)$ is such that

$$
F:=\Psi(E) \quad \Longrightarrow \quad P_{\alpha}(E)=P(F), \quad \mathcal{L}^{2}(E)=\mathcal{M}_{\alpha}(F):=\int_{F}|(\alpha+1) \xi|^{-\frac{\alpha}{\alpha+1}} d \xi d \eta
$$

120 degrees rule.

Transformed plane [Monti \& Morbidelli (2004)]

The diffeomorphism $\Psi: \mathbb{R}_{x, y}^{2} \rightarrow \mathbb{R}_{\xi, \eta}^{2}, \quad \Psi(x, y)=\left(\operatorname{sgn}(x) \frac{|x|^{\alpha+1}}{\alpha+1}, y\right)$ is such that

$$
F:=\Psi(E) \quad \Longrightarrow \quad P_{\alpha}(E)=P(F), \quad \mathcal{L}^{2}(E)=\mathcal{M}_{\alpha}(F):=\int_{F}|(\alpha+1) \xi|^{-\frac{\alpha}{\alpha+1}} d \xi d \eta
$$

\Downarrow
E^{\vee} solution to (DBV). Let $F^{V}=\Psi\left(E^{\vee}\right) \quad E^{H}$ solution to (DBH). Let $F^{H}=\Psi\left(E^{H}\right)$

120 degrees rule.

Transformed plane [Monti \& Morbidelli (2004)]
The diffeomorphism $\Psi: \mathbb{R}_{x, y}^{2} \rightarrow \mathbb{R}_{\xi, \eta}^{2}, \quad \Psi(x, y)=\left(\operatorname{sgn}(x) \frac{|x|^{\alpha+1}}{\alpha+1}, y\right)$ is such that

$$
F:=\Psi(E) \quad \Longrightarrow \quad P_{\alpha}(E)=P(F), \quad \mathcal{L}^{2}(E)=\mathcal{M}_{\alpha}(F):=\int_{F}|(\alpha+1) \xi|^{-\frac{\alpha}{\alpha+1}} d \xi d \eta
$$

\Downarrow
E^{V} solution to (DBV). Let $F^{V}=\Psi\left(E^{V}\right) \quad E^{H}$ solution to (DBH). Let $F^{H}=\Psi\left(E^{H}\right)$

Corollary (F., Stefani)

The boundaries of the transformed bubbles meet at an angle of 120 degrees.

Idea of the proof

1 Rearrangement theorem.

Theorem (F., Stefani)

$E \in \mathcal{A}^{V}, P_{\alpha}(E)<\infty$. Then, there exists $\tilde{E} \subset \mathbb{R}^{2}$ bounded and locally Lipschitz such that

$$
\mathcal{P}_{\alpha}(\tilde{E}) \leq \mathcal{P}_{\alpha}(E), \quad \text { and } \quad \mathcal{L}^{2}(\tilde{E})=\mathcal{L}^{2}(E)
$$

Moreover, if E is a solution of (DBV), then

$$
\mathcal{P}_{\alpha}(\tilde{E})=\mathcal{P}_{\alpha}(E) \Longrightarrow E=\tilde{E}
$$

up to a set of measure zero and a vertical translation.
It is based on a rearrangement on the half plane $\mathbb{R}^{2} \cap\{x>0\}$ that allows us to decrease the total perimeter of a set possibly increasing the trace on $\{x=0\}$.

12 Existence of a bounded and Lipschitz minimizer: via direct method.
3 Lipschitz regularity of minimizers: via rearrangement.
4 Characterization: first variation of \mathcal{P}_{α} and study of the resulting differential equations.

Comparison between vertical and horizontal
What can we conclude in view of the general double bubble problem?

$$
\inf \left\{\mathcal{P}_{\alpha}(E): E=E_{1} \cup E_{2}, \mathcal{L}^{2}\left(E_{i}\right)=v\right\}
$$

($\alpha=\mathbf{0}$): Solutions to (DBV) and (DBH) are the euclidean standard double bubbles.

Horizontal interface

Comparison between vertical and horizontal
What can we conclude in view of the general double bubble problem?

$$
\inf \left\{\mathcal{P}_{\alpha}(E): E=E_{1} \cup E_{2}, \mathcal{L}^{2}\left(E_{i}\right)=v\right\}
$$

($\alpha=\mathbf{0}$): Solutions to ($\mathbf{D B V}$) and ($\mathbf{D B H}$) are the euclidean standard double bubbles. ($\alpha=\mathbf{1}$): Let E^{V} be a solution to (DBV) and E^{H} be a solution to (DBH).

Vertical Interface $\quad \alpha=1 \quad$ Horizontal Interface

Comparison between vertical and horizontal
What can we conclude in view of the general double bubble problem?

$$
\inf \left\{\mathcal{P}_{\alpha}(E): E=E_{1} \cup E_{2}, \mathcal{L}^{2}\left(E_{i}\right)=v\right\}
$$

($\alpha=\mathbf{0}$): Solutions to ($\mathbf{D B V}$) and ($\mathbf{D B H}$) are the euclidean standard double bubbles. ($\alpha=\mathbf{1}$): Let E^{V} be a solution to (DBV) and E^{H} be a solution to (DBH).

Vertical Interface $\quad \alpha=1 \quad$ Horizontal Interface

$$
\mathcal{P}_{1}\left(E^{V}\right) \geq \mathcal{P}_{1}\left(E^{H}\right)
$$

(Non-)Existence of anisotropic m-clusters

A more general existence result

Theorem (F., Pratelli, Stefani)
Let $\alpha \geq 0, \beta \in \mathbb{R}$ and $m \in \mathbb{N}$. Given $v_{1}, \ldots, v_{m}>0$, there exists a solution to

$$
\inf \left\{\mathcal{P}_{\alpha}(E)=\frac{1}{2}\left(\sum_{i=1}^{m} P_{\alpha}\left(E_{i}\right)+P_{\alpha}(E)\right): E \in \mathcal{C}_{\beta}\left(v_{1}, \ldots v_{m}\right)\right\}
$$

where

$$
\mathcal{C}_{\beta}\left(v_{1}, \ldots, v_{m}\right)=\left\{E \subset \mathbb{R}^{2}: E=\bigcup_{i=1}^{m} E_{i}, \quad V_{\beta}\left(E_{i}\right)=v_{i}, i=1, \ldots, m\right\}
$$

if and only if $\beta \in]-1, \alpha]$.

Idea of the proof

Nonexistence: If $\beta \notin]-1, \alpha]$, we construct a sequence E_{n} of sets such that

$$
V_{\beta}\left(E_{n}\right)=v \text { for all } n \in \mathbb{N}, \quad \text { and } \quad P_{\alpha}\left(E_{n}\right) \rightarrow 0, \text { as } n \rightarrow \infty
$$

In particular:

- If $\beta \leq 1$, the sets E_{n} are approaching $\{x=0\}$;

■ If $\beta>\alpha$, the sets E_{n} are escaping at infinity in the x-variable.

Idea of the proof

Nonexistence: If $\beta \notin]-1, \alpha]$, we construct a sequence E_{n} of sets such that

$$
V_{\beta}\left(E_{n}\right)=v \text { for all } n \in \mathbb{N}, \quad \text { and } \quad P_{\alpha}\left(E_{n}\right) \rightarrow 0, \text { as } n \rightarrow \infty
$$

In particular:

- If $\beta \leq 1$, the sets E_{n} are approaching $\{x=0\}$;
- If $\beta>\alpha$, the sets E_{n} are escaping at infinity in the x-variable.

Existence (Step 1): Reduction to $\beta=0$.

Lemma

Let $\alpha \geq 0, \beta \in]-1, \alpha]$. Then there exist a change of coordinates $\Psi_{\alpha, \beta}: \mathbb{R}_{(x, y)}^{2} \rightarrow \mathbb{R}_{(\xi, \eta)}^{2}$ and a parameter $\tilde{\alpha} \geq 0$ such that if $F=\Psi_{\alpha, \beta}(E)$ then (up to a multiplicative constant)

$$
P_{\alpha}(E)=P_{\tilde{\alpha}}(F), \quad V_{\beta}(E)=\mathcal{L}^{2}(F)
$$

Idea of the proof

(Step 2) We prove the following for the case $\beta=0$
Let $\left(E_{j}\right)_{j \in \mathbb{N}}=\left(E_{j}^{1} \cup \cdots \cup E_{j}^{m}\right)_{j \in \mathbb{N}}$ be a minimizing sequence for the minimal partition problem. Then there exists a sequence $\tilde{E}_{j} \in C\left(v_{1}, \ldots, v_{m}\right)$ such that

- $\mathcal{P}_{\alpha}\left(\tilde{E}_{j}\right) \leq \mathcal{P}_{\alpha}\left(E_{j}\right) ;$
- there exists $M>0$ such that $\tilde{E}_{j} \subset[-M, M] \times[0, M]$ for all $j \in \mathbb{N}$.

Then we conclude by the direct method.
Strategy: 1) Project the set E_{j} on the x - and y-axes, obtaining the sets $\pi_{x}\left(E_{j}\right), \pi_{y}\left(E_{j}\right)$ with finite (equibounded) length

$$
\max \left\{\mathcal{H}^{1}\left(\pi_{x}\left(E_{j}\right)\right), \mathcal{H}^{1}\left(\pi_{y}\left(E_{j}\right)\right)\right\} \leq C \sup _{j \in \mathbb{N}} \mathcal{P}_{\alpha}\left(E_{j}\right)<\infty
$$

2) Cover $\pi_{x}\left(E_{j}\right), \pi_{y}\left(E_{j}\right)$ by disjoint open intervals $\left\{l_{j}^{k}\right\}_{k \in \mathbb{N}}$ such that $\sum_{k} \mathcal{H}^{1}\left(l_{j}^{k}\right)<2 M$. 3) Vertical boundedness: "fill the holes" by moving the stripes towards the x-axis; Horizontal boundedness: "Order the intervals from the closest to the furthest" from the y axes and "fill the holes" by moving the stripes towards the y-axis.

Ongoing work

* Starting from the suggestion given by the interpretation of the 120 degree rule, study the regularity theory for perimeter minimizers in the Grushin plane.
* Double bubble problem: remove the assumptions on the type of interface between the bubbles. As a first step, study CMC curves in the Grushin plane.

Ongoing work

* Starting from the suggestion given by the interpretation of the 120 degree rule, study the regularity theory for perimeter minimizers in the Grushin plane.
* Double bubble problem: remove the assumptions on the type of interface between the bubbles. As a first step, study CMC curves in the Grushin plane.

Thank you for your attention!

