Reproducible Research in Image Processing: The Case of IPOL

REPPAR/Euro-Par 2016

$$
22-8-2016
$$

Enric Meinhardt-Llopis CMLA, ENS-Cachan http://ipol.im

IPOL

Contents

1. Horror stories in image processing
2. The IPOL journal (Image Processing On Line)

Horror story №1

- CVPR article on detection of scene cuts in video (beautiful, simple, without parameters!)

Horror story №1

- CVPR article on detection of scene cuts in video (beautiful, simple, without parameters!)

- The article contains this sentence: In order to avoid division by zero, the points of the image where the spatial gradient is less than 2 are ignored.

Horror story №1

- CVPR article on detection of scene cuts in video (beautiful, simple, without parameters!)

- The article contains this sentence: In order to avoid division by zero, the points of the image where the spatial gradient is less than 2 are ignored.
- We implement the algorithm. It does not work.

Horror story №1

- CVPR article on detection of scene cuts in video (beautiful, simple, without parameters!)

- The article contains this sentence: In order to avoid division by zero, the points of the image where the spatial gradient is less than 2 are ignored.
- We implement the algorithm. It does not work.
- Answer of the authors: first, you must blur the images with a gaussian kernel of $\sigma=0.5$.

Horror story №2

- Article solves biharmonic equation on arbitrary domains (...)
- The article contains this sentence: The proposed multigrid algorithm converges to the solution of the problem in $O(N)$.

Horror story №2

- Article solves biharmonic equation on arbitrary domains (...)
- The article contains this sentence: The proposed multigrid algorithm converges to the solution of the problem in $O(N)$.
- We implement the algorithm. Convergence turns out to be slower than our naïve Gauss-Seidel implementation.

Horror story №2

- Article solves biharmonic equation on arbitrary domains (...)
- The article contains this sentence: The proposed multigrid algorithm converges to the solution of the problem in $O(N)$.
- We implement the algorithm. Convergence turns out to be slower than our naïve Gauss-Seidel implementation.
- Answer: our domains are "too complicated"

Domains used in the article

Our domains

Horror story №3
 "the virtual periscope"

- Theoretical article with an elegant method for the fusion of many deformed images (based on computing several deformation fields between pairs of images).

I_{1}

I_{n}

solution

Horror story №3
 "the virtual periscope"

- Theoretical article with an elegant method for the fusion of many deformed images (based on computing several deformation fields between pairs of images).

I_{1}

I_{n}

solution
- Problem: what optical flow to use?

Horror story №3

"the virtual periscope"

- Theoretical article with an elegant method for the fusion of many deformed images (based on computing several deformation fields between pairs of images).

I_{n}

solution
- Problem: what optical flow to use? "It depends"

Middlebury
(indoor, no reflections)

SINTEL
(synthetic video)

KITTI
(only cars)

Horror story №3
 "the virtual periscope"

- Theoretical article with an elegant method for the fusion of many deformed images (based on computing several deformation fields between pairs of images).

I_{1}

I_{n}

solution
- Problem: what optical flow to use? "It depends"
- According to "Middlebury": NNF-local (2013)
- According our tests: Horn-Schunck (1981)

Observation: online benchmarks are rather useless if we cannot try all the methods with our own images.

Horror story №4

An "embarrassingly parallel" algorithm for optical flow

```
// inner loop
for (int j = 0; j < height; j++)
for (int i = 0; i < width; i++)
    u(i,j) += tau * ( - 4*u(i,j) + u(i+1,j) + u(i-1,j) + u(i,j+1) + u(i,j-1) ) + f(i,j);
```


Horror story №4

An "embarrassingly parallel" algorithm for optical flow

```
// inner loop
#pragma omp parallel for
for (int j = 0; j < height; j++)
for (int i = 0; i < width; i++)
    u(i,j) += tau * ( -4*u(i,j) + u(i+1,j) + u(i-1,j) + u(i,j+1) + u(i,j-1) ) + f(i,j);
```


Horror story №4

An "embarrassingly parallel" algorithm for optical flow

```
// inner loop
#pragma omp parallel for
for (int j = 0; j < height; j++)
for (int i = 0; i < width; i++)
        u(i,j) += tau * ( - 4*u(i,j) + u(i+1,j) + u(i-1,j) + u(i,j+1) + u(i,j-1) ) + f(i,j);
```

OMP_NUM_THREADS	wall time
1	6.2
2	3.1
3	2.1
4	1.7

Running times on my laptop

Horror story №4

An "embarrassingly parallel" algorithm for optical flow

```
// inner loop
#pragma omp parallel for
for (int j = 0; j < height; j++)
for (int i = 0; i < width; i++)
        u(i,j) += tau * ( -4*u(i,j) + u(i+1,j) + u(i-1,j) + u(i,j+1) + u(i,j-1) ) + f(i,j);
```

OMP_NUM_THREADS	wall time	OMP_NUM_THREADS	wall time
		1	6.4
1	6.2	2	3.2
2	3.1	4	1.8
3	3.1 2.1	8	1.6
3	2.1	16	1.6
Running times on my laptop		31	1.5
		32	25.2 (with wrong results)
		Running times on the server	

Horror story №4

An "embarrassingly parallel" algorithm for optical flow

```
// inner loop
#pragma omp parallel for
for (int j = 0; j < height; j++)
for (int i = 0; i < width; i++)
        u(i,j) += tau * ( -4*u(i,j) + u(i+1,j) + u(i-1,j) + u(i,j+1) + u(i,j-1) ) + f(i,j);
```

OMP_NUM_THREADS	wall time
1	6.2
2	3.1
3	2.1
4	1.7
Running times on my laptop	

OMP_NUM_THREADS	wall time
1	6.4
2	3.2
4	1.8
8	1.6
16	1.6
31	1.5
32	25.2 (with wrong results)
Running times on the server	

Idea: running time* is part of the output and must be reproducible.

* As a function of input size and number of cores.

Horror story №5

Horror story №5

My life.

Horror story №5

Have you ever published an article that:

- Did only work for images of side 2^{N} ?
- Had "secret" parameters?
- Did only work well for the images given as example?
- Did only work well for the images of a popular benchmark?
- Said ". . . may be implemented in real time" ?

Typical article in image processing

What you get: PDF file

What can you do:
\checkmark read the formulas
\checkmark believe the results
\checkmark look at the low-res images
X verify the results
X reproduce the results
x look at the images in detail
X look at the graphs in detail
\boldsymbol{x} try it on your own data

Reproductibility split chemistry from alchemy

The Sceptical Chymist
Robert Boyle, 1661

Me thinks the Chymists, in their searches after truth, are not unlike the Navigators of Solomons Tarshish Fleet, who brought home from their long and tedious Voyages, not only Gold, and Silver, and Ivory, but Apes and Peacocks too; For so the Writings of several (for I say not, all) of your Hermetick Philosophers present us, together with divers Substantial and noble Experiments, Theories, which either like Peacocks feathers make a great shew, but are neither solid nor useful; or else like Apes, if they have some appearance of being rational, are blemish'd with some absurdity or other, that when they are Attentively consider'd, makes them appear Ridiculous.

The article is only the teaser of research

An article about computational science in a scientific publication is not the scholarship itself, it is merely advertising of the scholarship. The actual scholarship is the complete software development environment and the complete set of instructions which generated the figures.
David Donoho
Stanford

Reason for not giving the code: we trust our colleagues

Suppose we lived in a universe where the standards for publication of mathematical theorems are quite different: papers present theorems without proofs, and readers are expected to simply believe the author when it is stated that the theorem has been proved.
Randall LeVeque
U. of Washington

