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Abstract

We consider the problem of exact histogram specification for digital (quantized) images. The goal is to
transform the input digital image into an output (also digital) image that follows a prescribed histogram.
Classical histogram modification methods are designed for real-valued images where all pixels have different
values, so exact histogram specification is straightforward. Digital images typically have numerous pixels
sharing the same value. If one imposes the prescribed histogram to a digital image, usually there are numerous
ways of assigning the prescribed values to the quantized values of the image. Therefore, exact histogram
specification for digital images is an ill-posed problem. So as to satisfy the prescribed histogram, all pixels of
the input digital image must be rearranged in a strictly ordered way, while preserving the specific features of the
input image. Such a task can be realized if we are able to extract additional representative information (called
auxiliary attributes) from the input digital image. This is a real challenge in exact histogram specification
for digital images. We propose a new method that efficiently provides a strict ordering for all pixel values. It
is based on a well designed variational approach. Noticing that the input digital image contains quantization
noise, we minimize an objective function whose solution is a real-valued image with reduced quantization
noise. We show that all the pixels of this real-valued image can be ordered in a strict way with a probability
close to one. Then transforming the latter image into another digital image satisfying a specified histogram is
an easy task. Numerical results show that our method outperforms by far the preexisting concurrent methods.

Key words: Exact histogram specification, strict-ordering, variational methods, restoration from quantization
noise, smooth nonlinear optimization, convex minimization.

I. INTRODUCTION

The histogram of an image counts the number of pixels at each intensity value. It is a graph that shows
the distribution of the intensity values. Image histogram processing is the act of altering each individual
pixel by modifying its dynamic range in order to modify the contrast of the whole image. It is an important
image processing task with many real-world applications, such as contrast enhancement [11], [31], [51],
segmentation [12], [38], watermarking [15], texture synthesis [46], among many others.

In histogram processing, image intensity level is viewed as a random variable characterized by its probability
density function. The histogram of an image shows the empirical distribution of the intensity levels of its
pixels. One of the basic histogram processing problem is histogram equalization [25], [44]. It aims to find a
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transformation so that the output image has a uniform histogram. In the continuous setting the random variable
defined by the cumulative distribution function of the intensity levels is uniformly distributed in [0, 1], and
hence such a transformation can always be found. More generally, we may want to yield an output image
with pre-specified histogram shapes. This problem is called histogram specification or histogram matching.
The prescribed histogram can be given according to various needs. For example, it can be the histogram of
another image, a modified version of the original histogram [45], or a “weighted” histogram of two histograms
[17], [18]. In this paper, we do not address how to generate a “good” histogram to improve the input digital
image, which is intimately related to perceptual requirements. We restrict our interest to the question: given
a histogram, how to specify this histogram exactly.

Numerous methods have been proposed to modify the histogram of an input image. The simplest method
is histogram linear stretching [37]. Histogram clipping method [45] limits the maximum number of pixels
for each intensity level to a given constant and the clipped pixels are then uniformly distributed among the
other intensity levels where the numbers of pixels are less than the clip limit. Several other methods were
proposed to preserve the mean brightness of the input image [11], [31], [51]. In [48], Sapiro and Caselles
proposed histogram modification via image evolution equations. Arici et al. proposed a general framework
for histogram modification [1].

The principle behind histogram specification methods is straightforward for real-valued (analog) images:
the histogram of the input image and the prescribed histogram should be equalized to uniform distribution
first, say by Ti and Tt respectively. Then the output image can be obtained from the composite transformation
T−1
t ◦ Ti. Since the images are real-valued, Ti and Tt are one-to-one functions, and hence T−1

t ◦ Ti is well-
defined. The principle fails, however, for quantized (digital) images, which is the case of all digital imaging
systems. The reason is that for quantized images, the intensity levels of all pixels take a limited number
of discrete values. Therefore their cumulative density functions are staircase functions rather than strictly
increasing functions like those for the real-valued images.

We will use an example to demonstrate the challenge of the exact histogram specification for discrete
image. Consider a 16 × 16 input image with intensity values living in the set {0, 1, 2, 3}. The histogram of
the input image is shown in Figure 1 (left), the prescribed histogram is shown in Figure 1 (middle). With the
classical histogram specification method, the pixels with the same intensity value in the input image should
be mapped into the same intensity value. When the classical histogram specification method is applied to the
example, the output image is identical to the input one, while the histogram of the specified image is not
equal to the prescribed one. From the figure, we observe that the number of pixels with the intensity value
“1” in the input image is 96, while the prescribed number in the specified image should be 64. In order to
yield an exact histogram specification, the group with intensity value “1” has to be divided into three groups
to fill in three bins of the specified histogram: 64 pixels should retain their value, 14 pixels should be mapped
to intensity value “0” and 18 pixels to “2”. If we do not consider some auxiliary information on pixel values,
there exists millions methods to reassign the intensity values.

Methods to obtain strict ordering for a quantized image were proposed to assign the same intensity level
to difference intensity levels in [14], [16], [50]. Once all pixels are strictly ordered, the prescribed intensity
values are assigned exactly according to the specified histogram. Coltuc et al. considered to use the average
intensities of neighboring pixels as the auxiliary attribute [16]. Considering two pixels with the same intensity
value, the mean values over the neighborhoods centered on each pixel are compared to order these two pixels.
If the mean values are still the same, then they choose larger neighborhoods and continue in the same way
until all pixels are ordered. Wan and Shi argued that the local mean approach fails to sharpen the edges
of the output image [50]. They proposed to order the pixels according to the absolute values of its wavelet
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Fig. 1: Left: histogram of the input image; middle: prescribed histogram; right: remapping the groups of
pixels with the same intensity value to pixels with different intensity values.

coefficients. The wavelet-based approach tends to amplify the noise since a noise in a smooth region may be
mistaken as an edge and hence is sharpened. Post-processing approach or iterative methods can be applied
to suppress the amplified noises [3]. We emphasize that both the local mean approach and the wavelet-based
approach cannot realize strict ordering without degrading the input quantized image. This is a major drawback.

In this paper, we present a variational method that enables us to strictly order the pixel values of a quantified
image by restoring it from the quantization noise. We give a theoretical analysis of the method and prove that
the pixels of the restored image can be ordered in a strict way with a probability close to one. A sketch of
some of the ideas of our approach was given in a conference paper [10]. Here we present a lot of experimental
results showing that the proposed method is very efficient and produces images of better quality than both
the local mean method [16] and the wavelet-based method [50].

The outline of the paper is as follows. In Section II, we give sorting algorithm for exact histogram
specification. In Section III, we present the proposed variational method. In Section IV, we summarize the
algorithm for exact histogram specification. In Section V, numerical examples are given to demonstrate the
effectiveness of the proposed model. Concluding remarks are given in Section VI.

II. SORTING ALGORITHMS

Let u be an M -by-N image obtained by digitizing an analog image uo (on a discrete grid) with range in
some interval [0, a). We assume the possible quantized values that u can take are from

P def
= {p1, · · · , pL} (1)

and that pk are in increasing order. For 8-bit images, P = {0, · · · , 255}. In the following we will express u

as an n-vector by concatenating the columns in u. Here n =MN . Denote Iq
def
= {1, . . . , q} for any positive

integer q and Ωk
def
= {i ∈ In | u[i] = pk}, k = 1, 2, · · · , L. The associated histogram of u is the L-tuple

hu = (|Ω1|, |Ω2|, . . . , |ΩL|), where | · | stands for cardinality. The image u with histogram hu is a result
of quantization of the original real-valued image uo. This amounts to set to the same intensity level pk all
the values of uo on the interval [tk−1, tk), k = 1, . . . , L. Then |Ωk| = n

∫ tk
tk−1

p(uo)dt, where p(uo) is the
empirical probability density function of uo, and t0 = 0 and tL = a.

Let the pre-specified histogram read h = (h1, h2, . . . , hL). The classical way of defining exact histogram
specification is designed for real-value images like uo. Such images are nowhere constant, see [26]. In such
a case, exact histogram specification can be summarized as follows: a sequence t̄1, t̄2, . . . , t̄L−1 is computed
such that hk = n

∫ t̄k
t̄k−1

p(uo)dt for k = 1, 2, . . . , L− 1 with t̄0 = 0 and t̄L = a. Once such sequence {tk} is
obtained, the intensity values in the interval [tk−1, tk) are assigned the intensity of pk, and we are done.
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However, in practice, we only have the digitized image u, obtained from an original real-valued (analog)

image uo. The digital u can seldom be totally-ordered—its pixels have only L possible magnitudes. Thus, the
number of pixels in u is generally much larger than the number of intensity levels, i.e., n≫ L. It is therefore
very likely that some Ωk, k = 1, . . . , L, will have |Ωk| > hk. In order to satisfy the prescribed histogram,
some pixels in Ωk will have values mapped to other intensity levels. The number of ways of selecting the
pixels to assign to other intensity levels is very large. Consequently, this problem is ill-posed.

The key to a stable solution is to create a total ordering of the pixels in the same Ωk by learning some
auxiliary information from the digital image h itself. Suppose that for any pixel i ∈ In, we can create K − 1

auxiliary information κ1[i], . . . , κK−1[i]. Then we can define an ascending ordering “‘≺” for all pixels in In
based on the K-tuples (u[i], κ1[i], . . . , κK−1[i]). To facilitate the discussions, let κ0[i]

def
= u[i]. For any two

pixels i and j in In, we say that i ≺ j if for some 0 ≤ ℓ ≤ K − 1

κs[i] = κs[j] for all 0 ≤ s ≤ ℓ− 1 and κℓ[i] < κℓ[j].

For good choices of auxiliary information and K sufficiently large, one can in principle sort all pixels i in In
according to the ordering ≺. That is, we can order the pixels i in In in such a way that i1 ≺ i2 ≺ . . . ≺ in.
Once such a strict-ordering is obtained, matching the input histogram to the prescribed one is straightforward.
This can be done by dividing the ordered list {iℓ}nℓ=1 from left to right into L groups. Thus the first h1
pixels i1, i2, . . . , ih1

belong to the first group, and are assigned the intensity of p1. The next h2 pixels
ih1+1, . . . , ih1+h2

belong to the second group and are assigned the intensity of p2, and so on until all pixels
are assigned to their new intensities.

Several ideas have been proposed for the auxiliary information. Coltuc et al. proposed to use the local
average intensities of a pixel’s neighborhood as auxiliary information [16]. For pixels having the same intensity,
if the average intensities of their neighborhoods are the same, then a larger neighborhood will be chosen to
compute the average intensity. This procedure is repeated until all pixels are ordered. The author claimed that
K = 6 is appropriate for any application. Wan and Shi proposed to order the pixels according to the absolute
values of the wavelet coefficients of the whole image [50]. In next section, we present a new approach to
obtain pertinent auxiliary information in u. Using a variational approach, we create an intermediate image f̂

whose pixels can be totally ordered with probability one.

III. A VARIATIONAL APPROACH

Our approach to obtain auxiliary information is based on a different paradigm. The available image u

contains quantization noise. Our strategy is to built a real-valued image which removes as much as possible
this quantization noise. Even though the original real uo is unavailable, some general priors such as the
presence of edges and fine structures in uo can be employed to produce such a restored version of u. A
subtle task like this can be handled by the means of a well conceived variational method.

Given u, its real-valued restoration, denoted by f̂ , is defined by

J (f̂ ,u) = min
f∈Rn

J (f ,u),

where J (·,u) : Rn → R is a regularized convex cost function of the form

J (f ,u) = Ψ(f ,u) + βΦ(f), (2)
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combining a data fitting term Ψ and a regularization term Φ, weighted by a parameter β > 0. These terms
are given by

Ψ(f ,u) =
∑
i∈In

ψ(f [i]− u[i]), (3)

Φ(f) =
∑
i∈In

∑
j∈Ni

ϕ(f [i]− f [j]). (4)

In (4), Ni is the set of the four or the eight adjacent neighbors of pixel i in the image, for every i ∈ In. We
consider either Neumann or mirror boundary conditions on the set {Ni | i ∈ In}. Pivotal condition on the
real scalar functions ψ and ϕ in (3)–(4) are described in H1 and in Q1 below.

H1. The functions ϕ : R→ R and ψ : R→ R are Cs for s ≥ 2, symmetric and satisfy

t ∈ R ⇒ ϕ′′(t) > 0 and ψ′′(t) > 0 .

In order to provide some quantization noise removal, it is required that J (·,u) is detail-preserving. To this
end, both functions ψ and ϕ should satisfy a qualitative requirement:

Q1. Functions ψ and ϕ are nearly affine beyond a small neighborhood of the origin.

Good choices for ψ and ϕ, meeting H1 and Q1, are given in Table I. Customarily, such functions are
involved only in the regularization term, see e.g. [7], [2]. So as to achieve our objectives, they are pertinent
to define the data fitting term as well.

ψ, ϕ ψ′′, ϕ′′

f1
(
t2 + α

)1/2 (
t2 + α

)−3/2

f2 log(cosh(αt)) α2(cosh(αt))−2

f3 |t|/α− log (1 + |t|/α) (α+ |t|)−2

TABLE I: Relevant choices for ψ and ϕ obeying H1 and Q1. The size of the neighborhood of zero where
these functions are not “nearly affine” is controlled by the parameter α > 0.

a) Motivation to choose a J satisfying H1 and Q1.: Before to go into the details, we explain the
intuition behind the demands H1 and Q1 addressed to J in (2). Our main concern is to obtain a restoration
f̂ of u whose pixels are all different from each other while being close to u but “better” than u. Since ϕ
satisfies H1, we will get minimizers f̂ that are generically nowhere nonconstant [41]. Indeed, natural images
have been shown to be almost nowhere constant [26]. Rather, they present large variations, edges and fine
structures. The trend of the large variations is available in the input image u. Requirement Q1 on ϕ enables
the recovery of edges and details and in this way some removal of the quantization noise. For instance, α > 0

in f1, Table I, should be just small enough. Selecting a small β > 0 (compared to the range of u) enhances
fitting to data u. If the neighborhood near the origin where ψ is not quasi-affine goes to zero (e.g. α is
almost zero in f1, Table I), ψ tends to the absolute value function. The latter is known to generate minimizers
f̂ containing a certain number of entries equal to the relevant entries of u [40]. Such minimizers may still
contain numerous equally valued pixels, hence such a scenario must be avoided. If ψ obeys H1 and Q1 (e.g.,
for f1, Table I, we should take α > 0 very small), the components of f̂ will certainly be close but different
from the relevant entries of u. So the level sets of the digital image u are not destroyed, but only refined.
This is the reason why we can say that details are preserved in f̂ . Undoubtedly, pixels in f̂ must change from
those in u no more than a given value (for example |0.5|). The soundness of these arguments is illustrated
in Fig. 2.
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450
(a) Original digital image: the pixels with value 249

are marked with red dots

1 450
(b) Restored image β = 0.2, ψ = ϕ = f1 (Table I),
α = 0.05

(c) 80× 80 zoom of the original image (d) 80× 80 zoom of the restored image

Fig. 2: The original digital image is of size 450×450 and the values of its pixels belong to the set {0, · · · , 255}.
The restored image f̂ is obtained by minimizing J where ψ(t) =

√
α1 + t2 and ϕ(t) =

√
α2 + t2. For

α1 = α2 = 0.05 and β = 0.1, all pixels of f̂ have different values, so they can be sorted in a strict way. The
restored image plotted here corresponds to α1 = α2 = 0.05 and β = 0.2 in order to enhance the restoration
effect. Its pixels can be sorted in a strict way as well. The zooms on the second row show that the restored
image has a much more regular appearance than the digital one, so quantization noise was reduced.

Below we exhibit the salient properties of the minimizer f̂ of J under H1. It worths noticing that they are
irrelevant to the qualitative requirement Q1, as well as to the particular shapes of ψ and ϕ and to the choice
of β > 0. The latter remark presents a challenging topic for future research.
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A. Preliminary results

The differences {f [i]− f [j] | j ∈ Ni} for all i ∈ In in (4) can be rewritten using finite difference operators
gi ∈ Rn, 1 ≤ i ≤ r, where r is the total number of these operators. Then Φ reads

Φ(f) =
∑
i∈Ir

ϕ(gT
i f) . (5)

Let us denote

G =

 gT
1
...
gT
r

 ∈ Rr×n.

According to (4) and the adopted boundary conditions (Neumann or mirror), we have kerG = {c1l | c ∈ R},
where 1l is a vector composed of ones.

We shall study how the minimizer f̂ of J behaves as a function of data u. This goal motivates the definition
below which was originally introduced in [39]. For clarity, it is restated in a way adapted to this work.

Definition 1. A function F : O → Rn, where O is an open domain in Rn, is said to be a minimizer function
relevant to the family of functions J (·,O) if for every u ∈ O, the point f̂ = F(u) is a strict local minimizer
of J (·,u).

The next lemma is a straightforward extension of the Implicit Functions Theorem [4]. Its proof can be
found e.g. in [21, Theorem 6, p. 34] or in [30, Lemma 6.1.1, p. 268]. In what follows, Dj

i stands for the jth
order differential of a function with respect to the ith variable1.

Lamma 1. Suppose that J : Rn×Rn → R is any function which is Cs, with s ≥ 2. Fix u ∈ Rn. Let f̂ ∈ Rn

be such that D1J (f̂ ,u) = 0 and D2
1J (f̂ ,u) is positive definite. Then there exists an open neighborhood of

u, say O, and a unique Cs−1-function F : O → Rn such that F(u) = f̂ .

We will see that in our case, the minimizer function is uniquely defined on Rn.

Proposition 1. Let J : Rn × Rn → R in (2) satisfy H1. Then for any β > 0, J has a unique minimizer
function F : Rn → Rn which is Cs−1 continuous.

The proof of the proposition is given in Appendix VII-A. The components of the minimizer function F
read Fi, i ∈ In. A diagonal matrix A with diagonal entries a[i], i ∈ In, is denoted by A = diag

({
a[i])

}n
i=1

)
.

Lamma 2. Let β > 0 be arbitrary and J : Rn × Rn → R in (2) satisfy H1. Then its Hessian matrix
H(u)

def
= D2

1J (F(u),u), given by

H(u) = diag
({
ψ′′(Fi(u)− u[i])

}n
i=1

)
+ βGTdiag

({
ϕ′′(gT

i F(u))
}r
i=1

)
G (6)

is invertible. Consequently, the differential DF : Rn → Rn of the minimizer function F of J reads

DF(u) =

 DF1(u)

· · ·
DFp(u)

 =
(
H(u)

)−1
diag

({
ψ′′(Fi(u)− u[i])

}n
i=1

)
and satisfies

rank (DF(u)) = n, ∀u ∈ Rn. (7)

1E.g., Dj
1J is the jth differential of J in (2) with respect f and Dj

2J—with respect to u.
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This easy lemma, outlined in Appendix VII-B, underlies the main theoretical results established in this

work.

B. The crucial feature of the minimizers of J (·,u) and discussion

The set G given next is composed of all operators that yield the difference between any two pixels in an
image:

G def
=

∪
(i,j)∈In×In

{
g ∈ Rn | g[i] = −g[j] = 1, i ̸= j, (i, j) ∈ In, g[k] = 0, k ∈ In \ (i ∪ j)

}
. (8)

Hence all difference operators in (5) satisfy gi ∈ G, ∀i ∈ Ir. As usual, the Lebesgue measure in Rn is denoted
by Ln(·) . Our main result is stated below. Its proof is presented in Appendix VII-C.

Theorem 1. Let J : Rn × Rn → R in (2) satisfy H1. For its minimizer function F : Rn → Rn, define the
set KG as it follows:

KG =
∪
g∈G

{
u ∈ Rn | gTF(u) = 0

}
. (9)

Then KG is closed in Rn and obeys
Ln(KG) = 0 .

The result holds true for any β > 0 in J .

The set KG in (9) contains all possible u ∈ Rn such that a minimizer f̂ = F(u) of J (·,u) might have
two equal entries, f̂ [i] = f̂ [j] for some i ̸= j where (i, j) ∈ In × In.

The elements of KG are highly exceptional in Rn. Such data cannot hence give rise to a minimizer having
two equal entries. Indeed, the subset Rn \ KG contains an open and dense subset of Rn. The chance that
a truly random u ∈ Rn—i.e. a u following a non-singular probability distribution on Rn—comes across
such an KG can be ignored in practice. Conversely, Fi(u) ̸= Fj(u), for i ̸= j, is a generic property of the
minimizers F of J : Rn × Rn, as given in (2) and satisfying H1 (using the terminology in [19]).

b) Discussion: Let us denote by SnP the set of all M ×N images whose n =MN pixels values belong
to the quantization set P in (1):

SnP =
{
u ∈ Rn | u[i] ∈ P, ∀i ∈ In

}
. (10)

Reminding that |P| = L, the cardinality of SnP is |SnP | = Ln. Even though |SnP | is a huge number2, the set
SnP is finite, hence

Ln(SnP) = 0 .

Hence the hot question: what can we say about the possible intersection between KG and SnP?

As in practice, assume that P is composed of L integers. Let NP be the set of the functions that map Pn

onto P . We would not like that the minimizer function F has some components belonging to NP . Number
theory gives limited answers to the question of the kind of functions being able to come across NP . For
n = 1, every function applied to an integer u and yielding an integer û is of the form

f(u) =
∑
i∈Ik

bi

(
u

i

)
where

(
u

i

)
=
u(u− 1) · · · (u− i+ 1)

i !
and u ≤ i− 1,

2For 512× 512, 8-bits images, this value is 255512
2

—the amount of all 512× 512, 8-bits pictures that people can ever take with
their digital cameras.
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where all bi are integers. The question was initially posed in [43]. This result along with some refinements
can be found in [8]. However, f(u) ∈ NP requires also that f(u) ∈ P , which drastically limits3 the functions
of this form that fall into NP . In the case of several variables, some polynomial functions may belong to NP ,
see [9]. More generally, Diophantine equations [27] can also be cast in the class of polynomial functions.
Under the (severe) restriction f(u) ∈ P , some of them also live in NP . To the best of our knowledge, no
other families of functions were exhibited to be able to cross the subset NP .

However, given the expression for DF in Lemma 2, it is not difficult to see that no component Fi of our
minimizer function F can have a polynomial expression.

Let u = c1l for some c ∈ P . Then for any β > 0, the minimizer f̂ of J (·,u) reads f̂ = u. Indeed, since
c1l ∈ kerG, we have Ψ(u,u) = 0 and Φ(u) = βrϕ(0), so J reaches its lower bound for f̂ = u. Hence all
constant digital images meet

{c1l | c ∈ P} ∈ KG ∩ SnP .

Consequently,
KG ∩ SnP ̸= ∅ .

One can ask what histogram modification would be needed for a constant image. However, there may be
other simple images that belong to KG ∩ SnP . We can reasonably conjecture the following:

• KG ∩ SnP is essentially composed of simple (synthetic, in practice) images. For most of them, if some
histogram modification was needed, it should be defined in a proper way (see Remark 2 concerning the
synthetic image in Fig. 3, p. 11).

• The ratio
|
(
KG ∩ SnP

)
|

|SnP |
should be a number close to zero.

Being impossible to prove this conjecture, we give additional theoretical defence to support our approach,
as well as tests showing its numerical evidence in section V.

C. More arguments in favor of our approach

We wish to know if some entries of a minimizer f̂ of J (·,u) can take a value equal to some components
of the data image u or belonging to the quantization set P .

Proposition 2. Let J : Rn × Rn → R in (2) satisfy H1. Then for its minimizer function F : Rn → Rn

(i) the set KI given below
KI =

∪
i∈In

∪
i∈In

{
u ∈ Rn | Fi(u) = u[j]

}
, (11)

is closed in Rn and obeys Ln(KI) = 0 ;
(ii) the set KP =

∪
p∈P

∪
i∈In

{
u ∈ Rn | Fi(u) = p

}
, where P is the quantization set introduced in (1), is

closed in Rn and meets Ln(KP) = 0 .

These statements are valid for any β > 0 involved in J .

3These polynomial functions yield also arbitrarily large values that exceed the bounded set P .
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The proof of these statements can be found in Appendix VII-D.

The set KI in (11) contains all possible u ∈ Rn such that the minimizer f̂ = F(u) might contain some
entries equal to data entries, Fi(u) = u[j] for some (i, j) ∈ In × In. In particular, the event Fi(u) = u[i]

is highly exceptional, as anticipated in the paragraph Motivation next to H1. According to Proposition 2
(i), the minimizer functions F : Rn → Rn relevant to J in (2), generically satisfy Fi(u) ̸= u[j], for all
(i, j) ∈ In × In. This constitutes a general result holding for any real data u ∈ Rn.

Statement (ii) is more specialized: in a generic sense, no entry of a minimizer f̂ of J (·,u) can take a
quantized value belonging to P . Yet again, the pleading exposed in paragraph Discussion following Theorem 1
remains actual.

Proposition 3. Let for an arbitrary β > 0, the cost function J : Rn × Rn → R in (2) satisfy H1. Then its
minimizer function F : Rn → Rn is nonexpansive:

(u, ζ) ∈ Rn × Rn ⇒ ∥F(u+ ζ)−F(u)∥2 ≤ ∥ζ∥2 . (12)

The proof, given in Appendix VII-F, uses a lemma which is stated and proven in Appendix VII-E.

The fact that the minimizer function F is non-expansive supports our conjecture as well: typically, the
values of the input digital image u are slightly reduced at the minimizer f̂ of J .

After all, we cannot guarantee that for absolutely any digital image u ∈ Pn, the entries of the minimizer
f̂ = F(u) can be ordered in a strictly increasing way.

What to do if ever we have found equally valued pixels in f̂? The theorem enounced below can help.

Theorem 2. Let J : Rn × Rn → R in (2) satisfy H1. Then its minimizer function F : Rn → Rn is
differentiable with respect to β since

dF(u)
dβ

= −
(
H(u)

)−1
DΦ(F(u)) ,

where H(u) is the Hessian matrix given in (6). More precisely, using the original expression for Φ in (4),
each component k of the n-length vector dF(u)

dβ reads

dFk(u)

dβ
= −2

∑
i∈In

(
H(u)

)−1
[k, i]

∑
j∈Ni

ϕ′(Fi(u)−Fj(u)) ∀k ∈ In , (13)

where
(
H(u)

)−1
[k, i] are the coefficients of the matrix

(
H(u)

)−1.

This statement, demonstrated in Appendix VII-G, shows that pixel values change continuously with β > 0.
Let us mention that one can also prove under reasonable conditions that

(
H(u)

)−1
[k, i] ≥ 0, ∀(k, i) ∈ In×In.

For a given β, if ever we had some equally valued pixels in f̂ , this means that the data fidelity term is still too
dominant. In such a case, we should just slightly increase β and compute the relevant minimizer. According to
Theorem 2, the new minimizer will change a bit in decreasing the importance of the data term. An illustration
on a synthetic digital image is provided in Fig. 3.

The last expression (13) suggests that a larger neighborhood (the eight rather than the four adjacent pixels)
might produce a more significant change for a smaller change of β. This is corroborated by Fig. 3, see also
the explanation given in caption. However, the computational effort to get DJ is nearly twice more important
that for 4 neighbors. As far as Theorem 2 tells us that in both cases, if for some β we had a minimizer f̂

containing some pixels with equal values, an increase of β will produce a minimizer whose pixels can be
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sorted in a strict way. Therefore, it appears more reasonable to use in practice only the four nearest neighbors
in the expression for Φ in (4).

Remark 1. Even though the set KG in Theorem 1 and the sets KI and KP in Proposition 2 are closed and
of null Lebesgue measure in Rn for any β > 0, changing β modifies their content, hence their intersection
with the set Sn

P in (10) of all digital images with n pixels and values in P changes as well.

(a) Synthetic digital image u (b) The minimizer f̂ of J for β = 2 and
|Ni| = 8: all pixels are different

(c) The minimizer f̂ of J for β = 5 and
|Ni| = 4: all pixels are different

Fig. 3: The original image (128×128) in (a) has a null background. All squares are constant and their values
belong to {48, 64, 80, 96, 128, 144, 160, 176, 192, 208, 224, 240, 256}. We consider J for ψ(t) =

√
α1 + t2

and ϕ(t) =
√
α2 + t2 where α1 = α2 = 0.1. For β = 2, if Φ is defined using the four adjacent neighbors

(i.e |Ni| = 4), the minimizer f̂ involves 12.2% pairs of equal pixels whereas if |Ni| = 8, all pixels of f̂ are
different from each other—see (b). For β = 5, in both cases, |Ni| = 4 and |Ni| = 8—see (c), we obtain a
minimizer f̂ whose pixels can be sorted strictly.

Remark 2. For the original image in Fig. 3, a reasonable histogram modification would be to change the
values of the squares. For this purpose, sorting the pixels in a strict way would clearly be a bad approach.
In the same way, if a real-world digital image contains quite an extended constant region, a reasonable
histogram modification should keep it constant.

IV. NUMERICAL SCHEME

A. Some practical limitations

In spite of the theory presented in section III, it can occur that for a given β, the minimizer f̂ of J contains
some equally valued pixels. Several important reasons are mentioned next.

• The real numbers that a computer treats are in fact just a large but finite set of numbers. E.g. Matlab
cannot distinguish numbers smaller than 2.2× 10−16.

• The theory supposes that we deal with exact minimizers of J . However, in practice we cannot get such
minimizers. It worths emphasizing that a J satisfying H1 and Q1 contains large nearly flat regions, so
its minimization is not easy. The algorithm being initialized with the digital input image u, an inexact
minimizer f̂ of J might contain pixels with equal values. Indeed, we have observed that in such cases,
increasing the precision of the minimization method usually enables to sort in a strict way all pixels of
f̂ .
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• If the digital image contains large constant regions (see Remark 2) or if it involves several equal patterns

having the same background (this typically can arise for images having a low compression rate), it is
clear that for a small β the resultant f̂ will have pixels sharing the same value.

• Last, we remind that the set KG ∪ SnP is not empty (see also Remark 1).

All these practical reasons show that in general we need a tool to improve the sorting of the pixels of f̂ .
Such a tool is provided by Theorem 2: it says that the value of β should be increased.

B. Algorithm

Given β > 0, the minimizer f̂ of J serves as auxiliary information for sorting the pixels of u in a strict
way. More precisely, 2-tuples (u[i], f̂ [i]) are used as described next4.

i ̸= j


[
u[i] < u[j]

]
or
[
u[i] = u[j] and f̂ [i] < f̂ [j]

]
⇒ i ≺ j ;

[
u[i] > u[j]

]
or
[
u[i] = u[j] and f̂ [i] > f̂ [j]

]
⇒ i ≻ j .

(14)

If it occurs that for some i ̸= j we have u[i] = u[j] and f̂ [i] = f̂ [j], then the current parameter β is increased
according to the rule

β ← cβ for c > 1 .

Since f̂ is a restored version of u (hence “better” than u), it is worth considering the substitution

u← f̂ .

Then the minimizer of the new J is computed. If necessary, this update is repeated until (14) can be applied
to all pairs (i, j) ∈ In × In, i ̸= j. Let us anticipate that according to our experiments, this procedure needs
to be done more than once only in some special cases.

The resulting algorithm for exact histogram specification using the variational approach presented in
section III is summarized in Algorithm 1.

Algorithm 1 Exact Histogram Specification Using Variational Approach

Input: the input image u, the specified histogram h and the intensity value set p.
Output: the specified image v.

1: Initialize α1, α2 and β, c.
2: Set the tuple κ as κ[i] = u[i], ∀i ∈ In.
3: while There are equal-valued entries in κ do
4: f̂ = argminf J (f ,u);
5: Update the tuple κ[i]←

(
κ[i], f̂ [i]

)
, ∀i ∈ In;

6: Update u← f̂ and β ← cβ;
7: end while
8: Start from the first pixels on the ordering list, assign the first h[1] pixels with intensity value p[1], the

next h[2] pixels with intensity value p[2], and so on until all pixels are assigned to their new intensities;
the resulting image is the specified image v.

9: return v.

4In general, if f̂ [i] < f̂ [j], we can not deduce that u[i] ≤ u[j] because f̂ may not preserve the natural order of the pixel values of
the input digital image u.
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Steps 3-7 in the algorithm are clearly designed to reach a solution f̂ such that (14) can be applied to all

pairs (i, j), i ̸= j. This algorithm is quite general and can be applied using any functions (ψ, ϕ) obeying H1
and Q1—for some examples see Table I.

C. Implementation of Algorithm 1

We apply the Algorithm 1 with

ψ(t) =
√
α1 + t2 and ϕ(t) =

√
α2 + t2 for α1 = α2 (15)

in (2). Based on Fig. 3 and the discussion that precede it, we consider that Φ in (4) is defined using the four
adjacent neighbors.

There are many algorithms in literature to compute the minimizer f̂ of J (·,u) in step 4 of the Algorithm.
These include partial differential equation based methods such as explicit method [47], semi-implicit method
[33], operator splitting [36], lagged diffusivity fixed point iterations [49], Polak-Ribière CG method [5],
majorization-minimization algorithms [6], [22], [28], Nesterov algorithms [35] and so on.

We apply lagged diffusivity fixed point iterations to solve the Euler-Lagrange equation derived from (2),
i.e. to solve step 4 in the Algorithm. The data-fitting term and the regularization term are linearized by a
quadratic formulation in the each iteration. Given our choice in (15), the intermediate solution fk in k-th
iteration is the minimizer of the following function

∥f − u∥2D1,k
+ β∥Gf∥2D2,k

.

Here D1,k and D2,k are the diagonal matrix with the diagonal element 1/
√
α1 + fk−1[i] and 1/

√
α2 + gT

i fk−1

respectively. Therefore, a linear system is obtained in each iteration. We apply conjugate gradient method to
solve the corresponding linear system.

Given the choice for (ψ, ϕ) in (15) and the selected minimization method, we could fix the parameter c in
step 6 of Algorithm 1 to

c = 2 .

Remark 3. It may be curious to note that for (ψ, ϕ) in (15), all experiments have shown that for α1 =

α2 ≤ 0.05 and β ≤ 0.2 (the typical values for the parameters used in our experiments, we always had
∥f̂ − u∥∞ < 0.35. In any case, if ∥f̂ − u∥∞ < 0.5, reminding that the set P in (1) is composed of integers,
it is obvious that f̂ preserves 5 the order of the pixel values of u. Then we can assign all pixels to the new
intensities given by the prescribed histogram by using only f̂ which leads to the sought-after v.

V. EXPERIMENTAL RESULTS

In this section, two practical problems: contrast compression and equalization inversion, were tested to
show the performance of the proposed method for exact histogram specification. We compare our method
with the local mean (LM) algorithm [16] for K = 6 and with the wavelet-based algorithm (WA) [50] for
Haar wavelet as recommended by the authors. The experiments were performed under Mac OS X 10.7.2 and
MATLAB v7.12 on a MacBook Air Laptop with an Intel Core i5 1.7 GHZ processor and 4GB of RAM. For
our method, we set αi, i = 1, 2, to 0.05 and β to 0.1 (see in (2)) and c = 2 in Algorithm 1. We applied fixed
point method to compute the minimizer f̂ of J (·,u) in (2). In each iteration of the fixed point method, a

5It is easy to establish that f̂ [i] > f̂ [j] entails u[i] ≥ u[j] and vice-versa, that f̂ [i] < f̂ [j] entails u[i] ≤ u[j].
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linear system is obtained and solved by conjugate gradient (CG) method. In our numerical tests, we stop the
iteration of the fixed point method when the relative difference between the iterant is less than 10−6 or the
number of iteration reaches to 10. The stopping criterion of CG is that the relative difference between the
iterant is less than 10−6 and the number of the iteration reaches to 50. In both applications, we have realized
a large number of experiment (50 at least). In all cases, we obtained results similar to those presented next.

In this section, we describe the experiments done with 10 true quantized images, shown in Figure 4,
available at http://sipi.usc.edu/database/. Their sizes are 256×256 for images (a)–(b), 512×512
for images (c)–(h), and 1024 × 1024 for images (i)–(j). In order to measure the results quantitatively, we
start out with a given true quantized image w with histogram hw, we degrade it to obtain an input quantized
image u. By applying the three methods on u with prescribed histogram hw, we obtain an output image
v which is in fact a restored version of w. We use peak-signal-to-noise-ratio to measure the quality of the
output image v with respect to w. It is defined as PSNR = 20 log10(255NM/∥v −w∥2).

A. Restoration of Contrast Compression

The input image u is obtained from w by the degradation: u = round(ρ ·w), where ρ < 1 is a constant.
We show the process of contrast compression in Figure 5. This situation arises when a picture is taken with
insufficient exposure time, or when we want to compress the image by reducing the number of intensity levels.
For example, a 7-bit image can be obtained from an 8-bit image by using ρ = 0.5. In the tests, we used LM,
WA and our method to obtain the output images v having a prescribed histogram hw. The comparisons of
LM, WA and our algorithm are shown in Table II. We see from the PSNR values that our method outperforms
LM and WA in all cases. It demonstrates that our algorithm yields the best restoration. We also show the
number of the updates of β and CPU time (second) to obtain the strictly order for our method, see Table III.

(a) Chemical Plant (b) Moon Surface (c) Aerial (d) Airport (e) Couple

(f) Motion Car (g) Stream and Bridge (h) Tank (i) Man (j) Pentagon

Fig. 4: The input quantized images. The sizes of the images are 256 × 256 for images (a)–(b), 512 × 512

for images (c)–(h), and 1024× 1024 for images (i)–(j), respectively.

One important indicator for a good exact histogram specification algorithm is to see if it can establish a
strict ordering for all the pixels. If a sorting method yields two pixels sharing the same value we call them a
equal-valued pixel, and consider that as a failure of the method. Table IV shows the numbers of equal-valued
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Fig. 5: Contrast Compression.

pixels produced by the three methods. We find that LM and WA have a high number of equal-valued pixels
while our method can give a total ordering of all pixels for all images.

ρ = 0.5 ρ = 0.25 ρ = 0.125

Image LM WA Ours LM WA Ours LM WA Ours
Chemical Plant 51.45 51.36 51.42 44.89 44.64 44.89 39.42 38.84 39.45

Moon Surf 51.47 51.44 51.45 44.92 44.77 44.92 39.57 39.27 39.61
Aerial 51.61 51.49 51.66 45.15 44.81 45.29 39.68 39.12 39.85
Airport 67.01 66.87 67.13 48.70 48.46 48.77 42.19 41.92 42.51
Couple 51.72 51.59 51.77 45.36 45.00 45.57 40.28 39.61 40.61

Motion Car 53.42 53.01 53.50 48.29 47.42 48.75 42.75 41.80 43.56
Stream and Bridge ∞ ∞ ∞ ∞ ∞ ∞ 39.97 39.73 40.04

Tank 58.70 58.60 58.74 46.01 45.78 46.00 40.19 39.73 40.15
Man 51.70 51.61 51.70 45.13 44.85 45.13 40.35 39.77 40.39

Pentagon 51.47 51.45 51.49 44.93 44.84 45.02 39.50 39.28 39.71

TABLE II: The PSNR (dB) between the true image w and the output image v. Here “∞” denote that the
output image v is exactly the same with the true image w.

ρ = 0.5 ρ = 0.25 ρ = 0.125

Image # of β CPU Time # of β CPU Time # of β CPU Time
Chemical Plant 1 0.45 1 0.44 1 0.43

Moon Surf 1 0.42 1 0.43 1 0.48
Aerial 1 1.87 1 1.85 1 2.04
Airport 1 1.91 1 1.57 2 5.25
Couple 1 1.96 1 1.84 1 1.69

Motion Car 1 1.69 2 5.28 3 20.59
Stream and Bridge 1 1.98 1 2.07 1 2.06

Tank 1 2.08 1 1.89 1 1.82
Man 1 7.13 1 6.49 2 16.17

Pentagon 1 6.74 1 7.29 1 6.69

TABLE III: The number of updates of β and CPU time (second) to obtain the strictly order from our method.

B. Histogram Equalization Inversion

We will consider the application of the histogram equalization inversion, which is to recover the true
quantized image w with histogram hw from its specified version u. Let u = T (w,h) be the process to
specify the image w with histogram hw to an image u such that the histogram of u is h. The quantized
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Image LM WA Ours LM WA Ours LM WA Ours
Chemical Plant 1 18 0 2 41 0 36 252 0

Moon Surf 0 0 0 0 15 0 4 309 0
Aerial 0 190 0 323 2,203 0 3,084 9,411 0
Airport 18 1579 0 2,175 12,436 0 31,638 63,875 0
Couple 59 378 0 321 2,100 0 2,747 12,947 0

Motion Car 3,714 16,650 0 34,027 54,935 0 78,701 101,468 0
Stream and Bridge 576 1,072 0 577 1,077 0 921 2849 0

Tank 0 15 0 0 198 0 281 2,176 0
Man 81 1,290 0 879 6,162 0 7,577 28,076 0

Pentagon 0 14 0 0 344 0 33 5,167 0

TABLE IV: The numbers of equal-valued pixels from the three methods.

Fig. 6: Histogram Equalization Inversion. A true quantized image w with histogram hw is equalized to the
input image u using exact histogram specification method. The task is to restore w from the input image u

and the prescribed histogram hw using the same exact histogram specification method. The specified image
v is a restored version of w.

image w can be exactly recovered by T (u,hw) under the hypothesis of order preservation by the method.
Since the ordering among the pixels of w is not identical with that among pixels of u, the recovered image
v = T (u,hw) is just an approximation of w. We show the process of histogram equalization inversion in
Figure 6.

Table V shows the PSNR of the results by the three methods. We notice from Table V that WA method
yields better PSNR than LM method in all images, but worse than our method in all cases except for the
“Man” images. The number of the update of β and CPU time (second) to obtain the strictly order for our
method is shown in Table VI.

Figures 8–11 give the enlarged portions of the difference images on “Aerial”, “Couple”, “Motion Car”,
“Man” images, the corresponding enlarged portions of the input image are shown in Figure 7. We can discern
more features in the difference images by both LM method and WA method than by our method. Though
WA method yields better PSNR than our method on “Man” image, from Figure 11, we can also observe that
our method yields the fewest features in the difference image. It demonstrates that our algorithm yields the
best restoration.

We also compare the failure of three methods. We denote the procedure to get the pixel ordering of w as
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Chemical Plant 49.34 49.64 49.67 Motion Car 54.40 55.01 54.80

Moon Surf 47.39 47.46 47.85 Stream and Bridge 44.76 45.00 45.08
Aerial 48.36 48.59 50.08 Tank 48.11 48.25 48.35
Airport 46.74 46.81 47.24 Man 49.23 49.48 49.45
Couple 44.22 44.33 49.18 Pentagon 50.69 50.86 51.36

TABLE V: The PSNR (dB) between the true image w and output images v.

Fig. 7: Enlarged portions of “Aerial” image, “Couple” image, “Motion Car” image and “Man” image,
respectively.

“Forword” and the procedure to get the pixel ordering of u as “Backword”. Table VII shows the numbers
of equal-valued pixels produced by the three methods. We find that LM and WA have a high number of
equal-valued pixels while our method can give a total ordering of all pixels for all three images.

Forward Backward
Image # of β CPU Time # of β CPU Time

Chemical Plant 1 0.40 1 0.48
Moon Surf 1 0.54 1 0.49

Aerial 1 1.95 1 2.06
Airport 1 2.09 1 2.06
Couple 1 1.88 1 1.85

Motion Car 1 1.92 1 2.02
Stream and Bridge 1 1.90 1 1.86

Tank 1 1.98 1 2.02
Man 1 7.49 1 7.76

Pentagon 1 7.54 1 7.75

TABLE VI: The number of updates of β and CPU time (second) to obtain the strictly order from our method.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we propose a variational approach for exact histogram specification. Since the energy we
minimize is smooth, its minimizers enable us to strictly order all the pixels in the image. Noticing also that
our method reduces the quantification noise, the obtained results outperform the preexisting methods.

VII. APPENDIX

Given a square matrix A, the expression A ≻ 0 means that A is positive definite and A ≽ 0 that A is
positive semi-definite.
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Fig. 8: The enlarged portions of the different images between w and v by LM (Left), WA (Middle) and our
method (Right) for “Aerial” image. Our method yields fewest features in the difference images.

Fig. 9: The enlarged portions of the different images between w and v by LM (Left), WA (Middle) and our
method (Right) for “Couple” image. Our method yields fewest features in the difference images.

A. Proof of Proposition 1

By H1, for any u ∈ Rn, the function J (·,u) in (2) is strictly convex and coercive, hence for any u and
β > 0, it has a unique minimizer. Each minimizer point f̂ of J (f̂ ,u) is determined by D1J (f̂ ,u) = 0. We
have

0 = D1J (f̂ ,u) = D1Ψ(f̂ ,u) + βD1Φ(f̂), (16)

where

D1Ψ(f̂ ,u) =

 ψ′(f̂ [1]− u[1])

· · ·
ψ′(f̂ [p]− u[p])


T

and D1Φ(f̂) =

 ϕ′(gT
1 f̂)

· · ·
ϕ′(gT

r f̂)


T

G . (17)

Differentiation with respect to f̂ yet again yields

D2
1J (f̂ ,u) = D2

1Ψ(f̂ ,u) + βD2
1Φ(f̂) ∈ Rn×n. (18)

Here, D2
1Ψ(f̂ ,u) is an n× n diagonal matrix with strictly positive entries according to H1:

D2
1Ψ(f̂ ,u)[i, i] = ψ′′(f̂ [i]− u[i]), ∀i ∈ In . (19)

Hence D2
1Ψ(F(u),u) ≻ 0. Furthermore,

D2
1Φ(f̂) = GTdiag

(
ϕ′′(gT

1 f̂), · · · , ϕ′′(gT
r f̂)
)
G, (20)
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Fig. 10: The enlarged portions of the different images between w and v by LM (Left), WA (Middle) and
our method (Right) for “Tank” image. Our method yields fewest features in the difference images.

Fig. 11: The difference images of Man. Top: The difference imageS between w and v by LM (Left), WA
(Middle) and our method (Right) for motion car image. Bottom: the enlarged portions of the different images.
Our method yields fewest features in the difference images.

so D2
1Φ(f̂) ≽ 0. It follows that D2

1J (f̂ ,u) ≻ 0, for any u ∈ Rn.

Consequently, Lemma 1 holds true for any u ∈ Rn and any β > 0. The same lemma shows that the
statement of Proposition 1 holds true for O = Rn.
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Image LM WA Ours LM WA Ours

Chemical Plant 1 18 0 2 2 0
Moon Surf 0 0 0 36 34 0

Aerial 0 0 0 0 0 0
Airport 19 1751 0 52 52 0
Couple 48 201 0 11 15 0

Motion Car 45 1,968 0 388 388 0
Stream and Bridge 577 1,071 0 371 392 0

Tank 0 8 0 28 29 0
Man 58 907 0 31 32 0

Pentagon 0 1 0 42 42 0

TABLE VII: The numbers of equal-valued pixels from the three methods.

B. Proof of Lemma 2

Since F is a local minimizer function,

D1J (F(u),u) = 0, ∀u∈Rn. (21)

We can thus differentiate with respect to u on both sides of (21) and yields

D2
1J (F(u),u)DF(u) +D2D1J (F(u),u) = 0, ∀u ∈ Rn. (22)

Note that DF(u) and D2D1J (F(u),u) are n×n real matrices. The Hessian matrix H(u) = D2
1J (F(u),u)

can be expanded using (18):

H(u) = D2
1Ψ(F(u),u) + βD2

1Φ(F(u)) ∈ Rn×n.

Replacing f̂ by F(u) in (19) and (20) yields

H(u) = diag
({
ψ′′(Fi(u)− u[i])

}n
i=1

)
+ βGTdiag

({
ϕ′′(gT

i F(u))
}n
i=1

)
G ,

as stated in (6). Using H1, it is readily seen that

diag
({
ψ′′(Fi(u)− u[i])

}n
i=1

)
≻ 0 and GTdiag

({
ϕ′′(gT

i F(u))
}n
i=1

)
G ≽ 0.

Then H(u) ≻ 0, hence H(u) is invertible.

Using (16) and (17), where we consider F(u) in place of f̂ , shows that

D2D1J (F(u),u) = D2D1Ψ(F(u),u) = −diag
({
ψ′′(Fi(u)− u[i])

}n
i=1

)
. (23)

Then (22) is equivalent to

DF(u) = −
(
H(u)

)−1
D2D1J (F(u),u) =

(
H(u)

)−1
diag

({
ψ′′(Fi(u)− u[i])

}n
i=1

)
, ∀u ∈ Rn . (24)

Obviously, rank
(
DF(u)

)
= n. This result is independent of the value of β > 0.
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C. Proof of Theorem 1

Given g ∈ G, where G is given in (8), consider the function fg : Rn → R defined by

fg(u) = gTF(u), ∀u ∈ Rn ,

as well as the inverse image of the origin

Kg
def
= f−1

g (0) = {u ∈ Rn | gTF(u) = 0} . (25)

Using Proposition 1, fg is Cs−1-continuous, so Kg is closed. By Lemma 2, DF(u) is invertible. Hence
gTDF(u) ̸= 0 and thus

rank
(
fg(u)

)
= rank

(
gTDF(u)

)
= 1 .

By an extension6 of the constant rank theorem [4], the subset Kg in (25), supposed nonempty7, is a Cs−1

manifold of Rn of dimension n− 1. Hence Ln(Kg) = 0 (see e.g. [20], [32]. The set KG in (9) also reads

KG =
∪
g∈G

Kg.

Using that G is of finite cardinality, it follows that KG is closed in Rn and that

Ln (KG) = 0.

The conclusion is clearly independent of the value of β > 0.

D. Proof of Proposition 2

Given (i, j) ∈ In × In (including i = j), define the subset Ki,j ⊂ Rn as

Ki,j = F−1
i (uj) =

{
u ∈ Rn | Fi(u) = uj

}
. (26)

For some p ∈ P and i ∈ In, put

Kp,i = F−1
i (p) =

{
u ∈ Rn | Fi(u) = p

}
. (27)

From Proposition 1, Fi : Rn → R is Cs−1 continuous, so Ki,j and Kp,i are closed in Rn. By Lemma 2,
all rows of DF(u) ∈ Rn×n are linearly independent, ∀u ∈ Rn. Consequently, for any i ∈ In,

rank
(
DFi(u)

)
= 1, ∀u ∈ Rn .

6We use the following extension of the constant rank theorem, restated in our context (for details one can check [4, p. 96]). Let
f be a Cs application from an open set O ⊂ Rn to R. Assume that Df(u) has constant rank r for all u ∈ O. Given a c ∈ R, the
inverse image f−1(c) (supposed nonempty) is a Cs-manifold of Rn of dimension n− r.

7Even though rank
(
gTDF(u)

)
= 1, we can have Kg ̸= ∅. For instance, let

F(u) =

[
u[1]

u[2]

]
.

Obviously,

DF(u) =

[
1 0

0 1

]
, rank

(
DF(u)

)
= 2.

Then
KG = {u ∈ R2 | u[1] = u[2]}, L2(KG) = 0 .

Indeed, KG is a one-dimensional subspace in R2, hence it is closed and of measure zero.
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Using the same extension of the constant rank theorem as in the proof of Theorem 1 [4], Ki,j and Kp,i are
Cs−1 submanifolds of Rn of dimension n− 1. Then [20], [32]

Ln(Ki,j) = 0 and Ln(Kp,i) = 0.

Noticing that KI in (11) and KP in statement (ii) are finite unions of (n − 1)-dimensional submanifolds
in Rn like Ki,j and Kp,i, respectively, entails the result. The independence of these results from β > 0 is
obvious.

E. A Lemma needed to prove Proposition 3

Lamma 3. Let (A, B) ∈ Rn×n × Rn×n satisfy

A = diag
(
{ai}ni=1

)
where ai > 0, ∀i ∈ In ,

B = BT , B ≽ 0 .

Consider the n× n matrix M def
= (A+B)−1A . Then all eigenvalues of MTM belong to (0, 1].

Proof: Let λ be a (right) eigenvalue of (A+B)−1A and v ∈ Rn \ {0} an eigenvector corresponding to
λ. Then

λv = Mv

⇔ λv = (A+B)−1Av (28)

⇔ λ(A+B)v = Av

⇔ λBv = (1− λ)Av . (29)

If λ = 0 then (29) yields Av = 0 which is impossible because A ≻ 0, AT = A and v ̸= 0. Hence

λ ̸= 0 . (30)

Furthermore, (29) yields
λvTBv = (1− λ)vTAv .

Using that A ≻ 0 and B ≽ 0, the last equation shows that

1

λ
− 1 =

vTBv

vTAv
≥ 0 . (31)

Combining the latter inequality with (30) entails that

0 < λ ≤ 1 . (32)

Hence all eigenvalues of M live in (0, 1].

Using that A is diagonal with positive diagonal entries, we can write down

A+B = A
1

2

(
I +A− 1

2BA− 1

2

)
A

1

2 . (33)

Then the definition of M shows that8

MTM = A(A+B)−2A

=
(
I +A− 1

2BA− 1

2

)−2
. (34)

8Remind that A = AT .
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Using (33), the expression in (28) is equivalent to

λv = A− 1

2 (I +A− 1

2BA− 1

2 )−1A− 1

2Av

⇔ λ
(
A

1

2v
)

= (I +A− 1

2BA− 1

2 )−1
(
A

1

2v
)

Combining the last result with (34) yields

MTM
(
A

1

2v
)

=
(
I +A− 1

2BA− 1

2

)−1 (
I +A− 1

2BA− 1

2

)−1 (
A

1

2v
)

= λ
(
I +A− 1

2BA− 1

2

)−1 (
A

1

2v
)

= λ2
(
A

1

2v
)
.

Consequently, λ2 is an eigenvalue of MTM corresponding to an eigenvector given by
(
A

1

2v
)

. Thus all

eigenvalues of MTM belong to (0, 1] as well.

F. Proof of Proposition 3

Let us denote

A(u) = diag
({
ψ′′(Fi(u)− u[i])

}n
i=1

)
,

B(u) = GTdiag
({
ϕ′′(gT

i F(u))
}n
i=1

)
G ,

as well as
M(u) = (A(u) + βB(u))−1A(u) .

Then DF(u) =M(u). We have

F(u+ ζ)−F(u) =
∫ 1

0
DF(u+ tζ)ζdt =

∫ 1

0
M(u+ tζ)ζ dt

Using Lemma 3 and H1, for any v ∈ Rn, all eigenvalues of
(
M(v)

)T
M(v)

)
are in (0, 1]. By the definition

of the matrix 2-norm [34] one obtains

t ∈ [0, 1] and ζ ∈ Rn ⇒ ∥M(u+ tζ)∥2 ≤ 1 .

Noticing that M(·) is a continuous mapping, the mean value theorem (see e.g. [4], [13]) shows that

∥F(u+ ζ)−F(u)∥2 ≤ max
0≤t≤1

∥M(u+ tζ)∥2 ∥ζ∥2 ≤ ∥ζ∥2 .

G. Proof of Theorem 2

In order to enhance the dependence of the minimizer function with respect to the regularization parameter
β > 0 we shall write (u, β) in place of (u).

Since F is local minimizer function,

D1J (F(u, β),u;β) = 0, ∀u ∈ Rn, ∀β > 0 , (35)

where9

D1J (F(u, β),u;β) = D1Ψ(F(u, β),u) + βDΦ(F(u, β)) .

9Note that D1J (F(u, β),u;β) is the differential of J with respect to its first argument F(u, β) and that DΦ(F(u, β)) is the
differential of Φ with respect to its unique argument F(u, β).
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We can thus differentiate with respect to β both sides of (35) which yields

0 = D2
1Ψ(F(u, β),u)dF(u, β)

dβ
+ βD2Φ(F(u, β))dF(u, β)

dβ
+DΦ(F(u, β)) .

So the n-length vector dF(u,β)
dβ reads

dF(u, β)
dβ

= −
(
H(u, β)

)−1
DΦ(F(u, β))

Using the original expression for Φ in (4), each entry of DΦ(F(u, β)) reads

DΦ(F(u, β))[i] = 2
∑
j∈Ni

ϕ′(Fi(u, β)−Fj(u, β)) .

Then
dFk(u, β)

dβ
= −2

∑
i∈In

(
H(u, β)

)−1
[k, i]

∑
j∈Ni

ϕ′(Fi(u, β)−Fj(u, β)) .
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[33] D. Krishnan, P. Lin, and X. Tai. An efficient operator splitting method for noise removal in images. Commun. Comput. Phys.,

1:847–858, 2006.
[34] C. D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2000.
[35] Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program., Ser. A, 103(1):127–152, 2005.
[36] M. Lysaker and X. Tai. Noise removal using smoothed normals and surface fitting. IEEE Trans. Image Process., 13(10):1345–

1357, Oct. 2004.
[37] S. Narasimhan and S. Nayar. Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 25:713–724, 2003.
[38] K. Ni, X. Bresson, T. Chan, and S. Esedoglu. Local histogram based segmentation using the Wasserstein distance. International

Journal of Computer Vision, 84(1):97–111, 2009.
[39] M. Nikolova. Local strong homogeneity of a regularized estimator. SIAM J. on Applied Mathematics, 61 (2000), pp. 633–658.
[40] M. Nikolova. A variational approach to remove outliers and impulse noise. Journal of Mathematical Imaging and Visio,

20(1–2):99–120, 2004.
[41] M. Nikolova. Weakly constrained minimization. Application to the estimation of images and signals involving constant regions.

Journal of Mathematical Imaging and Vision, 21(2):155–175, 2004.
[42] M. Nikolova and M. Ng. Analysis of half-quadratic minimization methods for signal and image recovery. SIAM J. Sci. Comput.,

2005.
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