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Abstract

In evolution equations for a complex amplitude, the phase obeys a much more intricate
equation than the amplitude. Nevertheless, general methods should be applicable to both
variables. On the example of the traveling wave reduction of the complex cubic-quintic
Ginzburg-Landau equation (CGL5), we explain how to overcome the difficulties arising in
two such methods: (i) the criterium that the sum of residues of an elliptic solution should be
zero, (ii) the construction of a first order differential equation admitting the given equation
as a differential consequence (subequation method).

1 Introduction. Modulus vs. phase in amplitude equations

The time evolution equation At + · · · = 0 for a complex amplitude A(x, t) is usually, from
physical requirements, invariant under an arbitrary shift of the phase ϕ = arg A, in which M
and ϕ denote the modulus and phase, A = Meiϕ. As a consequence, in the coupled partial
differential system for (M, ϕ), the variable ϕ only contributes by its derivatives. Then, under a
reduction to an ordinary differential equation (ODE) such as the travelling wave reduction

M → M̃(ξ), ϕ → −iωt + ϕ̃(ξ), ξ = x− ct, (1)

in the coupled ODE system for (M̃, ψ = ϕ̃′), the highest derivation order for ψ will be one less
than the derivation order for M . Consequently, the ODE for ψ obtained by the elimination of
M will be much more complicated (by both its volume and its structure of singularities) than
the ODE for M obtained by the elimination of ψ.

Let us take as an example the one-dimensional cubic-quintic complex Ginzburg-Landau equation
(CGL5),

iAt + pAxx + q|A|2A + r|A|4A− iγA = 0, (A, p, q, r) ∈ C, pr 6= 0, =(r/p) 6= 0. (2)
∗To appear, Theoretical and Mathematical Physics. Solitions in 1+1 and 2+1dimensions. DS, KP and all that,
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which depends on seven real parameters since γ can be chosen real. For a summary of results
on CGL5, see the reviews [1, 16]. Its travelling wave reduction

A(x, t) =
√

M(ξ)ei(−ωt + ϕ(ξ)), ξ = x− ct, (c, ω, M, ϕ) ∈ R. (3)

M ′′

2M
− M ′2

4M2
+ iϕ′′ − ϕ′2 + iϕ′

M ′

M
− i

c

2p

M ′

M
+

c

p
ϕ′ +

q

p
M +

r

p
M2 +

ω − iγ

p
= 0, (4)

introduces two additional real constants (c, ω), but the total number of real parameters (nine)
can be lowered to seven by a translation of ϕ′ and by noticing [16] that the velocity c and
the imaginary part of 1/p only contribute by their product. Indeed, denoting the eight real
parameters as er, ei, dr, di, sr, si, gr, gi,

er + iei =
r

p
, dr + idi =

q

p
, sr − isi =

1
p
, gr + igi =

γ + iω

p
+

c2sr

4
(2si + isr), (5)

and performing the translation

ϕ′ =
csr

2
+ ψ, (6)

the system only depends on the seven real parameters er, ei, dr, di, gr, gi, csi ≡ κi.

The coupled two-component system in the real variables (M, ψ),




M ′′

2M
− M ′2

4M2
− κi

M ′

2M
− ψ2 + erM

2 + drM + gi = 0,

ψ′ + ψ
M ′

M
− κiψ + eiM

2 + diM − gr = 0,

(7)

contains as highest derivatives M ′′ and ψ′. The following parity invariances of (7)

q = 0 : (M, ψ, ξ) → (−M,ψ, ξ), (8)
κi = 0 : (M, ψ, ξ) → (M,−ψ,−ξ), (9)

will be used later on.

The elimination of ψ yields a one-line real third order second degree ODE for M [12]

ψ =
2κiG−G′

2M2(eiM2 + diM − gr)
, ψ2 =

G

M2
, (10)

(G′ − 2κiG)2 − 4GM2(eiM
2 + diM − gr)2 = 0, (11)

G =
1
2
MM ′′ − 1

4
M ′2 − κi

2
MM ′ + erM

4 + drM
3 + giM

2, (12)

while the elimination of M yields a third order fourth degree ODE for ψ which contains 11053
terms, whose dominant ones (in the sense of singularities, as developed in section 2) are,

e6
i ψ

4
{[

25e3
i ψ

2ψ′′′ − 10e2
i (3eiψ

′ + 4erψ
2)ψψ2 − 6ψ′3e3

i − 24ere
2
i ψ

′2ψ2

+ ei(80e2
i − 112e2

r)ψ
4ψ′ − 32er(5e2

i + e2
r)ψ

6
]2

− 4
[
−3e2

i ψ
′2 + 12ereiψ

′ψ2 + 4(5e2
i + 2e2

r)ψ
4
]2

[
10e2

i ψψ2 + e2
i ψ

′2 + 16ereiψ
′ψ2 + 4(5e2

i + e2
r)ψ

4
]}2

+ subdominant terms = 0. (13)
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As a by-product of the elimination process, the rational expression (10) of ψ in terms of
M,M ′,M ′′ is quite short, while the rational expression of M in terms of ψ also involves the
third derivative ψ′′′ and is quite lengthy. This is why the phase of the complex amplitude A is
qualified as a “slave” variable [16], because it allows one to easily compute ϕ from M but not
vice versa.

The purpose of this work is to explain on the above example how to overcome the difficulties
created by the consideration of ψ in two specific methods.

The paper is organized as follows. In section 2, as a prerequisite study, we investigate the detailed
structure of movable singularities of M and ψ, some features of which had been previously
overlooked.
In section 3, we apply a first method successively to M and ψ in order to build necessary
conditions for M or ψ to be elliptic. This proves easy for M and sets up additional questions
for ψ, whose solution is provided.
In section 4, we indicate how to correctly apply a second method (the subequation method
[14, 5, 6]) to M and ψ, in order to build a first order ODE sharing elliptic or degenerate elliptic
solutions with the above third order ODEs (11) and (13).
In section 5, we simply present the solution of CGL5 in which the square modulus M is elliptic,
whose obtention by the subequation method is detailed elsewhere [8].

2 Movable singularities of CGL5

In this section, we enumerate all the movable poles of either M or ψ, excluding those which
represent a singular solution1 of either the third order ODE (11) for M or the third order ODE
(13) for ψ.

The structure of singularities of (2) has been studied in [13]. A first type of singularity χ =
ξ − ξ0 → 0 is obtained by balancing the terms Axx and |A|4A in (2),

A ∼ A0χ
(−1/2+iα), A ∼ A0χ

(−1/2−iα), (−1/2 + iα)(−3/2 + iα)p + A4
0r = 0, (14)

these algebraic branch points of A define four values of A2
0 and two of α,

(eiA
4
0)

2 − 4erA
4
0 − 3 = 0, α =

ei

2
A4

0, (15)

A2
0 = ε2

√
2er + ε1∆

e2
i

, α =
2er + ε1∆

2ei
, ∆ =

√
4e2

r + 3e2
i , ε2

1 = ε2
2 = 1. (16)

At these singularities, the square modulus M = |A|2 displays four simple poles

M ∼ m0χ
−1, m0 = A2

0, (17)

and a direct investigation of the third order ODE (11) shows that M admits no other movable
poles2.

1A singular solution [4] of an ODE is any solution which cannot be obtained from the general solution. Such
a solution must cancel an odd multiplicity factor of the discriminant of the ODE. For instance the ODE (11),
whose discriminant is GM2(eiM

2 + diM − gr)
2, admits as singular solutions all those of G = 0, which must be

rejected since they are not solutions of the system (7).
2The Laurent series M = ±(3/(4er))

1/2χ−1 + · · · must be discarded since it cancels G and thus represents a
singular solution.
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Let us now count the poles of ψ by considering the real system (7). A first set of poles of ψ
arises from the simple poles of M ,

M = m0χ
−1
1

[
1 +

(
κi

4
+

2drm0 − 2eidim
3
0

4(1 + e2
i m

4
0)

)
χ1 +O(χ2

1)

]
, (18)

ψ =
eim

2
0

2
χ−1

1 +
eim

2
0

8
κi + m0

4di + 5eidrm
2
0 − e2

i dim
4
0

4(1 + e2
i m

4
0)

+O(χ1), (19)

in which both invariances (8)–(9) require changing m0 to−m0. This first set defines four different
simple poles of ψ when q is nonzero and only two when it vanishes (in which case M2 obeys an
algebraic equation admitting two double poles).

A second set of poles of ψ, not considered in [13], arises from the movable simple zeroes of M ,
and this set is best computed from the system (7). This is

1
M

=
1

M0
χ−1

2

[
1 + M1χ2 +

{
M2

1 + κiM1 − j

3
gr +

2
3
gi

}
χ2

2 +O(χ3
2)

]
, (20)

ψ =
j

2
χ−1

2

[
1 + (κi + M1) χ2 +

{
M2

1 + 2κiM1 +
2
3
gi − 4j

3
gr +

5
6
κ2

i

}
χ2

2

+
1
2

{
(gr + jgi)κi +

3jκ3
i

4
− (3di − jdr)M0

4
+

(11jκ2
i + 4gr + 4jgi)M1

4

+ 3jκiM
2
1 + jM3

1

}
χ3

2 +O(χ4
2)

]
, (21)

in which M0 and M1 are arbitrary constants, and j is any square root of −1. Again, both
invariances (8)–(9) require changing M0 to −M0, with the additional requirement M1 = 0 when
κi = 0. This second set defines 2N simple zeroes of M , and either 2N (when q 6= 0) or N (when
q = 0) simple poles of ψ, with N an undetermined integer.

Remark 1 In the nonlinear Schrödinger equation (p real, q real, r = γ = 0), the first integral
Mψ = constant implies that the only poles of ψ arise from the zeroes of M .

We have searched for possible additional poles of ψ by directly investigating the third order
ODE (13) for ψ(ξ). One thus finds three kinds of families of movable simple poles, namely the
two previous kinds (19) and (21) plus the following third kind comprising two families

ψ = p0χ
−1

[
1 +

κi

4
+O(χ)

]
, 4(e2

r + 5e2
i )p

2
0 − 16ereip0 + 21e2

i = 0. (22)

However, this series cancels a factor of the discriminant of (13) having an odd multiplicity,
therefore it is a singular solution of (13) and it must be discarded because it is not a solution of
the system (7).

Therefore another distinction between M and ψ is the difference of complexity of their singularity
structure: exactly 4 Laurent series for M , an unknown number of series for ψ.

Remark 2 Out of the two special values q = 0 and κi = 0 allowing an invariance in the
differential system, see (8)–(9), only the value q = 0 is involved in the structure of singularities.
The value κi = 0 will show up in next sections 3 and 5.
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3 On the characterization of nondegenerate elliptic solutions

This is a classical result that, inside a fundamental domain, the sum of the residues of any
elliptic function at its poles is equal to zero. This allowed Hone [11] to take advantage of the
Laurent series to generate the following necessary conditions for the solution u of an ODE to be
nondegenerate elliptic,

∀j ∈ N , ∀k ∈ N : Cu
jk ≡

∑

Laurent series
residue

((
u(k)

)j
)

= 0, (23)

in which the sum extends to any subset of the set of Laurent series, and thus to isolate those
parameters for which the ODE might have a nondegenerate elliptic solution.

If one assumes that M is elliptic, it follows from (10) that ψ is also elliptic, so one can a priori
use the Laurent series of either M or ψ to generate necessary conditions for M and ψ to be
elliptic. However, as already noticed in section 2, the situation is much more complicated with ψ
than with M . Indeed, some Laurent series of ψ (those near χ2) depend on arbitrary constants,
therefore one must first compute the number of different series (21), then one must also solve
the generated residues conditions for these extra arbitrary constants. Let us apply the criterium
successively to M and to ψ.

3.1 Criterium of residues applied to M

The variable M presents two advantages over ψ: it admits exactly four Laurent series (18),
and no arbitrary coefficient enters these series. The sum (23) can include one, two, three or

four Laurent series. However, with one or three series, the condition (23) applied to
(
M (0)

)1

generates m0 = 0, which is forbidden. With two series, because of the invariance m0 → −m0

of (15), the generated conditions are identical to those with four series, therefore only one case
remains to study, that with four series in the sum (23). After computing the first seven terms
of each series (18), one generates ten conditions CM

jk = 0, jk = 01, 02, 03, 04, 05, 06, 07, 12, 13,
22,

CM
01 = 0, CM

02 ≡ κier = 0, CM
03 ≡ κi

(
19erdi(ei2 + 16e2

r)− eidr(9ei2 + 6e2
r)

)
= 0,

CM
04 ≡ κiP (er, ei, dr, di, gr, gi, κ

2
i ) = 0, CM

12 ≡ κiP (er, ei, dr, di, gr, gi, κ
2
i ) = 0, · · · (24)

in which the two P ’s are polynomials containing respectively 18 and 16 terms. In the case κi 6= 0,
the generated constraints are

κi 6= 0 : CM
02 ≡ er = 0, CM

03 ≡ dr = 0, CM
04 ≡ 16gi + 3κ2

i = 0, CM
12 ≡ di = 0. (25)

We will see in section 5 that these necessary conditions are sufficient because there does exist
an elliptic solution when they are obeyed.

In the case κi = 0, the parity invariance (9) selects very few nonidentically zero expressions
CM

jk = 0, the first few ones being: CM
13 = P2,2,5,5,15,15(gr, gi, dr, di, er, ei)3 (140 terms, requires 6

terms in the series), CM
32 (not computed, 8 terms in the series), CM

15 (not computed, 10 terms
in the series), etc, thus requiring the computation of many terms in the series to generate the
necessary conditions.

Fortunately, the unpleasant feature of having to deal with the second set of poles χ2, whose
number is unknown and which adds arbitrary coefficients to the system of necessary conditions,

3The indices denote the degree of P in its arguments.
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can be avoided by associating to M a “subdominant” contribution of the “slave variable” ψ

in the following way. Any product
(
ψ(k1)

)j1 (
M (k2)

)j2
which is holomorphic near χ2 enjoys

the same properties as M , i.e. : to have only four Laurent series at χ1, to introduce no extra
arbitrary coefficients.

The case κi = 0 can then be settled easily, the simplest necessary conditions being,




ψM : 3ei(2e2
r + 3e2

i )dr − er(8e2
r + 11e2

i )di = 0,

solved as dr =
er(8e2

r + 11e2
i )

3ei(2e2
r + 3e2

i )
,

ψM2 : 32(2e2
r + 3e2

i )
2ei(3eigi + 4ergr)− (16e2

r + 19e2
i )(4e2

r + 3e2
i )erd

2
i = 0,

solved as gi = −4er

3ei
gr +

(16e2
r + 19e2

i )(4e
2
r + 3e2

i )
96e2

i (2e2
r + 3e2

i )2
erd

2
i ,

ψM5 : dierP2,4,12,14(gr, di, er, ei) = 0,
ψ3M3 : diP2,4,14,16(gr, di, er, ei) = 0,
ψM6 : erP3,6,18,21(gr, di, er, ei) = 0.

(26)

With only seven terms in each series, this defines three sets of necessary conditions

κi = 0, er =
3ε

2
ei, dr =

29ε

15
di, gr = − d2

i

5ei
, gi = −7εd2

i

ei
, ε2 = 1, (27)

κi = 0, di = dr = gi = gr = 0, (28)
κi = 0, di = dr = gi = er = 0, (29)

the last set being the particular case κi = 0 of the conditions (25). The first two sets (27)–(28)
could well be refined by using more terms in each series.

3.2 Criterium of residues applied to ψ

The motivation of this study comes from a previous application of the criterium to ψ, in which
Vernov [18] found the set of necessary conditions

κi = er = dr = di = gigr = 0, (30)

which only detects the subcase κi = 0 of the elliptic solution (47). This result was achieved
from the Laurent series of ψj , j = 1, 2, 3, 4, but only from the series (19) near χ1, discarding
the second set of poles (21) near χ2. Let us show in this subsection that, if one takes account

of both sets of poles of ψ, the single consideration of the variables
(
ψ(k)

)j
allows one to recover

the correct results.

Since an elliptic function possesses as many zeroes as poles, M must have exactly four simple
zeroes (20). The corresponding set of poles of ψ, necessarily simple, are then the following:

1. – (q 6= 0) 4 poles χ1 plus 4 poles χ2;

2. – (q = 0) 2 poles χ1 plus 2 poles χ2.

Let us denote the triplets (M0,M1, j) in (21) as either the four sets (M0,1±,M1,1±,±i),
(M0,2±,M1,2±,±i) (case q 6= 0), or the two sets (M0,±,M1,±,±i)(case q = 0).

Let us denote CψP
jk the sum of the four residues associated to the four poles χ1 (19), and CψZ

jk

the sum of two residues associated to two of the poles χ2 (21) with opposite values of j.
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The first set of sum of residues evaluates to [18]




CψP
01 ≡ 4er

ei
, CψP

02 ≡ κi
8e2

r + 3e2
i

2e2
i

,

CψP
03 ≡ 6

er

ei
gi + 4

e2
r

e2
i

gr +
9e2

i + 32e2
r

8e3
i

erκ
2
i +

520e2
i e

4
r + 256e6

r + 303e4
i e

2
r + 9e6

i

64e3
i (e2

r + e2
i )2

d2
i

− (132e4
i + 229e2

i e
2
r + 112e4

r)
16e2

i (e2
r + e2

i )2
erdidr + 3

e2
i (64e4

r + 135e2
i e

2
r + 81e4

i )
64ei(e2

r + e2
i )2

d2
r,

CψP
12 ≡ κi

[
gi − 2

er

ei
gr − 3

16
κ2

i −
112e4

i + 23e2
i e

2
r − 224e4

r

96e2
i (e2

r + e2
i )2

d2
i

+
132e4

i + 229e2
i e

2
r + 112e4

r

32(e2
r + e2

i )2
erdidr +

19e4
i − 123e2

i e
2
r − 232e4

r

32ei(e2
r + e2

i )2
d2

r

]
,

. . . ,

(31)

and the second set to (denoting M1s = M1,+ + M1,−, M1d = M1,+ −M1,−),




CψZ
01 ≡ 0, CψZ

02 ≡ −κi − M1s

2
, CψZ

03 ≡ −gr − 3iM1d

4
(M1s + 2κi),

CψZ
12 ≡ 1

4
M3

1s +
3
2
κiM

2
1s +

41
16

κ2
i M1s +

9
8
κ3

i +
3
4
(2κi + M1s)M2

1d

− igrM1d + gi(2κi + M1s) +
dr

4
(M0,+ + M0,−) +

3idi

4
(M0,+ −M0,−),

CψZ
04 ≡ 5

16
M3

1s +
15
8

κiM
2
1s +

57
16

κ2
i M1s +

17
8

κ3
i +

15
16

(2κi + M1s)M2
1d

− 5
4
igrM1d +

3
4
gi(2κi + M1s) +

dr

16
(M0,+ + M0,−) +

3idi

16
(M0,+ −M0,−),

. . .

(32)

The sets of conditions to be solved are then (the arguments of CψZ
jk (· · ·) describe the additional

unknowns)

q 6= 0, N = 2 : CψP
jk + CψZ

jk (M0,1±,M1,1±,±i) + CψZ
jk (M0,2±,M1,2±,±i) = 0, (33)

q = 0, N = 1 :
1
2
CψP

jk + CψZ
jk (M0,±,M1,±,±i) = 0. (34)

The first set of conditions (33) contains too many unknowns to be solved when only seven terms
in each series are considered, we leave the computation to the interested reader.

For the second set of conditions (34), since q is zero, the Laurent series (20)–(21) must possess
the invariance (8),

q = 0 : (M,ψ, χ, M0, M1, j) → (−M, ψ, χ,−M0,M1, j), (35)

and, when κi is also zero, the additional invariance (9),

q = 0, κi = 0 : M1 = 0, (M, ψ, χ,M0, j) → (M,−ψ,−χ,−M0, j). (36)

This second set of conditions evaluates to




ψ1 : er = 0,

ψ2 : 2M1s + κi = 0,

ψ3 : 8gr + 9κiM1d = 0,

ψ5 : 128ei(M2
0+ + M2

0−)− 9iκiM1d(43κ2
i + 272gi) = 0,

ψ4 : κi(3κ2
i + 16gi) = 0,

ψ′3M3 : M1d(128iei(M2
0+ −M2

0−) + 1296giκ
2
i + 279κ4

i ) = 0,
· · ·

(37)
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and only admits the two solutions

κi 6= 0 : er = 0, gi = − 3
16

κ2
i , M2

0± =
κ2

i (16gr ± 9iκ2
i )

64ei
, M1± =

(−9κ2
i ± 16igr)
36κi

, (38)

κi = 0 : er = 0, gr = 0, M1± = 0, M2
0+ + M2

0− = 0, (39)

therefore the subcase κi 6= 0 does succeed to generate the desired constraints (25).

Remark 3 The denominator κi in (38) corresponds to the factor κi of the M ′4 term in (48)
and, when κi vanishes, the singularities χ2 do not exist any more in (48), see (49).

When one now requires both sets of necessary conditions to hold true (the set (25), (27)–(29)
generated in subsection 3.1, and the above set (38)–(39)), then only two possibilities remain for
an elliptic solution M to exist: either (25), which does define a nondegenerate elliptic solution,
or er = dr = di = gr = gi = 0, which defines the four rational solutions M = m0/(ξ − ξ0), ψ =
(eim

2
0/2)/(ξ − ξ0).

4 Method to determine all elliptic and degenerate elliptic solu-
tions

Consider an N -th order autonomous algebraic ODE (40)

E(u(N), ..., u′, u) = 0, ′ =
d
dx

, (40)

admitting at least one Laurent series

u = χp
+∞∑

j=0

ujχ
j , χ = x− x0. (41)

There exists an algorithm [14] to find in closed form all its elliptic or degenerate elliptic solutions.
Its successive steps are [6, 5]:

1. Find the analytic structure of movable singularities (e.g., 4 families of simple poles, 2 of
double poles). For each subset of families (e.g. 2 families of simple poles) deduce the
elliptic orders m,n (e.g. m = 2, n = 4) of u, u′ and perform the next steps.

2. Compute slightly more than (m + 1)2 terms in the Laurent series.

3. Define the first order m-th degree subequation F (u, u′) = 0 (it contains at most (m + 1)2

coefficients aj,k),

F (u, u′) ≡
m∑

k=0

2m−2k∑

j=0

aj,ku
ju′k = 0, a0,m 6= 0. (42)

According to classical results of Briot-Bouquet and Painlevé (see details in [6]), any el-
liptic or degenerate elliptic solution of (40) must obey such an ODE, which is called
“subequation” of (40) because it is required (in next step) to admit (40) as a differential
consequence.
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4. Require each Laurent series (41) to obey F (u, u′) = 0,

F ≡ χm(p−1)




J∑

j=0

Fjχ
j +O(χJ+1)


 , ∀j : Fj = 0. (43)

and solve this linear overdetermined system for aj,k.

5. Integrate each resulting ODE F (u, u′) = 0.

The structure of singularities of M and ψ has been established in section 2, and the result of
concern to us is: the movable poles of M and ψ are all simple, and the number of distinct
Laurent series at these simple poles is equal to: 4 in the case of M , 4 + 2N in the case of ψ or
M ′/M if q 6= 0, and 2+N in the case of ψ or M ′/M if q = 0, with N an undetermined integer.

Let us start with M . In order to find all elliptic and degenerate elliptic solutions M by the
subequation method, at step 1 the various subsets of families to be considered are made of
one, two, three or four series (18), defining subequations F = 0 whose degrees in (M ′,M)
are respectively (1, 2), (2, 4), (3, 6), (4, 8). The computation presents no other difficulties than
technical ones and its detailed results can be found in [8]. The main new result is a nondegenerate
elliptic solution presented in section 5.

Applying the subequation method with ψ presents several difficulties.

1. The main one is not to forget the movable singularities of type χ2 (movable simple zeroes
(20) for M , movable simple poles (21) for ψ). This is the reason why a previous inves-
tigation [18] could only find a particular case of the elliptic solution presented in section
5.

2. The number of Laurent series (21) for ψ is undetermined, thus failing to set an upper
bound to the degree of the subequation F . This point has already been settled in section
3.2, where we have established that the number of distinct Laurent series ψ is either eight
(q 6= 0, four series near χ1 plus four series near χ2) or four (q = 0, two series near χ1 plus
two series near χ2).

3. The arbitrary coefficients in the series (21) must be determined by the subequation method
and therefore require the computation of many more terms in each Laurent series.

4. Another difficulty, undetectable a priori, is the infinite value of M1± at κi = 0 in (38).
Setting κi = 0 (for some reason) while looking for subequations being obeyed by four series
will fail. In such a case (q = 0 and κi = 0), ψ admits two distinct series near χ1 and no
series near χ2, and the correct assumption for F is

F ≡ ψ′2 + (a01 + a11ψ + a21ψ
2)ψ′ + a00 + a10ψ + a20ψ

2 + a30ψ
3 + a40ψ

4 = 0, (44)

which is further reduced by a classical theorem (no first degree term [2, §181] in ψ′ since
ψ is assumed elliptic) and by the invariance (9) to the canonical Briot-Bouquet type

F ≡ ψ′2 + a00 + a20ψ
2 + a40ψ

4 = 0, (45)

for which a solution was indeed found [18], see (49).

For all those reasons, the choice of M is by far the best one for amplitude equations such as
CGL3, CGL5 or others.
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5 The elliptic solution of CGL5

By “elliptic solution of CGL5”, we mean a solution of CGL5 in which the square modulus M of
the traveling wave reduction is elliptic.
The subequation method yields a unique genus-one subequation for M [8], and it requires exactly
the constraints (25). Introducing the shorthand notation,

e1 =
κ2

i

48
, e0 =

gr

36
, (46)

this fourth degree subequation is




M ′4 − 2κiMM ′3 +
72
ei

e1M
′2(eiM

2 − 12e0) +
2438e4

1

e2
i

+
648e2

1

e2
i

(
288e2

0 + 24eie0M
2 − e2

i M
4
)
− 1

34ei
M2

(
eiM

2 − 48e0

)3
= 0.

(47)

Because of the previously mentioned numerous difficulties with ψ, the corresponding subequation
for ψ is not determined by the subequation method, but by elimination with the correspondence
(10), resulting in





κiψ
′4 − 4κiψ

′3 (κiψ + 24e0)

+ 8ψ′2
(
−κi(27e2

1 − 324e2
0) + 1440e1e0ψ + 27κie1ψ

2 + 16e0ψ
3 +

1
3
κiψ

4
)

+ 16
(
− 1

3
κiψ

8 − 32
3

e0ψ
7 − 26κie1ψ

6 − 1632e1e0ψ
5 −

(
477e2

1 + 552e2
0

)
ψ4

− 288
(
165e2

1 + 4e2
0

)
ψ3 + κi

(
2106e2

1 − 31320e2
0

)
ψ2

+ 2736
(
e2
1 − 4e2

0

)
e1e0ψ + 243

(
−9e4

1 + 56e2
1e

2
0 − 144e4

0

) )
= 0.

(48)

The singularity κi = 0 already uncovered in (38) is displayed as the factor κi in front of the ψ′4

term in (48), with the consequence that the degree of subequation (48) drops from four to two
when κi = 0. One then recovers the result of Vernov [18],

q = 0, er = 0, gi = 0, κi = 0,





ei(3M ′)4 −M2
(
3eiM

2 − 4gr

)3
= 0,

9ψ′2 − 12ψ4 − g2
r = 0,

(49)

in which both subequations for M and ψ belong to the list of five canonical equations of Briot
and Bouquet.

Full details on the integration of (47) and (48) can be found in [9]. The final result for the
complex amplitude A is,

∀κi : A = constant e
−iωt + i

cξ

2p H(ξ,−ξB
+ , 0)(−1+i

√
3)/2 H(ξ,−ξB

− , 0)(−1−i
√

3)/2, (50)

in which H(ξ, q, k) is the élément simple defined by Hermite [10, vol. II, p. 506] for integrating
the Lamé equation,

H(ξ, q, k) =
σ(ξ + q)
σ(ξ)σ(q)

e(k−ζ(q))ξ, (51)
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and the fixed constants ξB± in (50) are defined by




℘(ξB
± , G2, G3) = −2e1 ± i

√
3(3e1 + 4ie0), ℘′(ξB

± , G2, G3) =
3∓ i

√
3

2
(3e1 + 4ie0),

G2 = 12(13e2
1 + 16e2

0), G3 = 8(35e2
1 + 48e2

0)e1,

℘′2 = 4(℘ + 2e1)(℘2 − 2e1℘− 35e2
1 − 48e2

0).

(52)

Numerical simulations with periodic boundary conditions [15, Fig. 4] do display solutions M hav-
ing a real period (similar features are observed in CGL3 [3, Fig. 7]), these could well correspond
to the present elliptic solution.

6 Conclusion

The traps described in this article should be kept in mind when looking for all the elliptic or
degenerate elliptic solutions of other amplitude equations, such as the complex Swift-Hohenberg
equation [17].

Acknowledgements

RC warmly thanks the organizers for invitation, and gladfully acknowledges the support of
MPIPKS Dresden. Part of this work was supported by RGC under Grant No. HKU 703807P.

References

[1] I.S. Aranson and L. Kramer, The world of the complex Ginzburg-Landau equation,
Rev. Math. Phys. 74 (2002) 99–143. http://arXiv.org/abs/cond-mat/0106115
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