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Abstract

We propose a new family of cost functions for signal and image recovery: they are com-
posed of ℓ1 data fitting term combined with concave regularization. We exhibit when and
how to employ such cost functions. Our theoretical results show that the minimizers of these
cost functions are such that each one of their entries is involved either in an exact data fitting
component or in a null component of the regularization part. This is a strong and partic-
ular property that can be useful for various image recovery problems. The minimization
of such cost functions presents a computational challenge. We propose a fast minimization
algorithm to solve this numerical problem. The experimental results show the effectiveness
of the proposed algorithm. All illustrations and numerical experiments give a flavor of the
possibilities offered by the minimizers of this new family of cost functions to solve specialized
image recovery tasks.
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1 Introduction

Digital image restoration and reconstruction plays an important role in various applied areas

such as medical and astronomical imaging, film restoration, image and video coding and many

others [22, 19]. We consider data production models where the observed data v ∈ Rq are related

to the underlying n×m image, rearranged into a vector u ∈ Rp (p = mn), according to

v = Au with perturbations , (1)

where A is a q × p matrix which can for instance be the identity (A = I) or it can model

optical blurring, distortion wavelets in seismic imaging, X-ray tomography (an incomplete Radon

transform), diffraction tomography (an underdetermined Fourier transform), an so on.

In most of the applications, the information provided by the forward model (1) alone is not

sufficient to find an acceptable solution to this equation. Prior information on the underlying
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image is needed to find a convenient solution to (1)—that is, a solution which is close to (1) in

an appropriate way and meets reasonable prior requirements. A flexible means to define such

a solution is regularization, see e.g. [6, 18, 2], where the sought-after solution, denoted in what

follows by û, is a minimizer of a cost function of the form

Θ(u) + βΦ(u) , (2)

where

Φ(u) =

r∑
j=1

φ(∥Gju∥2) . (3)

In these expressions, Θ is called data fitting term and Φ—regularization (or penalty) term. In

fact, Θ forces closeness to data v in accordance with (1), Φ embodies the priors and β > 0 is a

parameter that controls the trade-off between these two terms. In (3), for every i ∈ {1, · · · , r},
Gj : Rp → Rs is a linear operator where s > 1 is an integer. For instance, the family {Gj} ≡
{Gj}rj=1 can generate the discrete approximation of the gradient of an image u (then s = 2) or

the Laplacian operator on u (in which case s = 1), or finite differences of various orders (s = 1),

or the combination of any one of these with the synthesis operator of a frame transform. The

function

φ : R+ → R

is increasing. It is usually called a potential function (PF). Quite various functions φ have been

used in the literature, a review can be found for instance in [8]. An important requirement is

that φ allows the recovery both of relevant edges and smooth regions in the solution û. For two

decades, one of the most popular PF is φ(t) = t: when {Gj} yields a discrete approximation of

the gradient of u, Φ amounts to the discrete version of the convex nonsmooth Total Variation

(TV) penalty [40]

TV(u) =
r∑

j=1

∥Gju∥2 . (4)

The most frequent choice to assess fitting to data is the ℓ2-norm, Θ(·) = ∥ · ∥22, see e.g.

the textbook [2]. We remind that this quadratic data term Θ regularized with a TV-term

unavoidably entails a bias with respect to the original image [41]. In 2002, some of the authors

of this paper [31] showed that ℓ1 data terms

Θ(u) = ∥Au− v∥1 (5)

are useful in image processing if some data equations in the linear system (1) have to be satisfied

exactly. Such a property is precious, for instance if data are corrupted with impulse noise [32, 4]

or in hybrid restoration methods [12]. Continuum L1-TV energies ∥u−v∥1+βTV(u) for images

of bounded variation, and more specifically when data v is the characteristic functions of a

bounded domain, were studied by Chan & Esedoglu in [10]. They exhibited interesting contrast

invariance properties of the minimizers of L1-TV: small features in the image remain intact up

to some critical value of β above which they suddenly disappear. Later on, L1-TV (or ℓ1-TV)

like energies were revealed successful in image decomposition [3, 14], for the recovery of binary

images [11] or in segmentation, in optical flow image registration [37, 47, 44, 38], as well as in

image restoration using hybrid methods [13]. Let us note that their minimizers were proven

to be nonstrict in general [13]. Fast algorithms devoted to the minimization of cost functions

involving an ℓ1 data fitting of the form (5) were developed, see e.g. [15, 20, 13, 44].

Even though convex PFs give rise to feasible optimization problems [2], the numerical results

in the pioneering work of Geman & Geman [18] have shown that nonconvex PFs φ offer richer
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possibilities to restore high quality images. Since [16, 17], concave PFs, jointly with an ℓ2 data

fitting Θ(·) = ∥ · ∥22, have been used in the literature, see e.g. [30, 5, 24, 34, 27, 9, 35], especially

in connection with sparse recovery. A theoretical explanation of the interest of this form of cost

functions was furnished in [33]. A general study on local convergence of descent methods for

such nonconvex cost functions was recently provided in [1].

In this paper, we introduce a new class of cost functions: they combine an ℓ1 data fitting, as

given in (5), and a regularization term Φ of the form (3) defined using increasing and strictly

concave PFs φ. Such cost functions are obviously nonconvex and nondifferentiable. Our goal is

to explore the advantages of these cost functions. In this direction, this work provides two main

contributions. The theoretical one is to prove that each entry û[k] of a (local) minimizer û of

such a cost function is involved in (at least) one data equation that is fitted exactly, aiû = v[i],

where ai is the ith row of A, or in (at least) one vanishing operator Gj û = 0, or in both types of

equations (see Section 2). In the simple case when A = I and {Gj} are discrete gradients or first-

order differences, minimizers are composed of (i) constant regions surrounded by closed contours

and (ii) restored samples equal to the relevant data entries. The second main contribution of

this article is to propose a fast algorithm to approximate the global minimizer of these cost

functions (Section 3). Our experimental results (Section 4) clearly show the effectiveness and

the efficiency of the proposed numerical scheme as well as the interest of this new family of cost

functions. Concluding remarks are given in Section 5.

2 Peculiar Properties of Minimizers

In this section, we study the main properties of the (local) minimizers û of cost functions as

defined by (2), (3) and (5). We denote by ai ∈ R1×p the ith row of A, for any i ∈ {1, · · · , q}.
Then the ith component of Au is

(
Au
)
[i] = aiu. Thus the cost functions F : Rp → R we are

interested in read

v ∈ Rq, F(u) = ∥Au− v∥1 + βΦ(u)

=
∑
i∈I

∣∣aiu− v[i]
∣∣+ β

∑
j∈J

φ(∥Gju∥2) , β > 0 ,

where I
def
= {1, · · · , q} ,

J
def
= {1, · · · , r} .

(6)

Without loss of generality, we assume that

ai ̸= 0, ∀i ∈ I and Gj ̸= 0, ∀j ∈ J .

The matrix composed of all Gj , denoted by G, reads

G = [GT
1 , · · · ,GT

r ]
T , (7)

where the superscript “T” stands for the transpose. Usually rankG < p. For instance, if {Gj}
yield the discrete approximation of the gradient of u, then kerG = span(1l) where 1l is the vector

composed of ones. We adopt the standard assumption enabling to have regularization:

H1 kerA ∩ kerG = {0} .

The function φ in (6) is strictly increasing and concave on R+
def
= {c ∈ R | c > 0}. Hence

t→ φ(|t|) is nondifferentiable at zero. The precise assumptions on φ are listed below.



ℓ1 Data Fitting and Concave Regularization 4

H2 The function φ in (6) has the following properties:

(a) φ : R+ → R+ is C2 on R∗
+

def
= R+ \ {0} and φ(t) > φ(0), ∀t > 0;

(b) φ′(0+) > 0 and φ′(t) > 0 on R∗
+.

(c) φ′′ is increasing on R∗
+, φ

′′(t) < 0, ∀t > 0 and lim
t↘0

φ′′(t) < 0 is well defined and finite.

The condition that limt↘0 φ
′′(t) < 0 is finite in H2(c) implies that φ′(0+) > 0 in H2(b) is

finite as well. Examples of functions φ satisfying H2 are given in Table 1 and plotted in Fig. 1.

(f1) (f2) (f3) (f4)

φ(t)
α t

α t+ 1
1− αt ln(αt+ 1) (t+ ε)α

α > 0 0 < α < 1 α > 0 0 < α < 1, ε > 0

φ′(t) α
(αt+1)2

−αt lnα > 0 α
αt+1 α(t+ ε)α−1

φ′(0+) α − lnα > 0 α αεα−1

φ′′(t) −2α2

(αt+1)3
−αt(lnα)2 −α2

(αt+1)2
α(α− 1)(t+ ε)α−2 < 0

lim
t↘0

φ′′(t) −2α2 −(lnα)2 −α2 α(α− 1)εα−2 < 0

Table 1: Functions φ : R+ → R+ satisfying H2.

0 10
0

1

0 10
0

1

0 10
0

2

0 10
0

1

(f1) (f2) (f3) (f4)

α = 4 α = 0.5 α = 2 α=0.3, ε=0.2

Figure 1: Plots of the PFs φ given in Table 1. Note that (f1) an (f2) are bounded above, which
is not the case for (f3) and (f4).

2.1 Motivation

Figures 2, 3 and 5 depict minimizers of F in (2) for one dimensional signals where A = I, {Gj}
are first-order differences (hence H1 holds true) and different functions φ satisfying H2. These

minimizers were obtained using a continuation algorithm like the one presented in Section 3

where initialization was done with a null signal. In Figs. 2, 3 and 5(b) F is of the form (6), so

it reads

F(u) = ∥u− v∥1 + β

p−1∑
i=1

φ(|u[i+ 1]− u[i]|) . (8)

Fig. 2 shows the minimizers for two different data vectors v ∈ R80 and functions φ, and

different values of β. In the left column, φ is the function (f1) in Table 1. The numerical
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φ(t) =
αt

αt+ 1
for α = 4 φ(t) = ln(αt+ 1) for α = 2

71

0

10

71

0

5

(a) β = 100 (c) β = 1

71

0

10

71

0

5

(b) β = 157 (d) β = 3

Figure 2: Minimizers of F in (8) for two functions φ obeying H2—(f1) on the left and (f3) on
the right—for different values of β. Data samples v[i] are marked with (◦◦◦), samples û[i] of
the minimizer—with (+++).

tests have shown that for any β ∈ {1, · · · , 78} we have û = v and that the solution in (a) is

obtained for any β ∈ {80, · · · , 156}. Similarly, the minimizer in (c) remained unchanged for any

β ∈ 0.1 × {10, · · · , 14} whereas we had û = v for all β ∈ 0.1 × {1, · · · , 3}. In both cases one

observes that when β decreases more data samples are fitted exactly whereas when β increases

more piecewise constant structures are formed, i.e. fitting to the prior model is reinforced. In

the left column, where data is piecewise constant, increasing β removes some small objects which

for a smaller β were equal to the relevant data entries. This effect can be related to the contrast

preservation of the widest constant objects in data, studied theoretically for binary images in

[10]. In the right column, increasing β introduces constant zones (i.e. where Gj û = 0) in locally

variable regions in data v and removes small objects—e.g. both triangles are deleted in (d).

Fig. 3 shows the results obtained by minimizing F in (8) along with all functions φ given in

Table 1. Since for all these functions φ the original signal (in green) matches the prior model

in (8), we explore the possibility to recover it from the data v (in magenta) which contain

Gaussian noise. We systematically selected the smallest value of β enabling to restore the tiny

gate-shaped feature1 ending at sample 71. All minimizers in the figure are piecewise constant.

The zooms in Fig. 4 show that each constant piece fits at most one data entry. In particular, (a)

and (b) in the first row do not fit any data sample and the restored level is quite precise; in (a) it

seems overlapping the original one. These plots correspond to (f1) and (f2) in Table 1 which are

bounded above. Comparing all results in Fig. 3 (as well as the zooms in Fig. 4), it appears that

a faster increase of φ on R+ entails a degradation of the restoration quality. Among all tested

1Remind the experiment in Fig. 2 (a) and (b). In the present experiment, the tiny gate disappears for a slightly
larger value of β.
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5 20 53 71

0

10

5 20 53 71

0

10

(a) φ(t) = α t
α t+1 , α = 4, β = 3 (b) φ(t) = 1− αt, α = 0.1, β = 2.5

5 20 53 71

0

10

5 20 53 71

0

10

(c) φ(t) = ln(αt+ 1), α = 2, β = 1.3 (d) φ(t) = (t+ 0.1)α, α = 0.5, β = 1.4

Figure 3: Minimizers of F as given in (8) for all functions φ evoked in Table 1. Data are
corrupted with Gaussian noise. Data samples v[i] are marked with (◦◦◦), samples û[i] of the
minimizer—with (+++). The original signal is reminded in (−−−).

0

10

53 71

(a) (b) (c) (d)

5 20

12

11

12.5 (a) (b) (c) (d)

Figure 4: Zooms of the plots in Fig. 3. First row: samples 5-20. Second row: samples 53-71.
Constant pieces are indicated using a solid black line. Data points v[i] fitted exactly by the
corresponding minimizers û are exhibited using (�). Data samples v[i] are marked with (◦◦◦),
samples û[i] of the minimizer—with (+++). The original signal is reminded in (−−−).

functions, (f4) has the fastest increase on R+ and the corresponding minimizer in (d) provides

the worst restoration. The bounded above functions (f1) and (f2) seem to give rise to the best

results.

In Fig 5 we compare ℓ1 data fitting to quadratic ℓ2 (smooth) fitting, using the same function

(f1) in Table 1. In accordance with the results proven in [31, 32], one observes that even though
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71

0

10

71

0

10

(a) F(u) = ∥u− v∥22 + βΦ(u) (b) F(u) = ∥u− v∥1 + βΦ(u)

Figure 5: In both cases, Φ(u) =
∑p−1

i=1 φ(|u[i + 1] − u[i]|) where φ(t) = α t
α t+1 for α = 4.

Data contain 20% impulse noise. Data samples v[i] are marked with (◦◦◦), samples û[i] of the
minimizer—with (+++). The original signal is reminded in (−−−).

the prior term is appropriate in both cases, ℓ2 data fitting does not enable a correct restoration

of the original signal. A fully satisfying recovery is provided by the cost function we propose.

Figs. 3 and 5 show that (f1) in Table 1 gives rise to the best results in all tests. This is an

important argument to use (f1) in the experiments in Section 4.

Example 1 (scalar case) This example furnishes a first intuition on the reasons underlying

the phenomena observed in Figs. 2, 3 and 5. Given v ∈ R, consider the function F : R → R
given below

F(u) = |u− v|+ βφ(|u|) for φ meeting H2 . (9)

The necessary conditions for F to have a (local) minimum at û ̸= 0 and û ̸= v —that its

first differential meets DF(û) = 0 and that its second differential obeys D2F(û) > 0—do not

hold:

û ̸∈ {0, v} ⇒


DF(û) = sign(û− v) + βφ′(|û|)sign(û) = 0 ,

D2F(û) = βφ′′(|û|) < 0 ,

where the last inequality comes from the concavity of φ on R∗
+, see H2(c). Hence, F cannot have

a minimizer such that û ̸= 0 and û ̸= v, for any v ∈ R. Being coercive, F does have minimizers.

Consequently, any minimizer of F in (9) satisfies

û ∈ {0, v} . (10)

For φ(u) = αu
1+αu , the local and the global minimizers of F in (9) can be calculated explicitly2.

2Let φ in (9) read φ(u) = αu
1+αu

. Using (10), the two possible (local) minimizers meet

û1 = 0 ⇒ F(û1) = |v|

û2 = v ⇒ F(û2) = βφ(|v|) = F(û2) = β
α|v|

1 + α|v| .

In consequence, he global minimizer û of F is:

û = û1 = 0 ⇔ F(û1) < F(û2) ⇔ |v| < β
α|v|

1 + α|v| ⇔ |v| < β − 1

α
,

û = {0, v} ⇔ F(û1) = F(û2) ⇔ |v| = β − 1

α
,

û = û2 = v ⇔ F(û1) > F(û2) ⇔ |v| > β − 1

α
.

The cost function F has simultaneously two distinct global minimizer only for two values of v, namely v = β− 1
α
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The practical interest of cost functions of the form (6) can be appreciated thanks to the

experiments provided in Section 4.

2.2 Preliminary results

We first verify that cost functions F of the form (6) do have minimizers.

Proposition 1 Let F read as in (6). Assume that H1 holds and that φ satisfies H2. Then for

any v, the optimal set Û
def
=

{
û ∈ Rp | F(û) = inf

u∈Rp
F(u)

}
is nonempty.

The proof of this proposition is outlined in Appendix 6.1. Below it is illustrated using a

3-pixels example.

Example 2 Let F be of the form (6) for p = 3 and q = 2 where

A =

[
1 0 0
0 0 1

]
, v =

[
1
3

]
,

G1 = [1 −1 0],
G2 = [0 1 −1],

φ(t) =
α|t|

α|t|+ α
. (11)

Thus F reads

F(u) =
∣∣u[1]− v[1]

∣∣+ ∣∣u[3]− v[2]
∣∣+ β

(
φ(|u[1]− u[2]|) + φ(|u[2]− u[3]|)

)
.

Note that rankA = rankG = 2 < p = 3 and that φ, obeying H2, is bounded above. We have

kerA = {w ∈ R3 | w = [0 c 0], c ∈ R} and kerG = c1l ∈ R3, c ∈ R ,

hence H1 is satisfied since kerA ∩ kerG = {0}. One computes (by hand) that for α = 1 and

β = 2 the global minimizer of F reads

û = [1 1 3]T . (12)

Given v ∈ Rq, with each û ∈ Rp we systematically associate the following subsets:

Î0
def
= {i ∈ I | aiû = v[i]} and Îc0

def
= I \ Î0 = {i ∈ I | aiû ̸= v[i]} ,

Ĵ0
def
= {i ∈ J | Giû = 0} and Ĵc

0
def
= J \ Ĵ0 = {i ∈ J | Giû ̸= 0} .

(13)

Note that Giû = 0 ∈ Rs is equivalent to ∥Giû∥2 = 0; for s = 1 it is the same as |Giû| = 0.

Example 3 Let us consider Example 2 yet again. Clearly I = {1, 2} and J = {1, 2}. For the

global minimizer û in (12) one finds that

Î0 = {1, 2} = I and Îc0 = ∅ ,

Ĵ0 = {1} and Ĵc
0 = {2} .

(14)

Remark 1 If v = 0, it is clear that F in (6) is minimized by û = v = 0 since F(û) = rβφ(0)

is the least possible value of F . For this trivial solution, Î0 = I and Ĵ0 = J , so Îc0 = Ĵc
0 = ∅.

In what follows, we consider that v ̸= 0, without further reminder.

and v = −β+ 1
α
. The set of these points is closed and its Lebesgue measure in the space of v, namely R1, is null.

Observe also that if βα < 1, we have û = v, for any real v.
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For (u, v) ∈ Rp × Rq, denote

ψi(u)
def
=

∣∣aiu− v[i]
∣∣, i ∈ I , (15)

ϕi(u)
def
= φ(∥Giu∥2), i ∈ J . (16)

Lemma 1 Let F read as in (6). For an û ∈ Rp, we adopt the notations in (13) and assume

that Îc0 ∪ Ĵc
0 ̸= ∅. Put

ρ
def
=



min

{
min
i∈Îc0

|aiû− v[i]|
∥ai∥2

, min
j∈Ĵc

0

∥Gj û∥2
∥Gj∥2

}
if Îc0 ̸= ∅ and Ĵc

0 ̸= ∅ ;

min

{
1, min

j∈Ĵc
0

∥Gj û∥2
∥Gj∥2

}
if Îc0 = ∅ and Ĵc

0 ̸= ∅ ;

min

{
min
i∈Îc0

|aiû− v[i]|
∥ai∥2

, 1

}
if Îc0 ̸= ∅ and Ĵc

0 = ∅ .

Clearly ρ > 0. Let u ∈ B(û, ρ)
def
= {w ∈ Rp | ∥w − û∥2 < ρ}. Then

i ∈ Îc0 ̸= ∅ ⇒ ψi(u) ∈ C2
(
B(û, ρ)

)
; (17)

j ∈ Ĵc
0 ̸= ∅ ⇒ ϕi(u) ∈ C2

(
B(û, ρ)

)
. (18)

In words, ψi, ∀i ∈ Îc0 and ϕj , ∀j ∈ Ĵc
0 , as given in (15) and (16), respectively, are C2-smooth

on the open ball B(û, ρ). This easy lemma is proven in Appendix 6.2.

The next remark furnishes some standard calculations that are needed for later use.

Remark 2 Let F be of the form (6) and assumption H2 hold. For an û ∈ Rp, consider the

notations in (13). Then for any w ∈ Rp we have3

(a) i ∈ Îc0 =⇒
{
Dψi(û)w = sign

(
aiû− v[i]

)
aiw ;

⟨D2ψi(û)w,w⟩ = 0 ;

(b) j ∈ Ĵc
0 =⇒



Dϕj(û)w = φ′(∥Gj û∥2)
⟨Gj û,Gjw⟩
∥Gj û∥2

;

⟨D2ϕj(û)w,w⟩ = φ′′(∥Gj û∥2)
(
⟨Gj û,Gjw⟩
∥Gj û∥2

)2

+φ′(∥Gj û∥2)
∥Gjw∥22∥Gj û∥22 − ⟨Gj û,Gjw⟩2

∥Gj û∥32
.

(b′) j ∈ Ĵc
0 and Gj ∈ R1×p by (b)

=⇒


Dϕj(û)w = φ′(|Gj û|)

∣∣Gjw
∣∣ ;

⟨D2ϕj(û)w,w⟩ = φ′′(|Gj û|) (Gjw)
2 .

The next proposition justifies the notations introduced in (13) when analyzing the cost

functions proposed in this work.

3Note that if i ∈ Îc0 then

⟨D2ψi(û)w,w⟩ = lim
t→0

sign
(
ai(û+ tw)− v[i]

)
aiw − sign

(
aiû− v[i]

)
aiw

t
= 0 .
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Proposition 2 For F as in (6) satisfying H2, let û be a (local) minimizer of F . Then(
Î0 ∪ Ĵ0

)
̸= ∅ .

Proof. Suppose, on the contrary, that

Î0 = ∅ and Ĵ0 = ∅ . (19)

By Lemma 1, F is C2 on a neighborhood of û since Îc0 = I and Ĵc
0 = J . Using Remark 2(a)-(b),

for w = û one finds that4

⟨D2F(û, v)û , û⟩ =
∑
i∈I

⟨D2ψi(û)û, û⟩+
∑
j∈J

⟨D2ϕi(û)û, û⟩

=
∑
j∈J

(
φ′′(∥Gj û∥2)

(
⟨Gj û,Gj û⟩
∥Gj û∥2

)2

+ φ′(∥Gj û∥2)
∥Gj û∥22∥Gj û∥22 − ⟨Gj û,Gj û⟩2

∥Gj û∥32

)

=
∑
j∈J

φ′′(∥Gj û∥2)
(
⟨Gj û,Gj û⟩
∥Gj û∥2

)2

< 0 ,

where the last inequality is due to assumption H2(c). It shows that û is not a (local) minimizer

of F (see e.g. [39]). Consequently, the assumption in (19) is false. Hence the statement of the

proposition. �
When rankG < p—an usual case—an user would not like to get (local) minimizers û of F

that belong to kerG since these are meaningless solutions. A sufficient condition enabling to

avoid such situations is given in the lemma stated next.

Lemma 2 Let F in (6) meet H2 and rankG < p. Assume that data v ∈ Rq satisfy

w ∈ kerG \ {0} ⇒ aiw ̸= v[i], ∀i ∈ I . (20)

Let û ̸= 0 be such that Î0 ̸= ∅. Then

Ĵ0 $ J ⇔ Ĵc
0 ̸= ∅ . (21)

Proof. Suppose on the contrary that

Ĵ0 = J . (22)

Then û ∈ kerG \ {0} and (20) leads to Î0 = ∅. Hence a contradiction with the assumption that

Î0 ̸= ∅. This entails (21) where the equivalence relation comes from (13). �
It worths emphasizing that the assumption in (20) is typically satisfied5. For instance,

consider that G corresponds to first-order differences or a discrete gradient. Then kerG =

span(1l) and (20) means that v ̸= cA1l, for any real c.

If kerG = {0}, it is clear that (21) is satisfied if û ̸= 0.

4If s = 1, i.e. Gj ∈ R1×p for all j ∈ J , Remark 2(a)-(b′) and H2(c) show that for any w ∈ Rp

⟨D2F(û, v)w ,w⟩ =
∑
j∈J

φ′′(|Gj û|) (Gjw)
2 < 0 .

5A little effort is needed to show that data v that fail (20) belong to a closed subset of Lebesgue measure zero
in Rq since the dimension of kerG is typically very small compared to min{p, q}.
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2.3 Discarding perilous non-minimizer points

Given v ∈ Rq, with any û ∈ Rp, we systematically associate the following linear manifolds by

using the notations in (13):

Kû = {w ∈ Rp | aiw = v[i], ∀i ∈ Î0 and Giw = 0, ∀i ∈ Ĵ0} , (23)

Kû = {w ∈ Rp | aiw = 0, ∀i ∈ Î0 and Giw = 0, ∀i ∈ Ĵ0} . (24)

Since

û ∈ Kû,

we have Kû ̸= ∅. Note that Kû is the vector subspace tangent to Kû, hence

û+ w ∈ Kû, ∀w ∈ Kû . (25)

Remark 3 Proposition 2 tells us that any (local) minimizer û of F belongs to a nonempty

manifold Kû of the form (23).

Nevertheless, there may be other points û ∈ Rp that also give rise to a nonemptyKû but which

are not (local) minimizers of F . In this subsection, we describe the latter kind of (dangerous)

points. To this end, we examine the restriction of F to the manifold Kû, say F
def
= F |Kû

,

F : Kû → R ,

F (u) =
∑
i∈Îc0

|aiu− v[i]|+ β
∑
j∈Ĵc

0

φ(∥Gju∥2) . (26)

According to Lemma 1, F is C2 on a neighborhood of û.

Using the notations in (13), we also suppose that

H3 The point û ∈ Rp is such that Î0 ̸= ∅ and that6

w ∈ kerG \ {0} ⇒ ∃i ∈ Î0 such that aiw ̸= 0 . (27)

The assumption in (27) might seem tricky. However it can be seen as a restriction of a more

general assumption, namely

w ∈ kerG \ {0} ⇒ aiw ̸= 0, ∀i ∈ I . (28)

The latter holds true in most of the applications. A relevant example is when A and G are the

discrete versions of an integral and a differential operator, respectively. E.g., if kerG = span(1l),

(28) means that ai1l ̸= 0 for all i ∈ I.

Lemma 3 For û ∈ Rp, we posit the definitions of Î0 and Ĵc
0, see (13), as well as the one of Kû

in (24). Let H3 hold and Ĵc
0 ̸= ∅. Suppose that the dimension of Kû satisfies dimKû > 1. Then

w ∈ Kû \ {0} ⇒ Ĵc
0(w)

def
= {j ∈ Ĵc

0 | Gjw ̸= 0} ̸= ∅ .

Proof. If kerG = {0}, the result is obvious. Let rankG < p. The proof is conducted by

contradiction. So suppose that

∃w ∈ Kû \ {0} such that Gjw = 0, ∀j ∈ Ĵc
0 . (29)

6Note that if rankG = p, the implication in (27) is trivial.
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Combining (29) and the definition of Kû shows that Gjw = 0, ∀j ∈ Ĵc
0 ∪ Ĵ0, that is

w ∈ kerG \ {0} .

Using H3, there exists i ∈ Î0 obeying aiw ̸= 0. But the definition of Kû shows that w ̸∈ Kû. It

follows that (29) is false. Hence the result. �
The cases when all operators Gj are one-dimensional row vectors and when {Gj} contains

some matrices Gj ∈ Rs×p for s > 2, are considered separately. The former case is much easier

to study.

Lemma 4 Consider F in (6) where Gj ∈ R1×p for all j ∈ J (i.e. s = 1) and H2 holds. Let

û ∈ Rp satisfy H3 and Ĵc
0 ̸= ∅. Suppose that dimKû > 1 where Kû is defined according to (24).

Then the restricted function F
def
= F |Kû

(see (26)) satisfies

⟨D2F (û)w,w⟩ < 0, ∀w ∈ Kû \ {0} .

Proof. Using Remark 2(a)-(b′), Lemma 3 and H2(c), it is straightforward that

w ∈ Kû \ {0} ⇒ ⟨D2F (û)w,w⟩ = β
∑

i∈Ĵc
0(w)

φ′′(|Gj û|) (Gjw)
2 < 0 .

The proof is complete. �
The connection with Example 1 is obvious from the fact that F is the smooth part of F .

Remark 4 When Gj û ̸= 0 and Gjw ̸= 0 for w ∈ Kû \ {0}, we have

∥Gjw∥22∥Gj û∥22
⟨Gj û,Gjw⟩2

> 1 .

Indeed, û ∈ Kû and w ∈ Kû \ {0}, so Kû ̸= Kû in which case Schwarz’s inequality yields

|⟨Gj û,Gjw⟩| < ∥Gjw∥2∥Gj û∥2.

This remark is behind the additional assumptions (a)-(b) in the next lemma.

Lemma 5 Let F be of the form (6) where {Gj} contains some matrices Gj ∈ Rs×p for s > 2

and let H2 hold. Suppose that û meets Ĵc
0 ̸= ∅ and H3. We denote

τ0
def
= min

j∈Ĵc
0

∥Gj û∥2 > 0 and τ1
def
= max

j∈Ĵc
0

∥Gj û∥2 > 0 .

Consider that (a) and (b) stated below are verified:

(a) There is a constant C > 1 such that

w ∈ Kû \ {0} ⇒ ∥Gjw∥22∥Gj û∥22
⟨Gj û,Gjw⟩2

6 C, ∀j ∈ Ĵc
0(w) ,

where Ĵc
0(w) is described in Lemma 3.

(b) The function φ is such that

φ′′(t) + (C − 1)
φ′(t)

t
< 0, either ∀t > τ0 or ∀t 6 τ1 .
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Assume that dimKû > 1 for Kû as given in (24). Then F
def
= F |Kû

(see (26)) satisfies

⟨D2F (û)w,w⟩ < 0, ∀w ∈ Kû \ {0} .

Proof. Using Remark 2 and Lemma 3, as well as H2(c), the following chain of inequalities is

derived:

⟨D2F (û)w,w⟩

= β
∑
i∈Ĵc

0

φ′′(∥Gj û∥2)
(
⟨Gj û,Gjw⟩
∥Gj û∥2

)2

+ β
∑
i∈Ĵc

0

φ′(∥Gj û∥2)
∥Gjw∥22∥Gj û∥22 − ⟨Gj û,Gjw⟩2

∥Gj û∥32

(Lemma 3) = β
∑

i∈Ĵc
0(w)

φ′′(∥Gj û∥2)
(
⟨Gj û,Gjw⟩
∥Gj û∥2

)2

+ β
∑

i∈Ĵc
0(w)

(
φ′(∥Gj û∥2)
∥Gj û∥2

∥Gjw∥22∥Gj û∥22
⟨Gj û,Gjw⟩2

− φ′(∥Gj û∥2)
∥Gj û∥2

)(
⟨Gj û,Gjw⟩
∥Gj û∥2

)2

by (a) 6 β
∑

i∈Ĵc
0(w)

(
φ′′(∥Gj û∥2) +

φ′(∥Gj û∥2)
∥Gj û∥2

(C − 1)

)(
⟨Gj û,Gjw⟩
∥Gj û∥2

)2

by (b) < 0, ∀w ∈ Kû \ {0} .

The proof is complete. �
Below we comment the additional assumption (b) in Lemma 5.

Remark 5 The inequality required in (b) can be controlled using the parameter α involved to

define φ (see Table 1). For instance, if C = 2, the assumption is satisfied by the PF (f1) in

Table 1 for t > τ0 > 1/α and by the PF (f2) for t > τ0 > 1/(− lnα) > 0. These PFs are

bounded above. This assumption is satisfied by the PFs (f3) for t 6 τ1 < 1− 1/α and by (f4) for

t 6 τ1 < (1/1− α)1/α.

Proposition 3 Consider F as given in (6) where H2 is verified. Let û be such that Ĵc
0 ̸= ∅ and

H3 holds true. If {Gj} contains some matrices Gj ∈ Rs×p for s > 2, we also adopt assumptions

(a)-(b) in Lemma 5. Suppose that

dimKû > 1 , (30)

where Kû reads according to (24). Then û is not a (local) minimizer of F .

Proof. The proof of the proposition is conducted ad absurdum. So suppose that

û is a (local) minimizer of F . (31)

The cost function F in (6) can be rewritten as

F(û) =
∑
i∈Î0

∣∣aiû− v[i]
∣∣+ β

∑
i∈Ĵ0

φ(∥Giû∥2) + F (û) , (32)

where F
def
= F |Kû

. The first two sums in the equation above are null, so

F(û) = F (û) .
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¿From the definition of Kû in (24), we have

w ∈ Kû ⇒

{
ai(û+ w) = aiû = v[i] ∀i ∈ Î0 ,

∥Gj(û+ w)∥2 = ∥Gj û∥2 = 0 ∀j ∈ Ĵ0 .
(33)

Hence,

w ∈ Kû ⇒ F(û+ w) =
∑
i∈Îc0

∣∣ai(û+ w)− v[i]
∣∣+ β

∑
i∈Ĵc

0

φ(∥Gi(û+ w)∥2)

= F (û+ w). (34)

Since F has a (local) minimum at û by (31), there is ϱ > 0 such that

w ∈ Kû ∩B(0, ϱ) ⇒ F(û) 6 F(û+ w) .

Combining this with (34) yields

w ∈ Kû ∩B(0, ϱ) ⇒ F (û) = F(û) 6 F(û+ w) = F (û+ w) . (35)

Hence F should have a (local) minimum at û and should in particular satisfy the second-order

necessary condition for a (local) minimum7 ⟨D2F (û)w,w⟩ > 0, ∀w ∈ Kû. However, Lemmas 4

and 5 tell us that if (30) holds, then û is not a (local) minimizer of F because

⟨D2F (û)w,w⟩ < 0, ∀w ∈ Kû \ {0} . (36)

Hence (31) is false which proves the statement of the proposition. �
Now we can draw an important conclusion.

Remark 6 According to Proposition 2, any minimizer û of F in (6) belongs to a nonempty

manifold of the form Kû, as given in (23). All points û described in Proposition 3 do belong to

nonempty manifolds of the form Kû; however, they are not (local) minimizers of F . The reason

is that the vector space Kû, tangent to Kû, meets dimKû > 1.

2.4 The (local) minimizers of F : exact fitting results

¿From Proposition 1 we know that F has minimizers. Based on Remark 6, one can guess that if

û is a (local) minimizer of F , then the relevant vector subspace Kû has a null dimension. This

is made explicit in the theorem below.

Theorem 1 Consider F , as given in (6), satisfying H1 and H2. Let û be a (local) minimizer

of F meeting Ĵc
0 ̸= ∅ and H3. If {Gj} contains some matrices Gj ∈ Rs×p for s > 2, we also

assume (a)-(b) in Lemma 5. Then

(i) Kû = {û} and Kû = {0} , where Kû and Kû read according to (23) and (24), respectively.

(ii) û is the unique solution of the full column rank linear system given below{
aiw = v[i] ∀i ∈ Î0 ,

Gjw = 0 ∀j ∈ Ĵ0 .
(37)

7It may be useful to remind that F is C2 near û according to Lemma 1.



ℓ1 Data Fitting and Concave Regularization 15

Proof. Since û is a (local) minimizer of F , Proposition 3 entails that8 dimKû = 0, hence9

Kû = {0} . (38)

Introducing (38) into (25) shows that

Kû = {û} .

Thus claim (i) is proven.

Let the components of Î0 and Ĵ0 list

Î0 = {i1, · · · , i#Î0
} and Ĵ0 = {j1, · · · , j#Ĵ0

} .

Define the following p-column matrices:

A0 =

 ai1
...

a
#Î0

 and G0 =

 Gj1
...

G
#Ĵ0

 ,

as well as

H0 =

[
A0

G0

]
. (39)

Using the definition of Kû in (24) along with the result in (38) shows that

{0} = Kû = {w ∈ Rp | H0w = 0} = kerH0 . (40)

Hence

rankH0 = p .

Define also the column vector v0 by

v0 =
[
v[i1], · · · , v[#Î0], OT

m

]T
,

where m is the number of rows in G0 (e.g. m = #Ĵ0 if s = 1) and Om is the m-length column

vector composed of zeros. Consequently, û is the unique solution of the matrix equation given

below

H0w = v0 . (41)

This equation is the same as (37). This establishes (ii). �
An significant outcome of Theorem 1 is formulated next.

Remark 7 Theorem 1 furnishes an important necessary condition for a (local) minimizer û

of F : the corresponding linear system in (37) must have full column rank.

The examples below illustrate Theorem 1.

8Indeed, (35) and (36) show that the only possibility for û to be a (local) minimizer of F is that w = 0,
∀w ∈ Kû.

9Remind that Kû is a vector subspace of Rp.
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Example 4 Let us focus yet again on Example 2. ¿From the ingredients of F given in (11) the

minimizer in (12) and the relevant Î0 and Ĵ0 described in (14), the set Kû meets

Kû = {w ∈ R3 | a1w = v[1], a2w = v[2], g1w = 0}
= {w ∈ R3 | w[1] = v[1], w[3] = v[2], w[1]− w[2] = 0}
= {w ∈ R3 | w[1] = v[1], w[3] = v[2], w[2] = w[1]}
= {w ∈ R3 | w[1] = w[2] = v[1], w[3] = v[2]}
= {w ∈ R3 | w[1] = 1, w[2] = 1, w[3] = 3}
= {û} .

Then Kû = {0}. Furthermore, the linear system defined according to (37) has a unique solution.

Indeed, the corresponding matrix H0 (see (39)) reads

H0 =

 1 0 0
0 0 1
1 −1 0

 .

Clearly, H0 has full column rank since rankH0 = 3.

Example 5 The data vector v in Fig. 2 is of length 80. One can check that the minimizer

depicted in Fig. 2(b) meets

Îc0 = (28 , 29 , 30 , 31 , 69 , 70) and Ĵc
0 = (4 , 20 , 44 , 59) .

Then the corresponding matrix H0 is of size 149× 80. It meets rankH0 = 80.

We can now formulate an important practical conclusion: each pixel of a (local) minimizer

û of F is involved in (at least) one data equation that is fitted exactly, aiû = v[i], or in (at

least) one vanishing differential operator, ∥Gj û∥2 = 0, or in both types of equations. The formal

statement is given next.

Theorem 2 Consider F , as given in (6), satisfying H1 and H2. For v ∈ Rq \ {0}, let û be a

(local) minimizer of F meeting Ĵc
0 ̸= ∅ and H3. If {Gj} contains some matrices Gj ∈ Rs×p for

s > 2, (a)-(b) in Lemma 5 are assumed as well . Then

1 6 k 6 p ⇒


∃i ∈ I obeying aiû = v[i] such that ai[k] ̸= 0 ,

or
∃j ∈ J obeying Gj û = 0 such that Gj(k) ̸= 0 ,

(42)

where Gj(k) ∈ Rs is the k-th column of the matrix Gj ∈ Rs×p.

Proof. For û, let Î0 and Ĵ0 be defined according to (13). Then (42) is equivalent to

1 6 k 6 p ⇒


∃i ∈ Î0 such that ai[k] ̸= 0 ,

or

∃j ∈ Ĵ0 such that Gj(k) ̸= 0 .

(43)

We shall prove (43) by contradiction. So suppose that there is a k ∈ {1, · · · , p} such that
ai[k] = 0 ∀i ∈ Î0 ,

Gj(k) = 0 ∀j ∈ Ĵ0 .

(44)
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Then the kth column of the matrix H0 in (39) is null, hence (40) fails to hold. This entails that

the vector subspace Kû, defined according to (24), meets

dimKû > 1 .

Then Proposition 3 tell us that û is not a (local) minimizer of F . This conclusion contradicts

the fact that û is a (local) minimizer of F . Hence the assumption in (44) is false. Consequently,

(43) and the statement of the theorem (42) hold true. �
In the simple case when A = I and {Gj} yield either discrete gradients or first-order finite

differences between adjacent samples, the result stated in (42) means that a (local) minimizer is

composed partly of constant patches, partly of pixels that fit data samples exactly, as seen e.g.

in Figs. 2 and 3.

Remark 8 (On the role of the regularization parameter β > 0) The linear system in (37)

that a (local) minimizer û of F solves (Theorem 1) does not make an explicit reference to the

regularization parameter β. Implicitly, β helps the selection of the subsets Î0 and Ĵ0 in (37).

Usually F has numerous (local) minimizers. According to the same theorem, each one of them

is the unique solution of a linear system of the form given there. Any other (local) minimizer

û′ corresponds to different subsets Î ′0 ⊂ I and Ĵ ′
0 ⊂ J and in general, F(û) ̸= F(û′). So the

ordering of the (local) minimizers û of F according to their value F(û), as well as the selection

of the global minimizer of F , are controlled by β.

3 Minimization Method

3.1 A Continuation Approach

The minimization of nonconvex nonsmooth cost function F of the form (6) involves several

intrinsic difficulties that drastically restrict the numerical methods that can be envisaged. Since

φ is concave, F typically exhibits a certain number of local minima which are not global. What

is more, Theorem 1 in Section 2 tells us that at any (local) minimizer û, F is nonsmooth

in all directions in Rp. Thus usual gradient-based methods are inappropriate even for local

minimization. Note also that often the matrix A has numerous off-diagonal nonzero elements

and is ill-conditioned, which is a hard test for any numerical scheme. In [34, 35], a nonsmooth

continuation GNC10-like approach was inaugurated to minimize cost functions combining an

ℓ2 data fitting and regularization defined using concave functions φ in our cost function F in

(6). The experimental results there showed that the resultant numerical method provides better

performance with significantly smaller computational cost compared to stochastic algorithms

such as simulated annealing. We shall apply a similar nonsmooth continuation idea to deal with

both nonsmooth terms of our cost functions F in (6).

The concave function φ is approached by a family of functions φε : R+ → R+, parameterized

by ε ∈ [0, 1] so that φ0 is convex, φε continuously goes to φ as ε increases from 0 to 1 and

φ1 = φ. Correspondingly, the cost function F is approximated by a family Fε given by

Fε(u) = ∥Au− v∥1 + β
∑
j∈J

φε(∥Gju∥2), ε ∈ [0, 1] . (45)

Thus F0 is convex, Fε continuously goes to F when ε increases from 0 to 1 and we have F1 = F .

The main heuristic behind continuation [43] is that if u(0) minimizes the convex F1, the family

10GNC is an abbreviation of Graduated Non Convexity, a method proposed by Blake and Zisserman [7] to solve
computer vision problems (where A = I) using the discrete version of the Mumford-Shah functional.
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of local minimizers u(ε) of Fε converges to a good approximate of the global minimizer of the

original F = F1 as ε increases. Thus a reasonable requirement is that approximates φε share

the same features as the original φ: so φε shall be constructed so that

φε satisfy assumption H2 ∀ε ∈ (0, 1] and φ0(t) = t . (46)

So φε are concave for every ε ∈ (0, 1] and φ′′
ε(t) < 0 continuously decreases towards φ′′(t) < 0

for every t ∈ R+. Since φε meet H2, each φε can be decomposed as

φε(t) = ψε(t) + αεt where αε = φ′
ε(0

+). (47)

Then Fε in (45) equivalently reads11

Fε(u) = ∥Au− v∥1 + βαε

∑
j∈J

∥Gju∥2 + βΨε(u) , (49)

where Ψε(u) =
∑
j∈J

ψε(∥Gju∥2) .

This formulation of Fε can be handled easier than the one in (45):

• The first two terms in (49) are convex and nondifferentiable;

• Ψε is nonconvex (ψε in (47) is the difference between a nonconvex function and a linear

function) and it is differentiable on Rp because ψ′
ε(0

+) = 0 and lim
t↘0

ψ′
ε(t)

t
is finite by

assumption H2.

In practice, a strictly increasing sequence

ε0 = 0 < ε1 < · · · < εk < · · · < εn = 1 . (50)

is selected and for any k ∈ {1, · · · , n} one computes the minimizer u(k) of the corresponding Fεk

which is initialized with the previously obtained u(k−1).

To simplify the notations, we shall write ε for εk whenever this is clear from the context.

3.2 Penalization scheme to fit ∥Au− v∥1 and ∥Gu∥2
In this subsection, we conceive a numerical method to minimize Fε in (49) for every ε ∈ [0, 1].

It is based on variable-splitting and penalty techniques. The idea is to transfer the nonsmooth

terms ∥Au − v∥1 and ∥Gu∥2 out of Fε in such a way that the minimization steps relevant to

these convex nonsmooth terms can be done using shrinkage operations, as proposed in [46]. To

this end, we consider an augmented cost function Jε,γ : Rp × Rq × Rsp → R which involves a

fitting of the auxiliary variables z ∈ Rsp and w ∈ Rq to Gu and to Au, respectively, weighted by

a penalty parameter γ > 0:

Jε,γ(u,w, z) = γ∥Au− w∥22 + ∥w − v∥1 + βΨε(u) + γ∥Gu− z∥22 + βαε

∑
j∈J

∥zj∥2 . (51)

Clearly, zj ∈ Rs for all j ∈ J . For any ε ∈ [0, 1], we propose an iterative algorithm where γ is

increased progressively. Indeed,

lim
γ→∞

Jε,γ(u,w, z) = Fε(u) , ∀ε ∈ [0, 1] ,

11Note that according to (46) we have

ψ0(t) = 0 ⇒ Ψ0(u) = 0 . (48)
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where Fε(u) reads as in (49). When γ is large enough, we have w ≈ Au and z ≈ Gu.

For u and w fixed, the function z 7→ Jε,γ(u,w, z) is convex and non-differentiable because of

the term
∑

j ∥zj∥2. For u and z fixed, w 7→ Jε,γ(u,w, z) is convex and non-differentiable because

of the term ∥w − v∥1. Given w and z, the function u 7→ Jε,γ(u,w, z) is twice differentiable and

nonconvex so that it can be minimized by gradient-based methods. The computational steps

are given as follows:

z(l,k) = arg min
z∈Rsp

Jε,γ(u
(l−1,k), w(l−1,k), z)

= arg min
z∈Rsp

∑
j∈J

(
γ∥Gju

(l−1,k) − zj∥22 + βαε∥zj∥2
) ; (52)

w(l,k) = arg min
w∈Rq

Jε,γ(u
(l−1,k), w, z(l,k))

= arg min
w∈Rq

{
γ∥Au(l−1,k) − w∥22 + ∥w − v∥1

}
; (53)

u(l,k) = arg min
u∈Rp

Jε,γ(u,w
(l,k), z(l,k))

= arg min
u∈Rp

{
γ∥Au− w(l,k)∥22 + γ∥Gu− z(l,k)∥22 + βΨε(u)

}
. (54)

In this case, we initialize with u(0,k)
def
= uεk−1

where uεk−1
results from the minimization of Jεk−1

with respect to u. We remark that w(l−1,k) is not required in the computation in (52). Prob-

lems (53) and (54) will be solved in an exact and fast way using multidimensional shrinkage12

according to [46, pp. 577].

Computation of z(l,k) according to (52). Solving (52) amounts to solve p independent

problems:

z
(l,k)
i = arg min

zj∈Rs

{
γ∥Gju

(l−1,k) − zj∥22 + βαε∥zj∥2
}
, ∀j ∈ J. (56)

As shown in [46, pp. 577], see also (55) given in footnote, each one of the problems in (56) can

be solved efficiently using s-dimensional shrinkage:

z
(l,k)
j =

Gju
(l−1,k)

∥Gju(l−1,k)∥2
max

{
∥Gju

(l−1,k)∥2 −
βαε

2γ
, 0

}
, ∀j ∈ J . (57)

Computation of w(l,k) according to (53). The task is similar to the computation of z(l,k).

The solution in (53) can be found using (55):

w
(l,k)
i =

Au(l−1,k) − v

∥Au(l−1,k) − v∥2
max

{
∥Au(l−1,k) − v∥2 −

1

2γ
, 0

}
, ∀i ∈ I . (58)

Computation of u(l,k) according to (54). For ε0 = 0, the finding of u(l,0) amounts to

minimize the convex quadratic function:

min
u∈Rp

{
γ∥Au− w(l,0)∥22 + γ∥Gu− z(l,0)∥22

}
.

12Let (x, y) ∈ Rn × Rn for any integer n > 1 and κ > 0. The multidimensional shrinkage formula reads

arg min
x∈Rn

(
∥x∥2 + κ∥x− y∥22

)
= max

{
∥y∥2 −

1

2κ
, 0

}
y

∥y∥2
. (55)
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For ε > 0, a Quasi-Newton method shall be used to solve (54). The gradient vector ∇uJε,γ
def
=

∇uJε,γ(u,w
(l,k), z(l,k)) and the Hessian matrix ∇2

uJε,γ
def
= ∇2

uJε,γ(u,w
(l,k), z(l,k)) of the function

u 7→ Jε,γ(u,w
(l,k), z(l,k)) read

∇uJε,γ = 2γAT (Au− w(l,k)) + 2γ(GTGu− z(l,k)) + β∇uΨεk(u) , (59)

∇2
uJε,γ = 2γATA+ 2γGTG+ β∇2

uΨεk(u) . (60)

Since ∇2
uΨε(u) is negative definite for ε ∈ (0, 1], the Hessian ∇2

uJε,γ may be not positive definite.

This may prevent the Quasi-Newton method from convergence as the resultant search direction

may not be a descent direction. A way to ensure the obtention of a descent direction is to use

only the positive definite part of the Hessian matrix in the minimization procedure. Thanks to

H1, the coefficient matrix 2γATA + 2γGTG is always positive definite. The solution can then

be updated according to

u(l,k) = u(l−1,k) + τ∆u(l,k) ,

where τ > 0 is the step-size and ∆u(l,k) is found by solving

(2γATA+ 2γGTG)∆u(l,k) = −∇uJε,γ . (61)

In image restoration problems A is often a blurring matrix generated by a symmetric point

spread function. Then the computational cost of the method is dominated by three fast discrete

transforms in solving the linear system in (61), see [29]. The computational cost for each fast

transform is only O(p log p) for a p× p blurring matrix A [29].

Three strategies to determine the step-size τ were tested: Armijo rule, Goldstein rule and a

fixed τ [36, Chapter 3]. The experimental results have shown that the numerical schemes based

on these three rules converge to the same solution but the use of the first two rules requires a

heavy additional computation cost. Therefore, we fixed τ = 1 in all our experiments.

3.3 Algorithm

Set ε0 = 0 and ∆ε = 1/n, and initialize u(0,0).

For k = 0 → n

Set l = 1, initial value of γ, and relerr = tol + 1

While relerr > tol do

Obtain z(l,k) by computing (57) and w(l,k) by computing (58);

If k = 0

Solve (2γATA+ 2γ
∑
j∈J

GT
j Gj)u

(l,k) = ATw(l,k) + γ
∑
j∈J

GT
j z

(l,k);

Otherwise

Solve (2γATA+ 2γ
∑

j∈J G
T
j Gj)∆u

(l,k) = −∇uJεk ;

Update u(l,k) = u(l−1,k) + τ∆u(l,k);

End If;

Compute relerr = ∥u(l,k) − u(l−1,k)∥2/∥u(l,k)∥2;
End While

Increase γ (e.g., by multiplying γ with a factor being greater than 1) and set l = l+1;

Set u(0,k+1) = u(l,k) (for the initial guess of the next outer loop);
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Update εk+1 = εk +∆ε;

End For

In the next section, we will test the performance of the proposed method for different imaging

problems.

4 Numerical Experiments

We shall present the experimental results in high-resolution image reconstruction [28], MR image

reconstruction from highly undersampled noisy data and deblurring under impulse noise to test

the effectiveness of the proposed algorithm as well as the possibilities offered by the family of

cost functions in (6) satisfying assumption H2. All original images used in our experiments

are normalized in the range between 0 and 1. Peak Signal to Noise Ratio13 (PSNR) is used

to measure the quality of the recovered images while CPU time is also used to compare the

efficiency of the method. The parameter tol is set to be 10−4 in the proposed algorithm. The

initial value of γ is set to 0.1 and its value is updated by 1.2γ at each iteration. The PF used in

all the illustrations is (f1) in Table 1 and our choice for φε is

φε(t) =
αt

1 + εαt
, 0 6 ε 6 1 . (62)

As required in Subsection 3.1, φε satisfies assumption H2 for any ε ∈ (0, 1]. It is obvious that

φ0 is convex and that φ1 = φ. By (62), we have αε = α, for any ε ∈ (0, 1]. In the tests, we use

α ∈ {0.5, 1}.
All the computational tasks are performed using MATLAB on a computer with Corel(TM)2

CPU with 2.66 GHz and 1.98GB of RAM.

In what follows, our method—the minimization of F in (6) using the numerical scheme pro-

posed in § 3.3—is compared to other variational image reconstruction methods. Systematically,

for all concurrent methods and for each data set, the parameter values are selected manually to

reach the best performance level in terms of PSNR.

4.1 High-resolution Image Reconstruction

In the first experiment, we use the proposed algorithm to generate a high-resolution image from

a low-resolution image. The aim is to demonstrate that the generated high-resolution image

pixels can fit low-resolution image pixels exactly. The original image—the picture of Lena of

size 256× 256—and the the low-resolution 128× 128 observed image v as shown in Fig. 6, first

row. The data image v is generated from the original image by downsampling of factor 2 and its

gray values are rescaled in [0, 1]. Two restorations û based on the low-resolution 128×128 image

v are shown on the second row in Fig. 6. Let ûJ denote the subset of all 1282 restored pixels

that correspond to the data pixels v. The bicubic method does not fit correctly data samples

since mean(ûJ − v) = 1.8 × 10−2 and ∥ûJ − v∥∞ = 2.6 × 10−1. We applied our algorithm to

minimize F in (6) where all operators {Gj} correspond to the discrete form of the Laplacian

operator given by  0 −1 0
−1 4 −1
0 −1 0

 . (63)

13Noticing that our original images are normalized on [0, 1], PSNR= 10 log10
p

∥û− uo∥22
where uo is the original

image and p is the number of pixels that it contains.
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All data pixels are fitted with a remarkable numerical precision since mean(ûJ −v) = 1.7×10−6

and ∥ûJ −v∥∞ = 3.6×10−5 which matches the precision given by the parameter tol. This result

corroborates with the theory in Section 2.

The original image Low-resolution 128× 128 data v,
256× 256 v[i, j] ∈ [0, 1], ∀(i, j) ∈ J

Bicubic method The proposed method
mean(ûJ − v) = 1.8× 10−2 mean(ûJ − v) = 1.7× 10−6

∥ûJ − v∥∞ = 2.6× 10−1 ∥ûJ − v∥∞ = 3.6× 10−5

PSNR=26.11dB PSNR = 28.93dB

Figure 6: High-resolution Image Reconstruction. In our method, the operators {Gj} correspond
to the discrete Laplacian operator in (63); data samples are fitted with a remarkable numerical
precision. This clearly does not hold for the bicubic method.

4.2 MR Image Reconstruction from Highly Undersampled Data

Our goal is to explore the ability of the proposed method to solve highly underdetermined, ill-

posed inverse problems when relevant prior on the sought-after solution is available. We focus

on MR image recovery from a very few samples in the k-space (i.e. individual noisy Fourier

coefficients). This problem can be related to Compressed Sensing in MRI, see e.g. [25, 26].

Experiments are done with the 128 × 128 Shepp-Logan phantom in Fig. 7, normalized on

[0, 1].

Two data vectors are considered: they contain only 7% and 5% randomly chosen samples in

the k-space, contaminated with SNR=37 dB white centered Gaussian noise.

The Shepp-Logan phantom being locally constant with ovale shapes, the linear operators
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Figure 7: Original image: the Shepp-Logan phantom with gray-scale range in [0, 1].

{Gj} in our cost function (6) yield the usual discrete gradient of the image14, so that the

regularization term provides a correct prior. Indeed, Guoriginal is the sparsest linear transform

for this image, the PFs in our cost function (6) promote sparsity in this transformed domain

and the terms Gju are rotation invariant (in a discrete sense). Clearly, A is the undersampled

Fourier transform corresponding to the 7% or 5% randomly chosen k-samples.

Table 2 shows the PSNR and the computational time to run our algorithm (see § 3.3) for

the first data set (7% random noisy samples), for different values of β. One observes that the

highest PSNR is obtained for β = 7.00× 10−4 which requires nearly 49 seconds. The best CPU

time—1.11 seconds—corresponds to β = 1.12× 10−3 but the PSNR is the worst.

β PSNR (dB) CPU time (seconds)

2.19× 10−6 14.45 12.61
4.38× 10−6 15.33 26.73
8.75× 10−6 16.94 39.38
1.75× 10−5 20.24 49.27
3.50× 10−5 26.22 49.86
7.00 × 10−4 75.64 48.94
1.40× 10−4 71.52 36.33
2.80× 10−4 21.20 97.11
5.60× 10−4 13.44 1.22
1.12× 10−3 13.44 1.11
2.24× 10−3 13.44 1.14

Table 2: PSNR and CPU time for our method applied to the 7% data vector as az function of
the value of the parameter β.

Our method—the minimization of F in (6) using the numerical scheme proposed in § 3.3—is

compared to four other variational image reconstruction methods. In all cases, A is as described

above and regularization is applied to the discrete gradient of the image, as in our method.

ℓ1-NN via e-BFGS. Recently the BFGS (Broyden—Fletcher—Goldfarb—Shanno) minimiza-

tion method was extended in [23] to handle nonsmooth, not necessarily convex problems (called

e-BFGS). We applied this e-BFGS numerical scheme to minimize the ℓ1-nonsmooth nonconvex

cost function F proposed in (6). To this end we used the Matlab package HANSO developed

14In words, each Gj is a 2× p matrix for p the number of pixels, along with appropriate boundary conditions.
The potential function φ—(f1) in Table 1—is applied to ∥Gju∥2, for all j ∈ J .
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by the authors and freely available15.

ℓ2-TV. For Gaussian noise, an ℓ2 quadratic data fitting term is a classical choice16. TV

regularization—see (4)—is well known to give rise to images containing constant regions with

edges. The ℓ2-TV cost function

∥Au− v∥22 + βTV(u) (64)

is a common tool to solve various image reconstruction problems, see e.g. the textbook [2]. Let

us notice that ℓ2-TV is a typical ingredient in compressed sensing MRI reconstruction [26]. The

solution was computed using the alternating minimization algorithm conceived in [42].

ℓ1-TV. Some MR image registration problems were successfully solved using an ℓ1-TV cost

function, see e.g. [37, 21]. We will test this cost function for our MRI problem as far as it can

be seen as a predecessor of the cost functions we propose in this paper. The numerical results

are obtained using the method described17 in [20].

ℓ2-NN. Since [16, 17], Nonsmooth Nonconvex cost functions composed of an ℓ2 quadratic data

fitting term as in (64) and a regularization term as in (6) for φ the function (f1) in Table 1 were

successfully used to solve various ill-posed inverse problems. In our experiments, the global

minimizer is approximated using the recent Algorithm II in [35, pp. 3079-3080].

For each data vector, all numerical schemes were initialized using the corresponding zero-

filling Fourier reconstruction. Note that the latter contains normal random noise, so it satisfies

the initialization requirements for the e-BFGS method [23]. We also tried purely random ini-

tializations for both data vectors: ℓ1-NN via e-BFGS converged to meaningless solutions which

are not shown.

The reconstruction results based on the 7% data vector are depicted in Fig. 8 and the relevant

PSNR values and CPU times are tabulated in Table 3. The zero-filling Fourier reconstruction

in (a) shows that data are really poor. The ℓ1-NN via e-BFGS method converges to a miserable

solution. The residuals (uoriginal − û) for all other methods are shown in Fig. 9. It is quite

surprising that ℓ1-TV (see Figs. 8(d) and 9(b)) gives better visual and quantitative results (see

Table 3) than the widely used ℓ2-TV (see Figs. 8(c) and 9(a)). In Fig. 8 (last row), the ℓ2-NN

and our method seem providing somewhat similar results. Nevertheless the residuals in Figs. 9

and 10, as well as the quantitative assessment in Table 3, demonstrate that our method is much

more precise than ℓ2-NN.

Method ℓ1-NN via e-BFGS ℓ2-TV ℓ1-TV ℓ2-NN Our method

PSNR (dB)
CPU time (seconds)

14.23
2.88

27.47
8.11

30.58
2.61

45.48
33.48

75.64
48.94

Table 3: PSNR and CPU time for all methods in Figs. 8 relevant to 7% noisy data samples.

Reconstructions from the 5% noisy data vector are naturally more sensitive, as seen in

Fig. 11. The corresponding PSNR values and CPU times are presented in Table 4. The ℓ1-NN

via e-BFGS method in Fig. 11(b) converges to an inane solution. The solutions produced by

the convex methods ℓ2-TV and ℓ1-TV—see Fig. 11 (c)-(d)—recover up to some degree the outer

15http://www.cs.nyu.edu/overton/software/hanso/
16This choice is well justified in a statistical framework.
17Note that the method in [20] is in fact the very first step (ε = 0 and k = 0) in our numerical scheme in § 3.3.
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(a) Zero-filling Fourier recovery (b) ℓ1-NN via e-BFGS

(c) ℓ2-TV (d) ℓ1-TV

(e) ℓ2-NN (f) Our method

Figure 8: Reconstructed images from 7% noisy randomly selected samples in the k-space using
different methods.

shape of the phantom image but its content is insignificant. The ℓ2-NN and our method (Fig. 11

last row) recover quite correctly all shapes18 in the phantom image. However, the contrast in the

ℓ2-NN reconstruction is underestimated unlike in the solution provided by our method19. Indeed,

the PSNR values in Table 4 confirm a nearly 44dB improvement for our method compared to

ℓ2-NN. This quantitative evaluation is well corroborated by the error plots in Fig. 12.

For both data vectors, our method outperforms its competitors both visually and quantita-

tively as revealed by the figures and the PSNR values, respectively. Even though it requires a

higher computation load than the other methods, it remains comparatively reasonable. The piv-

18The success of ℓ2-NN can be explained by the dominant constant patches in the original image.
19We have already observed in Fig. 5 that ℓ1-NN keeps a faithful contrast much better than ℓ2-NN.



ℓ1 Data Fitting and Concave Regularization 26

−0.15

0

0.2

−0.15

0

0.2

Residual for ℓ2-TV Residual for ℓ1-TV

−0.15

0

0.2

−0.15

0

0.2

Residual for ℓ2-NN Residual for our method

Figure 9: Residuals (reconstructed image − recovered image) from 7% noisy randomly selected
samples in the k-space for all successful methods in Fig. 8. Remind that the gray-scale range of
the original image is in [0, 1].

−0.03

0

0.03

−0.03

0

0.03

Residual for ℓ2-NN Residual for our method

Figure 10: Zoom along the z-axis of the residuals in Fig. 9 for the ℓ2-NN and our method.

Method ℓ1-NN via e-BFGS ℓ2-TV ℓ1-TV ℓ2-NN Our method

PSNR (dB)
CPU time (seconds)

13.89
2.05

18.82
5.59

19.32
2.23

36.64
85.61

80.45
105.61

Table 4: PSNR and CPU time for all methods in Fig. 11 corresponding to 5% noisy data samples.
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(a) Zero-filling Fourier recovery (b) ℓ1-NN via e-BFGS

(c) ℓ2-TV (d) ℓ1-TV

(e) ℓ2-NN (f) Our method

Figure 11: Reconstructed images from 5% noisy randomly selected samples in the k-space using
different methods.

otal improvement in the precision of MR image reconstructions enabled by our method justifies

this increase in CPU time.

4.3 Image Deblurring under Impulse Noise

Data are generated as it follows: the original image is blurred using a two dimensional truncated

gaussian function

h(s, t) = exp

(
−s2 − t2

2σ2

)
, for − 3 6 s, t 6 3 and σ = 1.5 . (65)
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−0.06

0

0.08

−0.06

0

0.08

Residual for ℓ2-NN Residual for our method

Figure 12: Residuals (reconstructed image − recovered image) from 5% noisy randomly selected
samples in the k-space for the ℓ2-NN and for our methods in Fig. 11. Remind that the gray-scale
range of the original image is in [0, 1].

Data are produced by corrupting with salt-and-pepper (SP) impulse noise 30% of the pixels of

the blurred image. The underlying image is the same as in Fig. 7(a) and it is reminded for

comparison reasons in Fig. 7(f); the degraded image is shown in Fig. 13(a).

The random degradation in the observed image affects only a part of the data samples.

Hence the other part of data equations should be satisfied exactly. In a variational framework,

the latter requires that the data fitting term is nonsmooth [31, 32]. So in this application we

consider only ℓ1 data fitting. The regularization term is defined as in the MRI example in the

previous Subsection 4.2.

Our method is collated to the ℓ1-NN via e-BFGS and the ℓ1-TV methods as described in the

previous Subsection 4.2. Deblurring of images corrupted with impulse noise using ℓ1-TV was

recently explored in [45]. We also replaced all steps between “While relerr > tol do” and “End

While” in our algorithm (§ 3.3), intended to solve (49) for any ε, by e-BFGS minimization [23].

The resultant new algorithm is called ℓ1-NN via GNC & e-BFGS.

Initialization of any e-BFGS based numerical scheme with the observed image is now inap-

propriate as far as the condition that the cost function is differentiable at the starting point [23]

is not satisfied20. So we used a fully random initialization for both ℓ1-NN via e-BFGS and

ℓ1-NN via GNC & e-BFGS numerical schemes. The other methods—ℓ1-TV and the ours—were

initialized with the observed image.

All restoration results are presented in Fig. 13 while the relevant PSNR values and CPU

times are seen in Table 5.

The ℓ1-NN via GNC & e-BFGS in (c) is better than the ℓ1-NN via e-BFGS scheme—see

(b)—but visual results are worse than the ℓ1-TV and our method and it needs the highest CPU

time among all restoration methods in Fig. 13. The ℓ1-TV method (d) recovers finely the main

features of the underlying image. However, a careful examination puts into light several artifacts

near to the interior boundary of the phantom and surrounding the right ellipsoid. Our method

appears to be much more precise, as seen in Fig. 13(e) and especially in the error plots in Fig. 14.

We applied our method also using various initializations—e.g. a random or a flat image—

and the obtained reconstruction results are almost the same. The method should be insensitive

to insensitive to initialization because the very first approximation solves a convex problem and

20Nevertheless, we tried both e-BFGS based scheme using the observed image but results were indeed pitiful.
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(a) Blur and 30% SP noise (b) ℓ1-NN via e-BFGS (c) ℓ1-NN via GNC & e-BFGS

(d) ℓ1-TV (e) Our method (f) The original image

Figure 13: The degraded image is shown in (a) and the underlying image—in (f). Restorations
of the latter image using different methods—(b) to (e).

−0.5

0

0.5

−0.5

0

0.5

Residual for ℓ1-TV Residual for our method

Figure 14: Residuals (reconstructed image − recovered image) from 30% impulse noise. We
remind that the original image is normalized on [0, 1].

Method ℓ1-NN via e-BFGS ℓ1-NN via GNC & e-BFGS ℓ1-TV Our method

PSNR (dB)
CPU time (seconds)

15.58
5.82

23.37
314.41

29.22
12.48

44.89
141.11

Table 5: PSNR and CPU time for all methods in Fig. 13.

the subsequent approximations are well defined local minimizers.

In this applicative example, yet again, the method we propose (minimize F in (6) using

the algorithm in § 3.3) outperforms all competitors both visually and in terms of PSNR. The
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proposed method enables a much higher precision, especially in regions containing fine features.

5 Concluding Remarks

In this paper, we proposed image reconstruction and image restoration using ℓ1 data fitting

combined with nonconvex nonsmooth regularization defined using strictly concave potential

functions. Our theoretical results show that the solutions of the corresponding minimization

problem are such that any pixel is involved in a data equation that is fitted exactly or in a null

component of the regularization term. This remarkable property can be used in different ways in

various imaging problems. ¿From a practical side, we conceived a fast numerical scheme to solve

this difficult minimization problem. Experimental results have shown the effectiveness of the

proposed numerical scheme. To the best of our knowledge, this work is the first one exploring

this kind of cost functions. Naturally, many questions need a deeper exploration. These concern

all aspects of the problem—theory, numerical issues and other well-suited applications.

6 Appendix

6.1 Proof of Proposition 1

It is important to notice that

F in (6) is continuous and bounded below . (66)

With the aim of good pedagogy, we start with an easy particular case. Let one of the

following conditions are verified:

• rankA = p ;

• H1 holds and lim
t→+∞

φ(t) = +∞ ;

• kerG = {0} and lim
t→+∞

φ(t) = +∞.

In each one of these cases it is obvious that F is coercive for any v ∈ Rq. This, combined

with (66), shows the result, see e.g. [39].

Consider next the general case when rankA and rankG are arbitrary and φ can be bounded

above. Let u ∈ Rp be arbitrarily fixed and w ∈ Rp \ {0} an arbitrary direction. According to

H1, three cases arise for the direction w.

(a) Let w ∈ kerG \ {0} if dimkerG > 1. By H1, w ̸∈ kerA. Then Aw ̸= 0, hence

F(u+ w) = ∥A(u+ w)− v∥1
∥w∥→+∞−→ +∞ . (67)

(b) Suppose that w ∈ kerA \ {0}. Set

ν
def
= max

j∈J
∥Gju∥2 .

By H1,

w ̸∈ kerG . (68)

Then there exists a nonempty subset J̃ ⊂ J such that

J̃
def
= {j ∈ J | Gjw ̸= 0} .
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Using (68) and the fact that kerA is a vector subspace, there exists µw > 0 such that

∥w∥2 > µw and j ∈ J̃ ⇒ ∥Gjw∥2 > 2ν + 1 .

Then, using the definition of ν and the triangle inequality, we have

∥w∥2 > µw and j ∈ J̃ ⇒ ∥Gjw∥2 > 2∥Gju∥2 + 1 (69)

⇒ ∥Gjw∥2 > ∥Gju∥2
⇒ ∥Gj(u+ w)∥2 > ∥Gjw∥2 − ∥Gju∥2 > 0

⇒ ∥Gj(u+ w)∥2 >
∣∣ ∥Gjw∥2 − ∥Gju∥2

∣∣ . (70)

Assumptions H2(a) and H2(b) show that φ is strictly increasing on R+. Combining this

property with (69) and (70) shows that

∥w∥2 > µw and j ∈ J̃ ⇒ φ(∥Gj(u+ w)∥2) > φ
(∣∣ ∥Gjw∥2 − ∥Gju∥2

∣∣)
> φ

(∣∣ 2∥Gju∥2 + 1− ∥Gju∥2
∣∣)

= φ(∥Gju∥2 + 1)

> φ(∥Gju∥2) .

Inserting the latter result into the expression of F shows that

∥w∥2 > µw ⇒ F(u+ w) = ∥A(u+ w)− v∥1 + β
∑
j∈J

φ(∥Gj(u+ w)∥2)

= ∥Au− v∥1 + β
∑
j∈J

φ(∥Gj(u+ w)∥2)

> ∥Au− v∥1 + β
∑
j∈J

φ(∥Gju∥2) = F(u) . (71)

(c) Last, consider that w ∈ Rp \ {kerA ∪ kerG}, w ̸= 0. Then Aw ̸= 0, so

F(u+ w) = ∥A(u+ w)− v∥1 + β
∑
j∈J

φ(∥Gj(u+ w)∥2)
∥w∥→+∞−→ +∞ . (72)

The results obtained in (67), (71) and (72) show that F is asymptotically strictly increasing in

any direction w ∈ Rp. Consequently,

inf
u′∈Rp

F(u′) 6 F(u) < F(u+ w) as ∥w∥2 → +∞, ∀w ∈ Rp .

This fact, combined with (66), shows that ∀v ∈ Rq, the optimal set Û is nonempty.

6.2 Proof of Lemma 1

Saying that u ∈ B(û, ρ) is equivalent to u = û + w for ∥w∥2 < ρ. Consider an arbitrary

w ∈ B(0, ρ).

Let Îc0 ̸= ∅. Since ρ 6 min
i∈Îc0

|aiû− v[i]|
∥ai∥2

, we have ∥w∥2 < min
i∈Îc0

|aiû− v[i]|
∥ai∥2

. Then

i ∈ Îc0 ⇒ ψi(û+ w) =
∣∣ai(û+ w)− v[i]

∣∣ > ∣∣aiû− v[i]
∣∣− ∣∣aiw∣∣

>
∣∣aiû− v[i]

∣∣− ∥ai∥2∥w∥2

= ∥ai∥2

(∣∣aiû− v[i]
∣∣

∥ai∥2
− ∥w∥2

)

> ∥ai∥2

(
min
i∈Îc0

∣∣aiû− v[i]
∣∣

∥ai∥2
− ∥w∥2

)
> 0 .
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Hence (17).

Consider that Ĵc
0 ̸= ∅. Since ρ 6 min

j∈Ĵc
0

∥Gj û∥2
∥Gj∥2

, then ∥w∥2 < min
j∈Ĵc

0

∥Gj û∥2
∥Gj∥2

. In a similar way

than above,

j ∈ Ĵc
0 ⇒ ∥Gj(û+ w)∥2 > ∥Gj û∥2 − ∥Gjw∥2 > ∥Gj û∥2 − ∥Gj∥2∥w∥2

= ∥Gj∥2
(
∥Gj û∥2
∥Gj∥2

− ∥w∥2
)

> ∥Gj∥2

(
min
j∈Ĵ0

∥Gj û∥2
∥Gj∥2

− ∥w∥2

)
> 0.

Combining this result with the fact that φ in (16) is C2 on R∗
+ by H2(a) leads to (18).
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